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Simple Summary: Merkel cell carcinoma (MCC) and small cell lung cancer (SCLC) are both neu-
roendocrine cancers that can resemble each other under the microscope. Immunostaining with
diagnostic markers such as cytokeratin 20 (CK20) and thyroid transcription factor 1 (TTF-1) can
help differentiate these two cancers, but their sensitivity and specificity are limited. We compared
the gene expression of MCC and SCLC tumors to identify highly differentially expressed genes for
potential use as diagnostic markers. Two candidate markers for MCC, atonal BHLH transcription
factor 1 (ATOH1) and transcription factor AP-2β (TFAP2B), and one candidate marker for SCLC,
carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6), were tested using immunostaining.
Combined use of CEACAM6 with TTF-1 increased SCLC diagnostic sensitivity to 93% and specificity
to 98%. A panel of CK20, ATOH1, and TFAP2B was 100% sensitive and specific for MCC, suggesting
the potential utility of these new markers in differentiating MCC and SCLC.

Abstract: Merkel cell carcinoma (MCC) and small cell lung cancer (SCLC) can be histologically similar.
Immunohistochemistry (IHC) for cytokeratin 20 (CK20) and thyroid transcription factor 1 (TTF-1) are
commonly used to differentiate MCC from SCLC; however, these markers have limited sensitivity
and specificity. To identify new diagnostic markers, we performed differential gene expression
analysis on transcriptome data from MCC and SCLC tumors. Candidate markers included atonal
BHLH transcription factor 1 (ATOH1) and transcription factor AP-2β (TFAP2B) for MCC, as well
as carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) for SCLC. Immunostaining for
CK20, TTF-1, and new candidate markers was performed on 43 MCC and 59 SCLC samples. All three
MCC markers were sensitive and specific, with CK20 and ATOH1 staining 43/43 (100%) MCC and
0/59 (0%) SCLC cases and TFAP2B staining 40/43 (93%) MCC and 0/59 (0%) SCLC cases. TTF-1
stained 47/59 (80%) SCLC and 1/43 (2%) MCC cases. CEACAM6 stained 49/59 (83%) SCLC and
0/43 (0%) MCC cases. Combining CEACAM6 and TTF-1 increased SCLC detection sensitivity to 93%
and specificity to 98%. These data suggest that ATOH1, TFAP2B, and CEACAM6 should be explored
as markers to differentiate MCC and SCLC.

Keywords: Merkel cell carcinoma; small cell lung cancer; neuroendocrine tumor; ATOH1; TFAP2B;
CEACAM6
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1. Introduction

Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine skin cancer [1].
Histologically, MCC is characterized by collections of monotonous small round blue cells,
typically in the dermis and subcutaneous tissues, with high nuclear-to-cytoplasmic ratios
and pale or dense hyperchromatic nuclei with finely stippled chromatin [2]. Metastatic
lesions from other neuroendocrine tumors, such as small cell lung cancer (SCLC) or gas-
trointestinal carcinoid tumors, have morphologic and cytologic findings similar to MCC [2].
Thus, histology alone is inadequate for distinguishing between them and immunohisto-
chemistry (IHC) is required for diagnosis [2]. Compared to gastrointestinal neuroendocrine
tumors, SCLC is highly aggressive and more likely to metastasize [3]. In 20–60% of cases of
lung cancer with cutaneous metastases, skin lesions present prior to or synchronously with
the diagnosis of the primary lung tumor [3].

Considering their potential similarities, it is important to distinguish MCC from cuta-
neous metastases of SCLC to ensure accurate pathologic diagnosis and guide appropriate
management. Currently, cytokeratin 20 (CK20) and thyroid transcription factor-1 (TTF-1)
are the most widely used markers for differentiating between MCC and SCLC, with CK20
expression favoring MCC and TTF-1 expression favoring SCLC [2]. A meta-analysis of
published studies reporting on IHC staining of these markers in MCC and SCLC demon-
strated that CK20 has an aggregate sensitivity of 86% and specificity of 89% for MCC, and
TTF-1 has a sensitivity of 85% and specificity of 97% for SCLC (Table 1). Considering the
limitations of these markers, we sought to systematically identify new IHC markers to
distinguish MCC and SCLC.

