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Simple Summary: Human tumors are composed of a complex mixture of cell types, characterized
by differences in gene expression. How these changes in gene expression are driven and maintained
during tumor initial and progression is largely unknown. In this study, we characterize an important
mediator of gene expression at the single-cell level in samples from human pancreatic cancer. We find
that this process, alternative polyadenylation, regulates critical gene expression changes both within
tumor cells and cells in the tumor microenvironment. We propose that alternative polyadenylation
may be an important driver of tumor heterogeneity.

Abstract: Human tumors are characterized by extensive intratumoral transcriptional variability
within the cancer cell and stromal compartments. This variation drives phenotypic heterogeneity, pro-
ducing cell states with differential pro- and anti-tumorigenic properties. While bulk RNA sequencing
cannot achieve cell-type-specific transcriptional granularity, single-cell sequencing has permitted
an unprecedented view of these cell states. Despite this knowledge, we lack an understanding of
the mechanistic drivers of this transcriptional and phenotypic heterogeneity. 3′ untranslated region
alternative polyadenylation (3′ UTR-APA) drives gene expression alterations through regulation of
3′ UTR length. These 3′ UTR alterations modulate mRNA stability, protein expression and protein
localization, resulting in cellular phenotypes including differentiation, cell proliferation, and migra-
tion. Therefore, we sought to determine whether 3′ UTR-APA events could characterize phenotypic
heterogeneity of tumor cell states. Here, we analyze the largest single-cell human pancreatic ductal
adenocarcinoma (PDAC) dataset and resolve 3′ UTR-APA patterns across PDAC cell states. We
find that increased proximal 3′ UTR-APA is associated with PDAC progression and characterizes a
metastatic ductal epithelial subpopulation and an inflammatory fibroblast population. Furthermore,
we find significant 3′ UTR shortening events in cell-state-specific marker genes associated with
increased expression. Therefore, we propose that 3′ UTR-APA drives phenotypic heterogeneity
in cancer.

Keywords: alternative polyadenyation; gene regulation; pancreatic cancer

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival
rate of 10% [1]. PDAC tumors are characterized by a dense stroma and a high degree
of cell-type-specific phenotypic variation that is integral to disease progression and drug
resistance [2–4]. Over the past decade, bulk and single-cell RNA sequencing (scRNA-seq)
analyses uncovered substantial inter- and intratumoral transcriptional heterogeneity [5–7].
These studies have formed the basis for patient stratification and delineation of pheno-
typically distinct epithelial and stromal subpopulations. For example, tumor epithelial
cells have been found to exist in subpopulations that exhibit differing proliferative and
metastatic potential [6,8,9]. Similarly, phenotypically distinct subsets of cancer associated
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fibroblasts (CAFs) characterized by unique transcriptional profiles have been identified
within the tumor microenvironment [10,11]. Two major CAF subclasses, inflammatory
CAFs (iCAFs) and myofibroblastic CAFs (myCAFs), have distinct but crucial roles in tumor
progression and therapeutic resistance [12,13]. However, mechanistic drivers of such tran-
scriptional and phenotypic heterogeneity in PDAC remain unclear. Recently, we performed
an in-depth analysis of sequencing data on PDAC tumors that established 3′ UTR alterna-
tive polyadenylation (APA) as a mechanistic driver of oncogene expression [14–16]. Specific
PDAC oncogenes were found to undergo proximal 3′ UTR-APA (usage of proximal 3′ UTR
polyadenylation site) resulting in shorter 3′ UTRs, driving increased expression. However,
as this analysis made use of bulk RNA-seq data, it was impossible to determine the con-
tribution of APA to cell-type-specific transcriptional heterogeneity. To determine whether
APA could be a mechanistic driver of phenotypic variation in cancer we now leverage the
largest scRNA-seq human PDAC dataset recently published by Peng et al. [17]. Unlike bulk
sequencing data, the majority of single-cell sequencing protocols are 3′ biased, allowing
robust detection of 3′-UTR-APA changes and the associated transcriptional heterogeneity
in a high-resolution dataset [7,18–20]. To our knowledge, this is the first investigation of
APA events associated with intratumoral heterogeneity.

2. Methods
2.1. Bioinformatic Processing of Human scRNA-Seq Data

scRNA-seq FASTQ files of 24 PDAC patients and 11 normal pancreata were down-
loaded from Genome Sequence Archive (GSA) (Accession: CRA001160, Bioproject: PR-
JCA001063). Cell Ranger 3.1.0 using standard parameters was used to align each file to the
hg19 genome [21]. Appropriate chemistry and alignment by Cell Ranger were detected
for 21 patients and 11 normal tissues, and these data were used for downstream analyses.
We focused on annotated cells (Peng et al. [17]) with at most 6000 genes/cell (to eliminate
doublets) and with at least 200 genes/cells. Cells with >10% mitochondrial counts and
genes occurring in <3 cells were excluded from the analysis. This yielded 10,345 normal
cells and 22,053 tumor cells for the analysis of 3′ UTR-APA events.

