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Simple Summary: This research explores the transformative potential of artificial intelligence (AI) in
the early detection of lung cancer. Through a comprehensive systematic review and meta-analysis,
this study evaluates the effectiveness of AI models, emphasizing a promising avenue for improving
diagnostic accuracy. Among 1024 identified records, 39 studies were meticulously selected and
analyzed following the PRISMA guidelines. The findings highlight significant strides in AI’s role,
emphasizing the need for standardized protocols. Despite the observed heterogeneity, this study
underscores AI’s promising impact on lung cancer screening, laying the groundwork for future ad-
vancements in clinical practice. This research contributes crucial insights for healthcare professionals
and researchers alike, aiming to enhance the early diagnosis and management of lung cancer.

Abstract: (1) Background: Lung cancer’s high mortality due to late diagnosis highlights a need
for early detection strategies. Artificial intelligence (AI) in healthcare, particularly for lung cancer,
offers promise by analyzing medical data for early identification and personalized treatment. This
systematic review evaluates AI’s performance in early lung cancer detection, analyzing its techniques,
strengths, limitations, and comparative edge over traditional methods. (2) Methods: This systematic
review and meta-analysis followed the PRISMA guidelines rigorously, outlining a comprehensive
protocol and employing tailored search strategies across diverse databases. Two reviewers inde-
pendently screened studies based on predefined criteria, ensuring the selection of high-quality data
relevant to AI’s role in lung cancer detection. The extraction of key study details and performance
metrics, followed by quality assessment, facilitated a robust analysis using R software (Version
4.3.0). The process, depicted via a PRISMA flow diagram, allowed for the meticulous evaluation
and synthesis of the findings in this review. (3) Results: From 1024 records, 39 studies met the
inclusion criteria, showcasing diverse AI model applications for lung cancer detection, emphasizing
varying strengths among the studies. These findings underscore AI’s potential for early lung cancer
diagnosis but highlight the need for standardization amidst study variations. The results demonstrate
promising pooled sensitivity and specificity of 0.87, signifying AI’s accuracy in identifying true
positives and negatives, despite the observed heterogeneity attributed to diverse study parameters.
(4) Conclusions: AI demonstrates promise in early lung cancer detection, showing high accuracy
levels in this systematic review. However, study variations underline the need for standardized
protocols to fully leverage AI’s potential in revolutionizing early diagnosis, ultimately benefiting

Cancers 2024, 16, 674. https://doi.org/10.3390/cancers16030674 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16030674
https://doi.org/10.3390/cancers16030674
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-6687-0461
https://orcid.org/0009-0004-8381-7637
https://orcid.org/0009-0004-3651-7922
https://orcid.org/0009-0003-9316-7319
https://orcid.org/0009-0005-5962-1746
https://doi.org/10.3390/cancers16030674
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16030674?type=check_update&version=1


Cancers 2024, 16, 674 2 of 18

patients and healthcare professionals. As the field progresses, validated AI models from large-scale
perspective studies will greatly benefit clinical practice and patient care in the future.

Keywords: AI-driven models; diagnosing; predicting; outcomes; lung cancer; systematic review;
meta-analysis

1. Introduction

Lung cancer remains a formidable global health challenge, claiming the lives of
millions of individuals each year [1]. The high mortality rate associated with lung cancer is
primarily attributed to the advanced stage at which it is often diagnosed [2]. Lung cancer
is notorious for its asymptomatic early stages, making it extremely difficult to diagnose
until it has reached an advanced, often incurable, stage. The later the diagnosis, the more
limited the treatment options, and the grimmer the prognosis for patients. In contrast,
when lung cancer is detected at an early stage, the chances of successful treatment and long-
term survival increase significantly. Consequently, there is a pressing need for innovative
strategies to enable early detection, as this could significantly improve the prognosis and
overall survival rates of lung cancer patients [3]. In recent years, the field of artificial
intelligence (AI) has emerged as a promising avenue for achieving this goal. In the field
of healthcare, AI has shown promise in improving diagnostic accuracy, predicting disease
outcomes, and personalizing treatment plans [4]. In the context of lung cancer, AI systems
can analyze vast datasets of medical images, patient records, and genetic information to
identify patterns and abnormalities that may elude human perception. These systems can
not only detect lung cancer at earlier stages, but also assist in risk assessment and treatment
planning [5].

Current methods for early lung cancer detection include screening programs such
as low-dose computed tomography (LDCT) and the analysis of biomarkers. While these
approaches have demonstrated some success, they are not without limitations [6]. LDCT,
for instance, may lead to overdiagnosis and increased healthcare costs. AI systems can
potentially enhance the effectiveness of these methods by providing more precise and
efficient analysis, reducing false positives and false negatives, and offering a complemen-
tary approach to existing techniques. Despite the potential benefits of AI in early lung
cancer detection, several challenges and considerations must be addressed [7,8]. The perfor-
mance of AI models can vary depending on the quality and diversity of the data used for
training [9,10]. Therefore, the selection and curation of data are fundamental to the success
of AI-based systems in this context.

This systematic review and metanalysis endeavors to provide a comprehensive evalu-
ation of the performance of AI systems for the early detection of lung cancer. This paper
analyzed the current state of AI applications in lung cancer detection, including the various
techniques and approaches being utilized. Furthermore, the study critically assessed the
advantages and limitations of AI-based methods compared to traditional approaches.

2. Materials and Methods

In conducting this systematic review and meta-analysis evaluating the performance of
AI systems for the early detection of lung cancer, we meticulously adhered to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. The
following detailed Method Section outlines the steps taken in this comprehensive review.

2.1. Protocol Development

The research question was formulated to assess the performance of AI systems in
early lung cancer detection. A detailed protocol was developed, outlining the inclusion
and exclusion criteria, search strategy, and methods for data extraction and analysis. In
accordance with the journal’s guidelines, this systematic review was not registered in



Cancers 2024, 16, 674 3 of 18

any specific database prior to its initiation. While the journals encourage registration for
systematic reviews, it is not a mandatory requirement universally practiced in the field.
This decision was aligned with established practices within this domain, considering the
extensive body of previously published systematic reviews without prior registration in
reputable peer-reviewed journals.

2.2. Literature Search

Comprehensive searches were conducted in electronic databases, including PubMed,
Google Scholar, Science direct, and Embase, to identify relevant studies published up to
October 2023. The inclusion of Google Scholar helped us to identify the grey literature,
conference papers, and other non-traditional sources of information.