Table 1. Meta-analysis of published studies reporting on CK20 and TTF-1 immunostaining in Merkel
cell carcinoma and small cell lung cancer.

MCC, % (+/n) SCLC, % (+/n)
Source CK20+ TTF-1+ CK20+ TTF-1+

Byrd-Gloster et al. [4] 76% (16/21) 0% (0/21) 3% (1/36) 97% (35/36)
Cheuk et al. [5] 100% (23/23) 0% (0/23) 0% (0/52) 83% (43/52)
Hanly et al. [6] 95% (20/21) 0% (0/21) 33% (11/33) 85% (28/33)
Leech et al. [7] 91% (10/11) 0% (0/11) 0% (0/10) 100% (10/10)
Metz et al. [8] 100% (6/6) 0% (0/22)
Ordonez [9] 76% (16/21) 0% (0/18) 4% (1/28) 96% (27/28)

Schmidt et al. [8,10] 77% (43/56) 0% (0/18)
Yang et al. [11] 86% (19/22) 0% (0/22) 0% (0/9) 100% (9/9)
Bobos et al. [12] 100% (13/13) 0% (0/13) 8% (1/13) 85% (11/13)

Fukuhara et al. [13] 75% (15/20) 0% (0/4)
Sidiropoulos et al. [14] 88% (35/40) 3% (1/40) 0% (0/30) 77% (23/30)

Kolhe et al. [15] 94% (15/16) 0% (0/10) 100% (2/2)
Ralston et al. [16] 3% (1/30) 73% (43/59)

Moll et al. [17] 100% (15/15) 20% (3/15)
Chan et al. [18] 97% (32/33) 3% (1/37)
Chu et al. [19] 78% (7/9) 0% (0/7)

Nicholson et al. [20] 67% (18/27) 0% (0/5)
Kaufmann et al. [21] 86% (24/28) 0% (0/16) 0% (0/5) 81% (30/37)
Kervarrec et al. [22] 86% (12/14) 4% (1/28) 0% (0/7) 100% (5/5)

Rajagopalan et al. [23] 95% (37/39) 14% (4/28)
Stanoszek et al. [24] 76% (37/49) 41% (25/61)

Filtenborg-Barnkob et al. [25] 88% 28/32 22% (7/32) 33% (4/12) 100% (12/12)
Gandhi et al. [26] 0% (0/23) 56% (9/16)
Busam et al. [27] 89% (32/36) 0% (0/16)

Cho et al. [28] 89% (42/47) 4% (2/47) 3% (1/29) 93% (27/29)

Cumulative Totals 86% (515/599) 3% (12/355) 11% (52/477) 85% (314/371)

MCC, Merkel cell carcinoma. SCLC, small cell lung cancer. CK20, cytokeratin 20. TTF-1, thyroid transcription
factor 1.
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2. Materials and Methods
2.1. Case Selection

This study analyzed deidentified tumor samples in accordance with Institutional
Review Board approved protocols. MCC cases were obtained from the Memorial Sloan
Kettering Cancer Center (MSKCC) (New York, NY, USA), Heidelberg University (Heidel-
berg, Germany), and University of Ulsan College of Medicine, Asan Medical Center (Seoul,
Republic of Korea). SCLC cases were obtained from the Memorial Sloan Kettering Cancer
Center (MSKCC) (New York, NY, USA) and US Biomax, Inc. (Derwood, MD, USA). The
diagnosis of each case was verified by histological review prior to inclusion in the study.