2.2. Analysis of 3′ UTR-APA Events

Analysis of 3′ UTR-APA events was performed by manual implementation of the
scRNA-seq algorithm proposed in [18] (Figure S1b). Briefly, PCR duplicates were discarded
from aligned BAM files using UMI tools [22]. These files were used to detect peaks in
3′ UTR read density using Homer findPeaks function [23,24]. Additionally, cell type
identity was obtained from Peng et al. [17], and we used this information to annotate
major cell types and generate cell-type-specific BAM files. Reads in cell-type-specific BAMs
that mapped to Homer-determined peak positions were measured using feature counts
(Rsubread package) [25]. Low count peaks (<10 CPMs over all cell clusters) and peaks with
A-rich sequences [18] were filtered out, allowing identification of statistically significant 3′

UTR-APA events and mean proximal PUI at a single-cell level exactly as described in [18].
IGV plots were used to visualize the read density changes for the 3′ UTR altered genes.
Frequency density plots were used to visualize distribution of mean proximal PUI across
single cells in a subcluster and significant differences between subclusters were assessed
using the Wilcoxon ranked sum test with continuity correction.

2.3. Bioinformatics Analyses and Statistical Methods

Subsequent analyses were carried out in R 4.0.4. Monocle3 was used to analyze single-
cell trajectories to determine cell state transitions [26]. The top 200 differentially expressed
genes between normal and tumor type 2 ductal cells were used for dimensionality reduction
via UMAP and clustering and the mean proximal PUI for each cell was overlayed. The
top 25 cluster-specific marker genes were identified using the top_markers function in
Monocle3. Differentially expressed genes between the subclusters were identified using the
FindMarkers function in Seurat4 [27]. Gene Set Enrichment Analysis (GSEA) and Enrichr
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were used to perform pathway analysis using the MSigDB hallmark, KEGG and Reactome
gene sets [28,29]. Enrichment of the input genes (3′-UTR-APA altered genes/differentially
expressed genes) in Enrichr was computed using the Fisher’s exact test and p-values were
adjusted using the Benjamini–Hochberg correction (FDR < 0.01). A similar approach was
implemented for analysis of fibroblasts.

3. Results and Discussion

To understand whether APA is associated with cell-type-specific phenotypic variation,
we sought to identify cell types that exhibit substantial 3′ UTR-APA events. To achieve this,
we reanalyzed the scRNA-seq PDAC dataset (Supplementary Figure S1a) comprised of
11 normal pancreata and 24 tumor samples. We focused on cell types that form a significant
proportion of the tumor, including acinar and ductal epithelial cells, and stromal fibroblasts
and stellate cells. After quality control (see Section 2), we processed a total of 22,053 tumor
cells across 21 tumor samples and 10,345 normal cells across 11 pancreata for downstream
analyses. We adapted a recently published algorithm to detect 3′ UTR-APA events from
scRNA-seq data [18] (Supplementary Figure S1b).

In concordance with previous findings, tumor tissues exhibited significantly
higher proximal 3′ UTR-APA gene events (3′ UTR shortening) as compared to normal
tissues [14,16]. In particular, tumor ductal cells showed significantly higher numbers of
proximal 3′ UTR-APA events (1177 genes expressed shorter 3′ UTRs and 250 genes ex-
pressed longer 3′ UTRs) compared to normal ductal cells (Figure 1a). While fibroblasts,
acinar cells and stellate cells in PDAC tumors exhibited a higher number of proximal 3′

UTR-APA events compared to their normal counterparts, PDAC ductal cells exhibited the
highest ratio of proximal to distal 3′ UTR-APA events (~5:1) compared to other cell types.

While a bulk PDAC RNA-seq study would reveal significant 3′ UTR-APA events
occurring across a mixture of these cell types, it would fail to resolve cell-type-specific 3′

UTR-APA events. The extent of proximal 3′ UTR-APA in PDAC ductal cells motivated us
to probe APA events within this transcriptionally diverse cell population.

Peng and colleagues identified two subsets of PDAC ductal cells, namely ductal cell
type 1 and ductal cell type 2. Ductal cell type 2 constituted the majority of the PDAC ductal
cells and exhibited a malignant gene expression profile. Ductal cell type 1 expressed an
abnormal gene expression profile that was distinct from the normal cells, representing a
transcriptional state between normal and tumor ductal cells [17].