2.3. Search Strategy

The search strategy included a combination of keywords and Medical Subject Heading
(MeSH) terms related to lung cancer, artificial intelligence, and early detection. The search
strategy was tailored to each database to account for variations in syntax and indexing.
This ensured that no relevant studies were missed.

2.4. Study Selection

Two independent reviewers screened titles and abstracts for eligibility based on pre-
defined criteria. The initial screening of titles and abstracts helped in rapidly identifying
studies that met the inclusion criteria and eliminating those that did not. Full-text articles
of potentially relevant studies were retrieved for further assessment. A full-text review was
conducted on potentially relevant studies to ensure that the selection process was rigorous,
and that the final dataset was of high quality.

2.5. Eligibility Criteria
2.5.1. Inclusion Criteria

Studies evaluating the performance of AI systems for the early detection of lung
cancer.

Original research articles published in English.
Studies reporting sensitivity, specificity, and other relevant diagnostic performance

metrics.

2.5.2. Exclusion Criteria

Studies lacking sufficient data on AI system performance.
Reviews, commentaries, and conference abstracts without primary data.

2.6. Data Extraction

Relevant data, including study characteristics, AI system details, validation methods,
and diagnostic performance metrics, were extracted using a standardized data extraction
form. Two reviewers independently extracted data from selected studies. Discrepancies
were resolved through discussion or consultation with a third reviewer.

2.7. Quality Assessment

The quality of the included studies was assessed using appropriate tools, considering
factors such as study design, patient selection, and AI system evaluation. A risk-of-bias
graph and summary were generated to visually represent the methodological quality of
the included studies.

2.8. Data Synthesis and Analysis

The meta-analysis was carried out using R software (Version 4.3.0, Vienna, Austria)
along with the RStudio interface (Version 2023.03.0, Boston, MA, USA). Packages and
libraries such as meta and metafor were utilized to calculate key performance metrics,
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including pooled sensitivity and specificity, along with their associated confidence inter-
vals, i.e., 95%. Moreover, the presence of heterogeneity among the included studies was
evaluated using a chi-square test and I2 index statistics.

2.9. Reporting

A PRISMA flow diagram was used to illustrate the study selection process, including
the number of studies identified, screened, assessed for eligibility, and included in the
final analysis.

3. Results

The flow diagram in Figure 1 shows that the researchers identified 1024 records from
the databases, but only 116 records were assessed for eligibility. At the identification stage,
326 records were excluded due to duplication. During the screening stage, 28 records were
excluded because they were not in English. Some records lacked the essential data required
for the systematic review. Records that did not have full-text versions available for review
were excluded. Review articles, which summarize and analyze existing research, were
excluded during the screening stage. After completing the identification and screening
stages, the research team identified 39 studies that met the inclusion criteria and were
relevant to the systematic review. These studies formed the basis for the subsequent data
extraction and analysis, contributing to the comprehensive evaluation of AI systems for
early lung cancer detection in the systematic review.

In Table 1, we present an overview of the characteristics of the included studies
in our systematic review, each focusing on the application of AI models for the early
detection of lung cancer. The table encompasses a diverse range of studies conducted across
different countries and utilizing various AI models and data sources. When comparing
and contrasting the results of these studies, several key insights emerge. While studies
such as Wu et al. (2022) and Alexander et al. (2020) achieved notably high specificity
levels, suggesting the potential for reducing false positives in clinical settings, Baldwin
et al. (2020) achieved exceptionally high sensitivity, minimizing the risk of missing cancer
cases [4,7,10]. On the other hand, the study by Chen (2022) showcases the effectiveness
of AI models, specifically CNN and RNN, in improving the overall accuracy of lung
cancer prediction [8]. Notably, Huang et al. (2018) integrated sensor array technology
with machine learning, demonstrating its promise in the precise identification of lung
cancer, especially when compared to traditional models [11]. Li et al. (2019) conducted a
retrospective study in China using 3D deep learning technology on CT scans [9]. Their AI
system achieved a sensitivity of 75% and specificity of 82%, resulting in an overall accuracy
of 88.8%. This research emphasized the potential of AI as a diagnostic tool capable of
providing more precise and unbiased outcomes in the diagnosis of pulmonary nodules,
ultimately reducing the interpretation time for radiologists. Choi et al. (2018), from the
USA, conducted a retrospective study using Support Vector Machine (SVM) and LASSO
on LIDC-IDRI data [5]. Their AI model achieved an accuracy of 84.6%, which was notably
12.4% higher than the accuracy for Lung-RADS. This result demonstrated the potential of
AI in substantially improving the accuracy of lung cancer detection. In another study from
China employed a 3D CMixNet model on LUNA-16 and LIDC-IDRI datasets. Their system
achieved a sensitivity of 94.0% and specificity of 91.0%, showcasing better results compared
to existing methods for lung cancer detection. These variations in results highlight the
trade-offs between sensitivity and specificity, as well as the distinct strengths of different AI
models and approaches. While some studies emphasize the potential of AI in overcoming
specific challenges, such as PD-L1 assessment or eligibility assessment, others underscore
the efficiency and reliability of AI in lung cancer screening. Collectively, these findings
underscore the transformative potential of AI in enhancing the accuracy and efficiency
of lung cancer diagnosis, promising significant benefits to both patients and healthcare
professionals. Collectively, these results underscore the transformative role AI can play
in improving the accuracy, efficiency, and reliability of lung cancer diagnosis, ultimately
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benefiting patients and healthcare professionals. Our systematic review incorporates
these findings to offer a holistic understanding of the state of AI in lung cancer detection,
shedding light on the remarkable potential of these technologies in the field of oncology.
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Table 1. Characteristics of included studies.

Author and Year Country Study Design AI Models Used Source of
Dataset

Key Performance Metrics of AI Models Validation
Method

Outcomes
Sensitivity Specificity Accuracy

Wu et al., 2022
[7] China Retrospective

study DL Whole slide
images 86% 96.4% 93.2% NA

AI-assisted system can be an
effective and valuable tool to
overcome the challenges of

PD-L1 assessment.

Chen 2022
[8] China Retrospective

study CNN and RNN
H-E stained
pathological

slices
95.1% 34.4% 92% NA

AI-based approach using CNN
and RCN could be very effective

for improving the accuracy of
predicting lung cancer.

Li et al., 2019
[9] China Retrospective

study

3D deep
learning

technology
CT scans 75% 82% 88.8% Internal

validation

AI may represent a valuable
diagnostic tool that shows more
precise and unbiased outcomes
in the diagnosis of pulmonary
nodules, thus minimizing the

time required for interpretation
of results by radiologists.