2.2. Differential Gene Expression Analysis

Fresh frozen tumor specimens were obtained from the MSKCC tumor bank. Total RNA
from 23 MCC and 9 SCLC tumor samples was extracted and hybridized to Human Genome
U122A 2.0 Array GeneChips (Affymetrix, Santa Clara, CA) as previously reported [29].
Microarray expression data were normalized, filtered, and analyzed in R (version 2.13.0).
Using the Limma (version 3.21.15) package within the R environment [30] for analysis, a
probe set was considered highly differentially expressed if the absolute log2 fold change
was greater than 3 and the adjusted p-value was less than 1 × 10−10. Candidate genes were
selected based on differential mRNA expression and the availability of validated antibodies
for IHC.

2.3. SCLC Subtype Analysis

SCLC samples were subtyped based on the normalized expression of neuroendocrine
markers and the characteristic subtype transcription factors ASCL1, NEUROD1, POU2F3,
and YAP1 [31,32]. When subtype classification was not clear based on the above markers, ex-
pression levels of MYC and MYCL along with full transcriptome phylogenetic relationships
among the tumors were used to best estimate the sample subtypes.

2.4. Immunohistochemistry

IHC was performed on formalin-fixed, paraffin-embedded tissue sections and tissue
microarrays. In total, 43 MCC cases and 59 SCLC cases were stained with atonal BHLH
transcription factor 1 (ATOH1 rabbit polyclonal antibody, ab105497, 1:250; Abcam, Cam-
bridge, MA, USA) and transcription factor AP-2β (mouse monoclonal antibody TFAP2B,
sc-390281, 1:1500; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) antibodies using a
Dako (Santa Clara, CA, USA) Autostainer Universal Staining System. Antigen retrieval
consisted of heat-induced epitope retrieval in a pressure cooker in a pH 6 target retrieval
solution (Dako) for 40 min, up to 125 ◦C and 20 psi. Slides were then treated with a 3%
hydrogen peroxide enzyme block (Dako) for 5 min, a serum-free protein block (Dako)
for 15 min, a primary antibody for 60 min at room temperature, and an Envision+ goat
anti-rabbit (Dako) or Envision+ goat anti-mouse (Dako) secondary antibody for 30 min at
room temperature. The bound antibody was detected using a DAB+ substrate kit (Dako).
Cases were also stained with clinically validated antibodies for CK20 (KS20.8, prediluted;
Dako), TTF-1 (SP141, prediluted; Roche, Tuscon, AZ, USA), and carcinoembryonic antigen
polyclonal antibody (CEA-P, prediluted; Dako) on a Ventana Benchmark Ultra (Tucson,
AZ, USA) automated slide staining system according to the manufacturer’s instructions.
Hematoxylin was used for counterstaining.

2.5. Analysis of Expression

The samples were assessed independently by two pathologists from the NIH Labora-
tory of Pathology who were blinded to the tissue source. Immunoreactivity was assessed
using a semiquantitative system combining staining intensity and proportion of cells
stained. A score of 0 indicated no staining or <1% cells stained, 1 indicated weak focal or
weak diffuse staining, 2 indicated moderate focal, moderate diffuse, or strong focal staining,
and 3 indicated strong diffuse staining. For sensitivity and specificity analyses, a score of
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0 was considered negative and scores of 1, 2, or 3 were considered positive. Samples with
scoring discrepancies were discussed until an agreement was reached. McNemar’s test
was used to compare the sensitivities and specificities of antibody panels, and p-values less
than 0.05 were considered significant.

3. Results
3.1. Differential Gene Expression in MCC and SCLC

Microarray transcriptome analysis identified 48 highly differentially expressed protein-
coding genes in MCC and SCLC tumors, which served as candidate markers for IHC
(Figure 1). Interestingly, genes for the standard markers CK20 and TTF-1 were not among
the top 48 differentially expressed transcripts. Neurofilament proteins have previously been
described as a marker for MCC, and the medium and light chain genes (NEFM and NEFL)
demonstrated high differential expression in MCC. From this list of candidate markers, we
tested ATOH1 and TFAP2B as potential new IHC markers for MCC and carcinoembryonic
antigen cell adhesion molecule 6 (CEACAM6) as a novel marker for SCLC.
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Figure 1. Heat map of highly differentially expressed protein-coding genes in MCC and SCLC tumors.
Differentially expressed genes (n = 48) have an absolute log2 fold change (LogFC) greater than 3 and
an adjusted p-value less than 1 × 10−10. Candidate genes (annotated in boxes) ATOH1 and TFAP2B
were selected as IHC markers for MCC and CEACAM6 was selected for SCLC. MCC, Merkel cell
carcinoma. SCLC, small cell lung cancer.
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3.2. SCLC Subtype Analysis