We performed dimensionality reduction and clustering to delineate these transcrip-
tionally distinct subsets of normal and tumor ductal cells (Figure 1b). Clustering re-
vealed 6 transcriptionally distinct subclusters: normal ductal cells (dA), tumor ductal cell
type 1 (dB) and tumor ductal cell type 2 (composed of subclusters dC, dD, dE, dF). In-
terpatient as well as intrapatient heterogeneity was detected in ductal cell type 2 with
the majority of the patients represented in subcluster dC and a minority in subclus-
ters dD, dE and dF (Supplementary Figure S2a). Subcluster-dE-specific genes were
enriched for metastatic markers (HMGA1, ENO1, GABRP, IGFBP2, SDC1, LGALS1)
(Supplementary Figure S2b) and pathway enrichment analysis of dE overexpressed genes
showed epithelial-to-mesenchymal transition (EMT) as a top hit supporting its metastatic
phenotype (Supplementary Figure S2c) [30–35].

In contrast, gene expression and pathway analysis of subcluster-dD-specific genes
showed enrichment for well-differentiated PDAC markers (REG4, TFF1, TFF2, TFF3, VSIG2,
LGALS4), highlighting the extensive phenotypic heterogeneity exhibited by PDAC ductal
cells (Supplementary Figure S2d) [6].
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Figure 1. Proximal APA in tumor epithelium is associated with PDAC progression and malignant
phenotypes. (a) Plot of number of shortened (red) and lengthened (blue) 3′ UTR-APA events across
four PDAC cell types compared to their counterparts in normal pancreas. (b) UMAP embedding of
ductal cells (dots) from normal pancreata and tumor patients. Color indicates the ductal cell type
membership. Notations dA-dF denote the subclusters. (c) UMAP embedding of ductal cells from
normal pancreata and tumor patients. Color indicates the degree of mean proximal PUI in each cell
(blue, low; green, high). (d) Distribution of mean proximal PUI of single cells in normal ductal cells
(orange), tumor ductal cell type 1 (green) and ductal cell type 2 (blue) (every pairwise comparison
yielded p < 10−7). (e) Distribution of mean proximal PUI of single cells in subcluster dE (green)
compared to subcluster dC (brown) (p < 10−16). (f) Significantly enriched pathways (FDR < 0.01)
associated with 3′ UTR altered genes between subclusters dE and dC. (g) IGV plot highlighting the 3′

UTR density profile differences in the metastatic gene GABRP between subclusters dC (brown) and
dE (green). (h). IGV plot highlighting the 3′ UTR density profile differences in the metastatic gene
SDC1 between subclusters dC (brown) and dE (green).
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We first sought to characterize APA patterns across the broad ductal cell states (normal
ductal cells, tumor ductal cell type 1, tumor ductal cell type 2) to determine the relationship
between APA and tumor progression. We determined the mean proximal polyA site usage
index (mean proximal PUI), the extent of 3′ UTR proximal site usage for each cell, averaged
over all genes (see Section 2, [18]). A higher mean proximal PUI indicates enhanced cleavage
at proximal polyadenylation sites in the cell (resulting in shorter 3′ UTRs). We plotted
the mean proximal PUI for every ductal cell associated with each cell state (Figure 1c).
Pseudotime analysis confirmed progression from a normal state (normal ductal cells) to
an abnormal intermediate state (tumor ductal type 1) to a malignant ductal state (tumor
ductal type 2) (Supplementary Figure S2e). This malignant progression was associated
with a progressive and significant increase in mean proximal PUI (Figure 1d). Therefore,
increased proximal 3′-UTR-APA is associated with malignant progression in PDAC.

We noted substantial APA heterogeneity within the subclusters comprising tumor
ductal cell type 2 (dC, dD, dE) and therefore quantified proximal 3′ UTR-APA patterns
across these cells. The cells in the metastatic subcluster dE showed a significant increase in
mean proximal PUI compared to dC, indicating increased 3′ UTR shortening events in dE
(Figure 1e). In contrast, the cells in the well-differentiated PDAC subcluster dD showed a
significant decrease in mean proximal PUI compared to dC, indicating decreased 3′ UTR
shortening events (Supplementary Figure S2f). To determine whether these APA events
are associated with known metastatic driver genes, we performed pathway enrichment
analysis of the 3′ UTR altered genes in dE, which revealed EMT as a top hit (Figure 1f).
Furthermore, we found significantly increased proximal APA of metastasis-promoting
genes preferentially expressed in dE, including GABRP and SDC1 (Figure 1g,h; Supplemen-
tary Figure S2b). This suggests a novel role of proximal 3′ UTR-APA in orchestrating the
metastatic PDAC phenotype.