Alexander
et al., 2020

[10]
Australia Retrospective

study ML and NLP TMC 83.3% 93.8% 91.6% Internal
validation

The AI-assisted system enables
efficient and reliable screening of
cancer patients, with an accuracy

of 91.6% for overall
eligibility assessment.

Baldwin
et al., 2020

[4]
UK Retrospective

study LCP-CNN EDC 99.5% 28% - External
validation

The LCP-CNN approach
minimizes the risk of missing

cancer cases when compared to
the Brock model.

Choi et al., 2018
[5] USA Retrospective

study SVM-LASSO LIDC-IDRI 87.2% 81.2% 84.6% Cross-
validation

The proposed AI model achieved
84.6% accuracy, which was 12.4%

higher than accuracy for
Lung-RADS.
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Table 1. Cont.

Author and Year Country Study Design AI Models Used Source of
Dataset

Key Performance Metrics of AI Models Validation
Method

Outcomes
Sensitivity Specificity Accuracy

Huang et al., 2018
[11] Taiwan Prospective

study ML -

For internal
validation

92.3%
For external
validation

83.3%

For internal
validation

92.9%
For external
validation

86.2%

For internal
validation

92.7%
For external
validation

85.4%

External
validation/

internal
validation

The integration of the sensor
array technique and machine
learning enables the precise

identification of lung cancer with
high accuracy.

Li et al., 2019
[12] China Retrospective

study
3D deep CNN

(SS-OLHF) LIDC_IDRI 82.6% 91.3% 93.0% Cross-
validation

The proposed fusion algorithm
achieved the highest specificity,
sensitivity, and accuracy scores
among all classification models.

Nasrullah
et al., 2019

[13]
China Retrospective

study 3D CMixNet LUNA-16 and
LIDC-IDRI 94.0% 91.0% - -

The proposed system, evaluated
on LIDC-IDRI datasets, showed
better results compared to the

existing methods.

Reddy et al., 2018
[14] India Retrospective

study GLCM
Microarray data

clustering
mechanisms

95.3% 100% 97.6% Cross-
validation

GLCM features predicted lung
tumor with higher accuracy than

histogram features.

Schwyzer
et al., 2018

[15]
Switzerland Retrospective

study ANN Internal 93.6% 95.5% 94.7% Cross-
validation

ML algorithms may help in fully
automated lung cancer detection

even at a low effective
radiation doses.

Ardila et al., 2019
[16] USA Retrospective

study 3D CNN LUNA, LIDC
and NLST 64.7% 95.2% - Internal

validation

DL models have the potential to
increase consistency and
accuracy and enable the

adoption of lung
cancer screening.
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Table 1. Cont.

Author and Year Country Study Design AI Models Used Source of
Dataset

Key Performance Metrics of AI Models Validation
Method

Outcomes
Sensitivity Specificity Accuracy

Coudray
et al., 2018

[17]
USA Retrospective

study CNN TCGA 89% 93% - Internal
validation

The outcomes suggest that DL
can assist healthcare

professionals in the detection
of cancer.

Hussein
et al., 2017

[18]
USA - 3D CNN LIDC-IDRI - - 91.2% Internal

validation

The proposed approach achieved
cutting-edge outcomes in

regressing malignancy scores.

Venkadesh
et al., 2021

[19]
Denmark Retrospective

study DL NLST and
DLCST

For subset A:
91%

For subset B:
54%

90% - Cross-
validation

This algorithm has the potential
to provide reliable and

reproducible malignancy risk
scores for experts, which could

contribute to promoting the
effectiveness of lung cancer

screening management.

Ciompi et al., 2017
[20]

The
Netherlands

Retrospective
study CNN MILD and

DLCST - - 72.9% Internal
validation

The performance of the proposed
DL model in classifying nodule

type surpassed that of
conventional machine
learning approaches.

Petousis
et al., 2016

[21]
USA Retrospective

study DBN NLST - - - Cross-
validation

The lung cancer screening DBNs
were reported to have high

discrimination and predictive
power with most of the cancer as

well as non-cancer cases.

Zhang et al., 2019
[22] China Retrospective

study 3D CNN LUNA and
Kaggle 84.4% 83% - Cross-

validation

The 3D CNN with a DL
algorithm may assist experts by

providing accurate data for
diagnosing pulmonary nodules.
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Table 1. Cont.

Author and Year Country Study Design AI Models Used Source of
Dataset

Key Performance Metrics of AI Models Validation
Method

Outcomes
Sensitivity Specificity Accuracy

Petousis
et al., 2019

[23]
USA Retrospective

study ML and DBN NLST - - - Cross-
validation

The proposed model reduced the
FPR while maintaining TPR, and

improved early prediction of
cancer cases.

Huang et al., 2019
[24] USA Retrospective

study DL NLST and
PanCan 88% 60% - External

validation
DL scores could be used for early

detection of cancer cases.

Cui et al., 2020
[25] China Retrospective

study DL LUNA 90% 85% - External
validation

The DL system had better
identification sensitivity and

performance than that of
the experts.

Chauvie
et al., 2020

[26]
Italy Retrospective

study Neural network - 90% 100% 100% Cross-
validation

The utilization of visual analysis
along with NN could help

experts to reduce the number of
false positive cases.

Tam et al., 2021
[27] UK Retrospective

study DNN
NHS Cancer

Registry
Database

80% 93% 87% -

The proposed AI resulted in a
reduction in radiologist errors

and improved clinician reporting
performance.

Schwyzer
et al., 2020

[28]
Switzerland Retrospective

study DL -

For BSREM
69.2%

For OSEM
66.7%

For BSREM
84.5%

For OSEM
79.0%

- Cross-
validation

AI performed substantially better
on images with BSREM

than OSEM.

Teramoto
et al., 2010

[29]
Japan Retrospective

study CNN - 90.1% - - Cross-
validation

CNN technique can be very
effective for the early detection

of pulmonary nodules in
PET/CT images.

Kirienko
et al., 2018

[30]
Italy Retrospective

study CNN Independent
dataset - 67% 69% Cross-

validation

CNNs can be used as a reliable
tool to assist in the staging of

lung cancer patients.
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Table 1. Cont.

Author and Year Country Study Design AI Models Used Source of
Dataset

Key Performance Metrics of AI Models Validation
Method

Outcomes
Sensitivity Specificity Accuracy

Sibille et al., 2020
[31]

US and
Germany

Retrospective
study Deep CNN Independent

dataset 81.0% 97.3% -
Independent

internal
validation

CNN achieved high diagnostic
performance when both PET and

CT images were utilized.