SCLC tumors have distinct molecular subtypes [31]. Some SCLC tumors have higher
expression of neuroendocrine (NE) marker genes such as CHGA, SYP, and INSM1, whereas
non-NE tumors express higher levels of REST [32]. The NE tumors can be further divided
into SCLC-A and SCLC-N subtypes based on the expression of the transcription factors
ASCL1 and NEUROD1, respectively. The non-NE tumors can be subtyped into SCLC-P and
SCLC-Y based on the relative expression of POU2F3 and YAP1. Although the subtyping
of SCLC tumors using microarray expression data has not been validated, we were able
to subtype the SCLC samples used for the differential gene expression analysis (Figure 2).
Notably, our cohort included tumors of all four SCLC subtypes. Although the non-NE
tumors appeared to have the highest levels of the candidate marker gene, CEACAM6 was
expressed by tumors of all SCLC subtypes.
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Figure 2. SCLC subtypes based on microarray gene expression data. Heat map of genes used to
subtype SCLC samples and candidate marker genes. Samples are in the same order as in Figure 1.
SCLC, small cell lung cancer. NE, neuroendocrine.

3.3. Immunohistochemical Staining

IHC staining of tissue sections from MCC (n = 43) and SCLC (n = 59) tumors was per-
formed with CK20, ATOH1, TFAP2B, TTF-1, and CEA-P antibodies (Table 2 and Figure 3).
CEA-P is a rabbit polyclonal antibody that recognizes CEACAM1 and CEACAM6.

Table 2. Sensitivities and specificities of individual IHC markers and combination panels for differen-
tiating Merkel cell carcinoma and small cell lung cancer.

MCC Markers, +/n SCLC markers, +/n
Individual Combination Individual Combination

CK20 ATOH1 TFAP2B CK20,
ATOH1

CK20,
TFAP2B

CK20,
ATOH1,
TFAP2B

TTF-1 CEA-P TTF-1,
CEA-P

MCC (n = 43) 43/43 43/43 40/43 43/43 43/43 43/43 1/43 0/43 1/43
SCLC (n = 59) 0/59 0/59 0/59 0/59 0/59 0/59 47/59 49/59 55/59
Sensitivity, % 100 100 93 100 100 100 80 83 93 *
Specificity, % 100 100 100 100 100 100 98 100 98 *

CK20, ATOH1, and TFAP2B were assessed as MCC markers. TTF-1 and CEA-P were assessed as SCLC markers.
Combinations were considered positive if any marker in the panel was positive. * p-value < 0.05, when compared
to either marker alone, by McNemar’s test. MCC, Merkel cell carcinoma. SCLC, small cell lung cancer. CK20,
cytokeratin 20. TTF-1, thyroid transcription factor 1. ATOH1, atonal BHLH transcription factor 1. TFAP2B,
transcription factor AP-2β.
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Figure 3. Immunohistochemical staining for standard and new markers for MCC and SCLC. MCC
markers (CK20, ATOH1, and TFAP2B) and SCLC markers (TTF-1 and CEA-P) were used to stain FFPE
tissue sections. Images were taken on a NanoZoomer Digital slide scanner at 200× magnification.
MCC, Merkel cell carcinoma. SCLC, small cell lung cancer. Scale bars = 100 µm.

3.4. Merkel Cell Carcinoma Markers

CK20 was expressed in a paranuclear dot or cytoplasmic pattern or both in 100%
(43/43) of MCC cases and 93.0% (40/43) had moderate or strong staining. The extent of
CK20 staining was generally diffuse. All 59 cases of SCLC were CK20-negative. Thus, in
our cohort of cases, CK20 was 100% sensitive and 100% specific for distinguishing MCC
from SCLC.