CAFs are a transcriptionally and phenotypically heterogeneous population in the
tumor microenvironment that make fundamental contributions to both progression and
therapy response [11,12,36–38]. How this transcriptional heterogeneity is developed and
maintained during tumorigenesis is integral to the advancement of more effective therapeu-
tic strategies. In PDAC, two major CAF subtypes have been discovered and functionally
characterized—myCAFs, responsible for secreting the extracellular matrix components
that promote a dense desmoplastic stroma, and iCAFs, responsible for secreting IL-6 and
other inflammatory mediators. To investigate the role of APA in CAF biology, we clustered
normal fibroblasts and CAFs and identified transcriptionally differing subclusters within
the CAF population (Figure 2a). Clustering revealed transcriptionally distinct subclusters
including normal fibroblast cells (fA) and tumor fibroblast cells (composed of subclusters
fB-fE). Pathway analysis and cluster-specific gene markers revealed fC as a myCAF popula-
tion (ACTA2, POSTN, MMP11, IGFBP3, COL12A1, THBS2), (Supplementary Figure S3a,c)
and fD as an iCAF population (HAS1, HAS2, CCL2, UGDH, SOD2, LMNA), (Supplementary
Figure S3b,d) [12,13]. To characterize 3′ UTR-APA patterns, we determined the mean
proximal PUI for every normal and tumor fibroblast cell (Figure 2b). In contrast to normal
fibroblasts, the tumor fibroblast population showed a small but significant increase in
proximal 3′ UTR-APA (Supplementary Figure S3e), indicative of more 3′ UTR shortening
events in CAFs. We next examined 3′ UTR-APA underlying CAF heterogeneity and found
no significant difference between normal fibroblasts and the myCAF population (Figure 2c).
In contrast, there was a significant increase in 3′ UTR shortening in the iCAF population
(Figure 2d; Supplementary Figure S3f), revealing that increased proximal APA characterizes
the inflammatory CAF phenotype. Importantly, we found significant increased proximal
APA of critical iCAF markers such as SOD2 and UGDH associated with their increased
expression in iCAFs (Figure 2e,f; Supplementary Figure S3b). This suggests a novel role of
3′ UTR-APA in orchestrating the inflammatory CAF phenotype.
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Figure 2. Increased proximal APA characterizes the inflammatory CAF phenotype. (a) UMAP
embedding of fibroblast cells (dots) from normal pancreata and tumor patients. Color indicates the
fibroblast cell type membership. Notations fA-fE denote the subclusters. (b) UMAP embedding
of fibroblast cells from normal pancreata and tumor patients. Color indicates the degree of mean
proximal PUI in each cell (blue, low; green, high). (c) Distribution of mean proximal PUI of single
cells (p = 0.6) in normal fibroblast cells (orange) and myCAFs (purple). (d) Distribution of mean
proximal PUI of single cells (p < 10−16) in iCAFs (green) compared to normal fibroblast cells (orange).
(e) IGV plot highlighting the 3′-UTR density profile differences in the iCAF activated transcription
factor SOD2 between iCAFs (green) and myCAFs (purple). (f) IGV plot highlighting the 3′-UTR
density profile differences in the iCAF marker UGDH between iCAFs (green) and myCAFs (purple).

4. Conclusions

3′ UTR-APA is an underappreciated driver of gene dysregulation in cancer. Single-cell
sequencing has revealed that tumors have high degrees of transcriptional and phenotypic
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heterogeneity, both within the cancer cell and stromal compartments. However, drivers of
such complex phenotypic heterogeneity remain unclear. In this study, we investigated 3′

UTR-APA-associated phenotypic heterogeneity using single-cell data. To our knowledge,
this is the first investigation of APA events associated with intratumoral heterogeneity. We
demonstrate that 3′ UTR shortening increases progressively during PDAC progression.
Furthermore, 3′ UTR shortening of critical metastatic and iCAF marker genes is associated
with increased expression, thereby defining cell identity. Increased proximal 3′ UTR-
APA characterizes a metastatic ductal subpopulation in tumor epithelial cells as well as
an inflammatory CAF population in the PDAC stroma. We propose that 3′ UTR-APA
drives phenotypic heterogeneity both in the tumor epithelium and within the tumor
microenvironment. Future experimental work is required to definitively validate the role of
3′ UTR-APA as a mechanistic driver of transcriptional and phenotypic tumor heterogeneity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16030640/s1, Figure S1. Description of the scRNA-seq dataset
and the workflow used to quantify 3′ UTR-APA in PDAC. Figure S2. Proximal APA in tumor
epithelium is associated with PDAC progression and malignant phenotypes. Figure S3. Increased
proximal APA characterizes the inflammatory CAF phenotype.
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