Toney et al., 2014
[32] USA Prospective

study ANN Independent
dataset - - 99.2% -

ANNs can provide more
accurate and consistent

assessment of nodal stage in lung
cancer patients.

Scott et al., 2019
[33] USA Retrospective

study ANN Independent
dataset 100% 93.1% - External

validation

ANNs have potential to improve
diagnostic certainty and can be
useful to help direct clinical and

imaging follow-up.

Hyun et al., 2019
[34] Korea Retrospective

study
RF, NN, NBS,

LL, SVM
Independent

dataset

SVM
52.6%

RF
52.6%
NN

52.6%
NBS

52.6%
LL

52.6%

-

SVM
67.1%

RF
67.1%
NN

67.1%
NBS

67.1%
LL

67.1%

Internal
validation

An ML approach with PET-based
radiomics aids in early detection

of lung cancer.

Jayasurya
et al., 2010

[35]

Belgium and
the

Netherlands

Retrospective
study BN Independent

dataset - - - External
validation

BN models are better at handling
missing data as compared to
SVM models and are more

suitable for the medical domain.
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Table 1. Cont.

Author and Year Country Study Design AI Models Used Source of
Dataset

Key Performance Metrics of AI Models Validation
Method

Outcomes
Sensitivity Specificity Accuracy

Luo et al., 2018
[36] USA Retrospective

study BN Independent
dataset - - - Cross-

validation

The proposed BN model is stable
and can identify hierarchical

relationships among biophysical
features for the prediction of

lung cancer.

Chamberlin
et al., 2021

[37]

USA,
Europe, and

Asia

Retrospective
study CNN Independent

data set 100% 70.8% - Internal
validation

AI software strongly agrees with
expert radiologist determination
of detection of both lung nodules

and CACV.

Hsu et al., 2020
[6] Taiwan Retrospective

study ANN Hospital-based
cancer registry 75.0% 85.0% - Cross-

validation

This study reported that ANN
had better sensitivity for the
detection of lung cancer than

Lung-RADS.

Duan et al., 2020
[38] China Retrospective

study

Decision tree
C5.0, ANN,

SVM
-

C5.0-1
61.8%
SVM
59.2%
ANN
81.5%

C5.0-1
73.4%
SVM
68.7%
ANN
65.6%

- -

These AI models can be utilized
for the on-site screening and

clinical diagnosis of the
high-risk population.

Silva et al., 2017
[39] Brazil Retrospective

study Deep CNN LIDC-IDRI 94.6% 95.1% 94.7% Internal
validation

The proposed DL models
demonstrated promising

performance and avoided the
need for feature extraction and

selection steps.

Trajanovski
et al., 2021

[40]
USA Retrospective

study CNN Kaggle, NLST,
and UCM 93% - - External

validation

The proposed DL had a better
sensitivity of 93% and can be

used for the screening of
lung cancer.
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Table 1. Cont.

Author and Year Country Study Design AI Models Used Source of
Dataset

Key Performance Metrics of AI Models Validation
Method

Outcomes
Sensitivity Specificity Accuracy

Chen et al., 2022
[41] China Retrospective

study CNN Self-built data
from hospital 94.1% 77.7% 87.1% External

validation

The DL-based AI film reading
system has higher sensitivity for

the diagnosis of NSCLC than
radiologists.

Coruch et al., 2021
[42] Turkey Retrospective

study CNN Hospital records 92.2% 58.7% 75.2% Cross-
validation

The performance of the
observers in evaluating the risk

of malignancy was slightly
higher than the performance of

fusion AI algorithms.

PD-L1 = programmed death-ligand 1, CNN = convolutional neural network, RNN = recurrent neural network, ML = machine learning, NLP = natural language processing,
TMC = thoracic malignancies cohort, SVM-LASSO = support vector machine–least absolute linkage and selection operator, EDC = electronic data capture, RADS = Reporting and
Data System, CMixNet = customized mixed link network, LIDC = lung image database consortium, IDRI = image database resource initiative. GLCM = gray level co-event matrix,
NLST = National Lung Cancer Screening Trial, LUNA = lung nodule analysis, TCGA = the Cancer Genome Atlas, DLCST = Danish lung cancer screening trial, MILD = multicenter
Italian lung detection, RF = random Forest, BN = Bayesian network, DNN = deep neural network, BSREM = block-sequential regularized expectation maximization, OSEM = ordered
subset expectation maximization, ANN = artificial neural network, GGO = ground-glass opacities, LL = logistic regression, NBS = naïve Bayesian system, NN = neural network,
UCM = University of Chicago.
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Figures 2 and 3 present forest plots of the pooled sensitivity and sensitivity of AI
models for the early diagnosis of lung cancer. The pooled sensitivity and specificity of
AI models across the included studies were 0.87 (95% CI: 0.82–0.90) and 0.87 (95% CI:
0.80–0.91), respectively. These results indicate that AI models demonstrated a high level
of accuracy in correctly identifying true positives and true negatives, showing promising
results for the early diagnosis of lung cancer. However, heterogeneity was observed
among the included studies. This heterogeneity may be attributed to variations in study
populations, data sources, and model specifications. The results of quality assessments are
presented in Figure 4.

Cancers 2024, 16, x FOR PEER REVIEW 10 of 15 
 

 

Figures 2 and 3 present forest plots of the pooled sensitivity and sensitivity of AI 
models for the early diagnosis of lung cancer. The pooled sensitivity and specificity of AI 
models across the included studies were 0.87 (95% CI: 0.82–0.90) and 0.87 (95% CI: 0.80–
0.91), respectively. These results indicate that AI models demonstrated a high level of 
accuracy in correctly identifying true positives and true negatives, showing promising 
results for the early diagnosis of lung cancer. However, heterogeneity was observed 
among the included studies. This heterogeneity may be attributed to variations in study 
populations, data sources, and model specifications. The results of quality assessments 
are presented in Figure 4. 

 
Figure 2. Forest plot of pooled sensitivity of AI models [4,5,7–42]. Figure 2. Forest plot of pooled sensitivity of AI models [4,5,7–42].



Cancers 2024, 16, 674 14 of 18Cancers 2024, 16, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 3. Forest plot of pooled specificity of AI models [4,5,7–42]. 

 
Figure 4. Quality assessment of included studies using QUADAS-2 tool [43]. 