ATOH1 stained 100% (43/43) of MCC cases in a nuclear pattern, and 90.7% (39/43)
had moderate or strong staining. The extent of ATOH1 staining was generally diffuse. All
59 cases of SCLC were ATOH1-negative. As such, ATOH1 was 100% sensitive and 100%
specific for MCC.

TFAP2B was expressed in a nuclear pattern in 93.0% (40/43) of MCC, and 74.4%
(32/43) had moderate or strong staining. The extent of TFAP2B staining was generally
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diffuse. All 59 SCLC tumors were TFAP2B-negative. Overall, TFAP2B was 93% sensitive
and 100% specific for MCC.

3.5. Small Cell Lung Cancer Markers

TTF-1 was expressed in a nuclear pattern in 79.7% (47/59) of SCLC tumors and 74.6%
(44/59) had moderate or strong staining. One MCC sample (1/43) had a diffuse nuclear
expression of TTF-1 with moderate intensity. In all, TTF-1 was 80% sensitive and 98%
specific for distinguishing SCLC from MCC.

The CEA-P antibody used in this study binds both CEACAM1 and CEACAM6 proteins.
As shown in Figure 1, CEACAM6 was among the most highly differentially expressed
genes in SCLC. While not among the top differentially expressed genes, CEACAM1 was
also expressed at higher levels in SCLC relative to MCC (see Figure 2). The CEA-P antibody
stained 83.1% (49/59) of SCLC samples in a cytoplasmic and membranous pattern, and
64.4% (38/59) had moderate or strong staining. All 43 MCC tumors were negative. Overall,
CEA-P was 83% sensitive and 100% specific for SCLC.

3.6. Comparison of Antibody Panels

Combining IHC markers into panels can improve diagnostic sensitivity and specificity.
We interpreted an antibody panel as positive if staining was positive for at least one marker
in the panel. As CK20 and ATOH1 were 100% sensitive and specific for MCC in our cohort
of tumors, all panel combinations that included either marker were also 100% sensitive and
specific (Table 2). Although TFAP2B had a lower sensitivity (93%) for MCC, its diagnostic
performance was not significantly different compared to CK20 or ATOH1 (p-value > 0.05).

For diagnosing SCLC, a panel combining CEA-P and TTF-1 increased sensitivity to
93%, which was significantly higher than either TTF-1 (80% sensitive) or CEA-P (83%
sensitive) (p-value < 0.05). The lower specificity of this dual panel (98% specific) compared
to CEA-P alone (100% specific) was not statistically significant (p-value > 0.05).

4. Discussion

The incidence of MCC has increased in recent decades due to advances in diagnostic
IHC markers, an aging population, and increased use of immunosuppressive therapies [33].
Concomitantly, there has been interest in identifying IHC markers like CK20 and TTF-1 that
can help differentiate MCC from SCLC. For example, achaete-scute homolog 1 (ASCL1)
was proposed as a new SCLC marker that showed 83% sensitivity and 100% specificity in
differentiating SCLC from MCC [16]. In another study, anaplastic lymphoma kinase (ALK)
was proposed as a new MCC marker with one antibody clone (D5F3) demonstrating 94%
sensitivity and 92% specificity for distinguishing MCC from SCLC [25].

In this study, we used differential gene expression analysis of global transcriptome
data to identify candidate IHC markers that distinguish MCC and SCLC. For MCC, we
describe two new IHC markers, ATOH1 and TFAP2B, both of which have high sensitivity
and specificity and could be useful adjuncts to CK20. For SCLC, we discovered CEA-P as a
new IHC marker with a diagnostic sensitivity and specificity comparable to TTF-1 and that
the combined use of both markers significantly increases the sensitivity for SCLC.