4. Discussion 
Lung cancer is one of the most prevalent diseases worldwide and the leading cause 

of cancer-associated deaths, with an estimated 2.2 million new cases and 1.8 million 
deaths in 2020 [44]. Currently, a CT scan of the chest is the most frequent method of lung 
cancer screening. Its high resolution can elucidate the association among surrounding 

Figure 3. Forest plot of pooled specificity of AI models [4,5,7–42].

Cancers 2024, 16, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 3. Forest plot of pooled specificity of AI models [4,5,7–42]. 

 
Figure 4. Quality assessment of included studies using QUADAS-2 tool [43]. 

4. Discussion 
Lung cancer is one of the most prevalent diseases worldwide and the leading cause 

of cancer-associated deaths, with an estimated 2.2 million new cases and 1.8 million 
deaths in 2020 [44]. Currently, a CT scan of the chest is the most frequent method of lung 
cancer screening. Its high resolution can elucidate the association among surrounding 

Figure 4. Quality assessment of included studies using QUADAS-2 tool [43].

4. Discussion

Lung cancer is one of the most prevalent diseases worldwide and the leading cause of
cancer-associated deaths, with an estimated 2.2 million new cases and 1.8 million deaths
in 2020 [44]. Currently, a CT scan of the chest is the most frequent method of lung cancer
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screening. Its high resolution can elucidate the association among surrounding organs
and blood vessels more clearly, and it plays a significant role in the early detection of lung
cancer [45]. However, the accuracy of this method can be influenced by benign lesions
such as necrosis, inflammation, tuberculosis, various textures in lung images, and several
other factors like the experience of radiologists, potentially leading to misdiagnosis and
omissions [46]. With the implementation of AI-assisted diagnostic systems into clinical
practice, a new era has dawned in the field of lung cancer diagnosis. Recent studies have
documented the growing and widespread utilization of AI models in clinical diagnosis and
treatment, respectively [47–49]. AI models primarily focus on diagnosing and evaluating
various medical images, including skin lesions, pathological microscopic images, and
radiological data. AI models are remarkable in their ability to enhance diagnostic accuracy,
stability, and work efficiency.

This review documented promising results, indicating that AI models for the early
diagnosis of lung cancer demonstrated a high level of accuracy, with pooled sensitivity
and specificity values of 0.87 (95% CI: 0.82–0.90) and 0.87 (95% CI: 0.80–0.91), respectively.
These findings suggest that AI models exhibit significant capability in correctly identifying
true positives and true negatives. Liu et al. recently conducted a systematic review and
meta-analysis in which they also demonstrated the commendable performance of AI
models in predicting lung cancer, with a pooled sensitivity and specificity of 89% and 87%,
respectively [46]. Robust performance is sometimes crucial in terms of lung cancer, where
early detections substantially impact patient outcomes. High accuracy of more than 90%
was observed in this study, which aligns with the broader trend in the medical literature
supporting the effectiveness of AI in diagnostic settings [7,8,10,12,14,15,26,32]. However,
a lower pooled accuracy was also reported in studies mainly focused on lung cancer
screening, specifically considering the results obtained across all studies [20,30,34,42] and
those in which a CNN model was employed [20,30,42], ranging from 67–75%, respectively.
Despite these consolidated findings, we are confident that AI models are a valuable resource
for radiologists to detect lung cancer.

AI-assisted diagnostic systems result in different diagnostic outcomes. A study re-
ported that a 3D CNN model exhibited greater advantages in detecting lung cancer as
compared to improvements seen with other AI models [18]. However, in two studies,
ANN achieved high diagnostic performance that could be useful for the detection of lung
cancer [32,33]. Distinct algorithms demonstrate diverse diagnostic capabilities, notably in
radionics and deep learning, which not only assist in predicting the benign or malignant
nature of lung nodules, but also identify the prognosis of small-cell lung cancer [50,51]. The
utilization of AI models in clinical practice is promising; however, validity remains a critical
step for generalizability. Among 39 articles, 15 articles performed cross-validation to assess
the effectiveness and reliability of AI models [5,6,12,14,15,19,21,23,26,28–30,36,42,50].

Despite the overall positive outcomes, observed heterogeneity among the included
studies was identified. Therefore, future research should focus on refining AI models, con-
sidering the identified heterogeneity challenges. Collaborative efforts among researchers,
clinicians, and policymakers are essential to establish guidelines and standards for the
development and evaluation of AI systems in lung cancer screening. By addressing these
challenges collectively, the field can progress toward the implementation of AI technolo-
gies in clinical settings, ultimately improving the early diagnosis and management of
lung cancer.

The current study has certain limitations that should be addressed: (1) The exclusion
of the studies lacking complete diagnostic data may have altered the results. (2) While
conducting this comprehensive search, only English language articles were included, po-
tentially introducing language bias. (3) The high heterogeneity among all included studies
may be attributed to variations in study populations, data sources, and model specifica-
tions, and these results warrant further investigation. (4) The included studies were mainly
designed retrospectively, which may have affected the overall quality of the systematic
review and meta-analysis. Despite the initial verification of AI models’ effectiveness in lung
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cancer screening, most of the AI-based approaches are still in the laboratory research stage
and have not yet been implemented into clinical practice. Limitations are evident in data
integration, image data quality, legal liability definition, complex pathology diagnosis and
cost of use. However, a huge volume of experienced healthcare professionals, especially
radiologists and pathologists, are getting involved in AI-assisted lung cancer detection. It is
anticipated that AI models will play a significant role in the early detection of lung cancer.

5. Conclusions

This systematic review and meta-analysis reported the promising outcomes of AI
models in the early detection of lung cancer. The pooled sensitivity and specificity values
of 0.87 (95% CI: 0.82–0.90) and 0.87 (95% CI: 0.80–0.91) showed the potential of AI models
in identifying true positives and true negatives. Regarding the observed heterogeneity
among the included studies, these findings highlight the need for standardized protocols in
the development of AI models for lung cancer screening. As the medical field continues to
grow, healthcare professionals and patients will benefit from the integration of AI models in
clinical practice once these models have been validated in large-scale prospective studies.

Author Contributions: Conceptualization, M.K., L.A. (Leen Albraik) and H.A. (Hajar Alharbi);
methodology, N.A. and L.A. (Lubna Almasuood); validation, S.A. (Shahad Aljoaid) and T.A.; formal
analysis, L.A. (Lubna Almasuood) and W.A.; investigation, H.A. (Hajar Alharbi) and A.A.; resources,
S.A. (Shahad Aljoaid), R.K., and R.A.; data curation, R.K., R.A. and M.A.; writing—original draft
preparation, M.K., L.A. (Leen Albraik), H.A. (Hadeel Aljohani) and N.A.; writing—review and editing,
S.A. (Sadeem Alqahtani), A.A. and R.K.; visualization, R.A., M.A. and A.M.; project administration,
M.K., S.A. (Sadeem Alqahtani) and H.A. (Hadeel Aljohani). All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, Z.; Hu, L.; Li, J.; Wei, L.; Zhang, J.; Zhou, J. Magnitude, temporal trends and inequality in global burden of tracheal,

bronchus and lung cancer: Findings from the Global Burden of Disease Study 2017. BMJ Glob. Health 2020, 5, e002788. [CrossRef]
[PubMed]

2. Chaft, J.E.; Rimner, A.; Weder, W.; Azzoli, C.G.; Kris, M.G.; Cascone, T. Evolution of systemic therapy for stages I–III non-metastatic
non-small-cell lung cancer. Nat. Rev. Clin. Oncol. 2021, 18, 547–557. [CrossRef] [PubMed]

3. Roointan, A.; Mir, T.A.; Wani, S.I.; Hussain, K.K.; Ahmed, B.; Abrahim, S.; Savardashtaki, A.; Gandomani, G.; Gandomani, M.;
Chinnappan, R. Early detection of lung cancer biomarkers through biosensor technology: A review. J. Pharm. Biomed. Anal. 2019,
164, 93–103. [CrossRef]

4. Baldwin, D.R.; Gustafson, J.; Pickup, L.; Arteta, C.; Novotny, P.; Declerck, J.; Kadir, T.; Figueiras, C.; Sterba, A.; Exell, A. External
validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax 2020,
75, 306–312. [CrossRef]

5. Choi, W.; Oh, J.H.; Riyahi, S.; Liu, C.J.; Jiang, F.; Chen, W.; White, C.; Rimner, A.; Mechalakos, J.G.; Deasy, J.O. Radiomics analysis
of pulmonary nodules in low-dose CT for early detection of lung cancer. Med. Phys. 2018, 45, 1537–1549. [CrossRef]

6. Hsu, Y.-C.; Tsai, Y.-H.; Weng, H.-H.; Hsu, L.-S.; Tsai, Y.-H.; Lin, Y.-C.; Hung, M.-S.; Fang, Y.-H.; Chen, C.-W. Artificial neural
networks improve LDCT lung cancer screening: A comparative validation study. BMC Cancer 2020, 20, 1023. [CrossRef]

7. Wu, J.; Liu, C.; Liu, X.; Sun, W.; Li, L.; Gao, N.; Zhang, Y.; Yang, X.; Zhang, J.; Wang, H. Artificial intelligence-assisted system for
precision diagnosis of PD-L1 expression in non-small cell lung cancer. Mod. Pathol. 2022, 35, 403–411. [CrossRef]

8. Chen, S. Models of artificial intelligence-assisted diagnosis of lung cancer pathology based on deep learning algorithms. J. Healthc.
Eng. 2022, 2022, 3972298. [CrossRef]

9. Li, X.; Hu, B.; Li, H.; You, B. Application of artificial intelligence in the diagnosis of multiple primary lung cancer. Thorac. Cancer
2019, 10, 2168–2174. [CrossRef]

10. Alexander, M.; Solomon, B.; Ball, D.L.; Sheerin, M.; Dankwa-Mullan, I.; Preininger, A.M.; Jackson, G.P.; Herath, D.M. Evaluation of
an artificial intelligence clinical trial matching system in Australian lung cancer patients. JAMIA Open 2020, 3, 209–215. [CrossRef]

11. Huang, C.-H.; Zeng, C.; Wang, Y.-C.; Peng, H.-Y.; Lin, C.-S.; Chang, C.-J.; Yang, H.-Y. A study of diagnostic accuracy using a
chemical sensor array and a machine learning technique to detect lung cancer. Sensors 2018, 18, 2845. [CrossRef]

12. Li, S.; Xu, P.; Li, B.; Chen, L.; Zhou, Z.; Hao, H.; Duan, Y.; Folkert, M.; Ma, J.; Huang, S. Predicting lung nodule malignancies by
combining deep convolutional neural network and handcrafted features. Phys. Med. Biol. 2019, 64, 175012. [CrossRef]

https://doi.org/10.1136/bmjgh-2020-002788
https://www.ncbi.nlm.nih.gov/pubmed/33028698
https://doi.org/10.1038/s41571-021-00501-4
https://www.ncbi.nlm.nih.gov/pubmed/33911215
https://doi.org/10.1016/j.jpba.2018.10.017
https://doi.org/10.1136/thoraxjnl-2019-214104
https://doi.org/10.1002/mp.12820
https://doi.org/10.1186/s12885-020-07465-1
https://doi.org/10.1038/s41379-021-00904-9
https://doi.org/10.1155/2022/3972298
https://doi.org/10.1111/1759-7714.13185
https://doi.org/10.1093/jamiaopen/ooaa002
https://doi.org/10.3390/s18092845
https://doi.org/10.1088/1361-6560/ab326a


Cancers 2024, 16, 674 17 of 18

13. Nasrullah, N.; Sang, J.; Alam, M.S.; Mateen, M.; Cai, B.; Hu, H. Automated lung nodule detection and classification using deep
learning combined with multiple strategies. Sensors 2019, 19, 3722. [CrossRef]

14. Reddy, U.J.; Ramana Reddy, B.V.; Reddy, B.E. Categorization & recognition of lung tumor using machine learning representations.
Curr. Med. Imaging 2019, 15, 405–413.

15. Schwyzer, M.; Ferraro, D.A.; Muehlematter, U.J.; Curioni-Fontecedro, A.; Huellner, M.W.; von Schulthess, G.K.; Kaufmann, P.A.;
Burger, I.A.; Messerli, M. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks—Initial results.
Lung Cancer 2018, 126, 170–173. [CrossRef]

16. Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G. End-to-end lung
cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019, 25, 954–961.
[CrossRef]

17. Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A.
Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med.
2018, 24, 1559–1567. [CrossRef]

18. Hussein, S.; Cao, K.; Song, Q.; Bagci, U. Risk Stratification of Lung Nodules Using 3D CNN-Based Multi-Task Learning; Springer
International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 249–260.

19. Venkadesh, K.V.; Setio, A.A.A.; Schreuder, A.; Scholten, E.T.; Chung, K.; Wille, W.M.M.; Saghir, Z.; van Ginneken, B.; Prokop, M.;
Jacobs, C. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT. Radiology 2021,
300, 438–447. [CrossRef]

20. Ciompi, F.; Chung, K.; Van Riel, S.J.; Setio, A.A.A.; Gerke, P.K.; Jacobs, C.; Scholten, E.T.; Schaefer-Prokop, C.; Wille, M.M.W.;
Marchiano, A. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci. Rep. 2017, 7,
46479. [CrossRef] [PubMed]

21. Petousis, P.; Han, S.X.; Aberle, D.; Bui, A.A.T. Prediction of lung cancer incidence on the low-dose computed tomography arm of
the National Lung Screening Trial: A dynamic Bayesian network. Artif. Intell. Med. 2016, 72, 42–55. [CrossRef] [PubMed]

22. Zhang, C.; Sun, X.; Dang, K.; Li, K.; Guo, X.w.; Chang, J.; Yu, Z.Q.; Huang, F.Y.; Wu, Y.S.; Liang, Z. Toward an expert level of lung
cancer detection and classification using a deep convolutional neural network. Oncologist 2019, 24, 1159–1165. [CrossRef]

23. Petousis, P.; Winter, A.; Speier, W.; Aberle, D.R.; Hsu, W.; Bui, A.A.T. Using sequential decision making to improve lung cancer
screening performance. Ieee Access 2019, 7, 119403–119419. [CrossRef]

24. Huang, P.; Lin, C.T.; Li, Y.; Tammemagi, M.C.; Brock, M.V.; Atkar-Khattra, S.; Xu, Y.; Hu, P.; Mayo, J.R.; Schmidt, H. Prediction of
lung cancer risk at follow-up screening with low-dose CT: A training and validation study of a deep learning method. Lancet
Digit. Health 2019, 1, e353–e362. [CrossRef] [PubMed]

25. Cui, S.; Ming, S.; Lin, Y.; Chen, F.; Shen, Q.; Li, H.; Chen, G.; Gong, X.; Wang, H. Development and clinical application of deep
learning model for lung nodules screening on CT images. Sci. Rep. 2020, 10, 13657. [CrossRef] [PubMed]

26. Chauvie, S.; De Maggi, A.; Baralis, I.; Dalmasso, F.; Berchialla, P.; Priotto, R.; Violino, P.; Mazza, F.; Melloni, G.; Grosso, M.
Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection
within SOS clinical trial. Eur. Radiol. 2020, 30, 4134–4140. [CrossRef]

27. Tam, M.D.B.S.; Dyer, T.; Dissez, G.; Morgan, T.N.; Hughes, M.; Illes, J.; Rasalingham, R.; Rasalingham, S. Augmenting lung cancer
diagnosis on chest radiographs: Positioning artificial intelligence to improve radiologist performance. Clin. Radiol. 2021, 76,
607–614. [CrossRef]

28. Schwyzer, M.; Martini, K.; Benz, D.C.; Burger, I.A.; Ferraro, D.A.; Kudura, K.; Treyer, V.; von Schulthess, G.K.; Kaufmann, P.A.;
Huellner, M.W.; et al. Artificial intelligence for detecting small FDG-positive lung nodules in digital PET/CT: Impact of image
reconstructions on diagnostic performance. Eur. Radiol. 2020, 30, 2031–2040. [CrossRef]

29. Teramoto, A.; Fujita, H.; Yamamuro, O.; Tamaki, T. Automated detection of pulmonary nodules in PET/CT images: Ensemble
false-positive reduction using a convolutional neural network technique. Med. Phys. 2016, 43, 2821–2827. [CrossRef]

30. Kirienko, M.; Sollini, M.; Silvestri, G.; Mognetti, S.; Voulaz, E.; Antunovic, L.; Rossi, A.; Antiga, L.; Chiti, A. Convolutional neural
networks promising in lung cancer T-parameter assessment on baseline FDG-PET/CT. Contrast Media Mol. Imaging 2018, 2018,
1382309. [CrossRef]

31. Sibille, L.; Seifert, R.; Avramovic, N.; Vehren, T.; Spottiswoode, B.; Zuehlsdorff, S.; Schäfers, M. 18F-FDG PET/CT uptake
classification in lymphoma and lung cancer by using deep convolutional neural networks. Radiology 2020, 294, 445–452.
[CrossRef]

32. Toney, L.K.; Vesselle, H.J. Neural networks for nodal staging of non–small cell lung cancer with FDG PET and CT: Importance of
combining uptake values and sizes of nodes and primary tumor. Radiology 2014, 270, 91–98. [CrossRef] [PubMed]

33. Scott, J.A.; McDermott, S.; Kilcoyne, A.; Wang, Y.; Halpern, E.F.; Ackman, J.B. Comparison of 18F-FDG avidity at PET of benign
and malignant pure ground-glass opacities: A paradox? Part II: Artificial neural network integration of the PET/CT characteristics
of ground-glass opacities to predict their likelihood of malignancy. Clin. Radiol. 2019, 74, 692–696. [CrossRef]

34. Hyun, S.H.; Ahn, M.S.; Koh, Y.W.; Lee, S.J. A machine-learning approach using PET-based radiomics to predict the histological
subtypes of lung cancer. Clin. Nucl. Med. 2019, 44, 956–960. [CrossRef]

35. Jayasurya, K.; Fung, G.; Yu, S.; Dehing-Oberije, C.; De Ruysscher, D.; Hope, A.; De Neve, W.; Lievens, Y.; Lambin, P.; Dekker, A.
Comparison of Bayesian network and support vector machine models for two-year survival prediction in lung cancer patients
treated with radiotherapy. Med. Phys. 2010, 37, 1401–1407. [CrossRef]

https://doi.org/10.3390/s19173722
https://doi.org/10.1016/j.lungcan.2018.11.001
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1148/radiol.2021204433
https://doi.org/10.1038/srep46479
https://www.ncbi.nlm.nih.gov/pubmed/28422152
https://doi.org/10.1016/j.artmed.2016.07.001
https://www.ncbi.nlm.nih.gov/pubmed/27664507
https://doi.org/10.1634/theoncologist.2018-0908
https://doi.org/10.1109/ACCESS.2019.2935763
https://doi.org/10.1016/S2589-7500(19)30159-1
https://www.ncbi.nlm.nih.gov/pubmed/32864596
https://doi.org/10.1038/s41598-020-70629-3
https://www.ncbi.nlm.nih.gov/pubmed/32788705
https://doi.org/10.1007/s00330-020-06783-z
https://doi.org/10.1016/j.crad.2021.03.021
https://doi.org/10.1007/s00330-019-06498-w
https://doi.org/10.1118/1.4948498
https://doi.org/10.1155/2018/1382309
https://doi.org/10.1148/radiol.2019191114
https://doi.org/10.1148/radiol.13122427
https://www.ncbi.nlm.nih.gov/pubmed/24056403
https://doi.org/10.1016/j.crad.2019.04.024
https://doi.org/10.1097/RLU.0000000000002810
https://doi.org/10.1118/1.3352709


Cancers 2024, 16, 674 18 of 18

36. Luo, Y.; McShan, D.; Ray, D.; Matuszak, M.; Jolly, S.; Lawrence, T.; Kong, F.-M.; Ten Haken, R.; El Naqa, I. Development of a fully
cross-validated Bayesian network approach for local control prediction in lung cancer. IEEE Trans. Radiat. Plasma Med. Sci. 2018,
3, 232–241. [CrossRef]

37. Chamberlin, J.; Kocher, M.R.; Waltz, J.; Snoddy, M.; Stringer, N.F.C.; Stephenson, J.; Sahbaee, P.; Sharma, P.; Rapaka, S.; Schoepf,
U.J.; et al. Automated detection of lung nodules and coronary artery calcium using artificial intelligence on low-dose CT scans for
lung cancer screening: Accuracy and prognostic value. BMC Med. 2021, 19, 55. [CrossRef]

38. Duan, S.; Cao, H.; Liu, H.; Miao, L.; Wang, J.; Zhou, X.; Wang, W.; Hu, P.; Qu, L.; Wu, Y. Development of a machine learning-based
multimode diagnosis system for lung cancer. Aging 2020, 12, 9840. [CrossRef]

39. da Silva, G.L.F.; da Silva Neto, O.P.; Silva, A.C.; de Paiva, A.C.; Gattass, M. Lung nodules diagnosis based on evolutionary
convolutional neural network. Multimed. Tools Appl. 2017, 76, 19039–19055. [CrossRef]

40. Trajanovski, S.; Mavroeidis, D.; Swisher, C.L.; Gebre, B.G.; Veeling, B.S.; Wiemker, R.; Klinder, T.; Tahmasebi, A.; Regis, S.M.;
Wald, C.; et al. Towards radiologist-level cancer risk assessment in CT lung screening using deep learning. Comput. Med. Imaging
Graph. 2021, 90, 101883. [CrossRef]

41. Chen, Y.; Tian, X.; Fan, K.; Zheng, Y.; Tian, N.; Fan, K. The value of artificial intelligence film reading system based on deep
learning in the diagnosis of non-Small-Cell lung cancer and the significance of efficacy monitoring: A retrospective, clinical,
nonrandomized, controlled study. Comput. Math. Methods Med. 2022, 2022, 2864170. [CrossRef]

42. Gürsoy Çoruh, A.; Yenigün, B.; Uzun, Ç.; Kahya, Y.; Büyükceran, E.U.; Elhan, A.; Orhan, K.; Kayı Cangır, A. A comparison of the
fusion model of deep learning neural networks with human observation for lung nodule detection and classification. Br. J. Radiol.
2021, 94, 20210222. [CrossRef]

43. Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt,
P.M.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern.
Med. 2011, 155, 529–536. [CrossRef]

44. Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: Current status and future trends. Nat. Rev. Clin.
Oncol. 2023, 20, 624–639. [CrossRef]

45. Lauri, H. High-resolution CT of the lungs: Indications and diagnosis. Duodecim Laaketieteellinen Aikakauskirja 2017, 133, 549–556.
46. Liu, M.; Wu, J.; Wang, N.; Zhang, X.; Bai, Y.; Guo, J.; Zhang, L.; Liu, S.; Tao, K. The value of artificial intelligence in the diagnosis

of lung cancer: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0273445. [CrossRef]
47. Binczyk, F.; Prazuch, W.; Bozek, P.; Polanska, J. Radiomics and artificial intelligence in lung cancer screening. Transl. Lung Cancer

Res. 2021, 10, 1186. [CrossRef]
48. Rabbani, M.; Kanevsky, J.; Kafi, K.; Chandelier, F.; Giles, F.J. Role of artificial intelligence in the care of patients with nonsmall cell

lung cancer. Eur. J. Clin. Investig. 2018, 48, e12901. [CrossRef]
49. Espinoza, J.L.; Dong, L.T. Artificial intelligence tools for refining lung cancer screening. J. Clin. Med. 2020, 9, 3860. [CrossRef]
50. Zhang, X.; Zhang, Y.; Zhang, G.; Qiu, X.; Tan, W.; Yin, X.; Liao, L. Deep Learning With Radiomics for Disease Diagnosis and

Treatment: Challenges and Potential. Front. Oncol. 2022, 12, 773840. [CrossRef] [PubMed]
51. Braghetto, A.; Marturano, F.; Paiusco, M.; Baiesi, M.; Bettinelli, A. Radiomics and deep learning methods for the prediction of

2-year overall survival in LUNG1 dataset. Sci. Rep. 2022, 12, 14132. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TRPMS.2018.2832609
https://doi.org/10.1186/s12916-021-01928-3
https://doi.org/10.18632/aging.103249
https://doi.org/10.1007/s11042-017-4480-9
https://doi.org/10.1016/j.compmedimag.2021.101883
https://doi.org/10.1155/2022/2864170
https://doi.org/10.1259/bjr.20210222
https://doi.org/10.7326/0003-4819-155-8-201110180-00009
https://doi.org/10.1038/s41571-023-00798-3
https://doi.org/10.1371/journal.pone.0273445
https://doi.org/10.21037/tlcr-20-708
https://doi.org/10.1111/eci.12901
https://doi.org/10.3390/jcm9123860
https://doi.org/10.3389/fonc.2022.773840
https://www.ncbi.nlm.nih.gov/pubmed/35251962
https://doi.org/10.1038/s41598-022-18085-z
https://www.ncbi.nlm.nih.gov/pubmed/35986072

	Introduction 
	Materials and Methods 
	Protocol Development 
	Literature Search 
	Search Strategy 
	Study Selection 
	Eligibility Criteria 
	Inclusion Criteria 
	Exclusion Criteria 

	Data Extraction 
	Quality Assessment 
	Data Synthesis and Analysis 
	Reporting 

	Results 
	Discussion 
	Conclusions 
	References