CK20 is an established and useful diagnostic marker for MCC. Although all MCC
tumors in this study expressed CK20, only 86% (515/599) of published MCC cases were
CK20-positive (Table 1). In addition, 11% (52/477) of SCLC samples were CK20-positive,
hampering the specificity of this marker (Table 1). Thus, additional markers like ATOH1
and TFAP2B could be useful adjuncts for diagnosing MCC.

In contrast to CK20, which is expressed in the cytoplasm, ATOH1 and TFAP2B are
transcription factors expressed in the nucleus. ATOH1 is a transcription factor required for
normal Merkel cell development [34]. In MCC tumors, high ATOH1 expression assessed
by IHC correlates with tumor relapse, which may position ATOH1 as a marker with both
diagnostic and prognostic relevance [35].
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Transcriptional regulation by TFAP2B is involved in many functions including the
regulation of cell division, apoptosis, and the differentiation of neural crest cells [36].
Although the role of TFAP2B in MCC has not been described, the TFAP2 family is known
to play multiple roles in cancer development [37].

Neurofilament (NF) component genes were among the highly differentially expressed
genes in our analysis. NF has been reported as an MCC marker in a number of studies [8,12,24].
Based on the aggregate staining of cases reported in these studies, NF is 78% sensitive and
98% specific for distinguishing MCC from SCLC. However, our attempts to reliably detect
NF staining in MCC tumors using clinically validated NF antibodies were unsuccessful.

Among published SCLC cases, TTF-1 IHC was positive in 85% (314/371) of tumors
(Table 1), and we found a similar sensitivity of 80% in our SCLC cases with a specificity of
98%. We describe CECAM6 detection with CEA-P IHC as a new SCLC marker with 83%
sensitivity and 100% specificity for distinguishing SCLC from MCC. A panel combining
both TTF-1 and CEA-P significantly increases sensitivity to 93%, suggesting that CEA-P
staining compensates for cases in which TTF-1 is negative. Unlike TTF-1, which is expressed
in the nucleus, the CEACAM proteins stained by the CEA-P antibody are cytoplasmic. The
role of CEACAM proteins in SCLC is unknown, but high surface expression of CEACAM1
is associated with microvessel density, distant metastases, and shorter median overall
survival in non-small cell lung cancer, whereas high surface expression of CEACAM6 is
associated with poor tumor differentiation in colon adenocarcinoma [38,39].

Of note, we report one case of MCC with diffuse TTF-1 staining, a rare phenomenon
in MCC with few documented cases [40–45]. TTF-1 expression has been shown in com-
bined tumors that have both MCC and non-MCC (e.g., basal, squamous, follicular) com-
ponents [46–48]. These tumors tend to be MCPyV negative and have high mutational
burdens [48,49], and it is speculated that TTF-1 expression in these samples is related to
chronic UV exposure [50].

Our study was limited by several factors. In searching for IHC diagnostic markers,
we only pursued candidate genes whose products had antibodies that worked well on
clinical tumor specimens. This approach ignored the biological relevance of the markers
and excluded many differentially expressed genes. In addition, we did not consider
other molecular markers that may be effective in differentiating MCC from SCLC such
as genomic structural variants, DNA mutational signatures, epigenetic profiling, tumor
exosomes, fusion transcripts, and circular RNA profiling. Our study was also limited by
the small number of samples used for gene expression analysis, which could impact the
generalizability of the findings and the robustness of the identified markers. Moreover, the
small sample size precluded a meaningful comparison of tumor biology between MCC and
SCLC or among the tumor subtypes. We tested the IHC markers in a larger set of tumors
that were nonetheless limited by a lack of CK20-negative MCC cases and CK20-positive
SCLC cases, which impaired our ability to compare the sensitivity and specificity of MCC
markers. Nonetheless, by using an unbiased transcriptomic approach, we were able to
identify new IHC markers for distinguishing MCC and SCLC. Future larger studies will be
needed to validate our findings and better estimate the sensitivity and specificity of these
markers, both alone and in combination with other diagnostic markers. Additional studies
will also be needed to investigate whether these markers can help distinguish MCC from
other types of metastatic neuroendocrine tumors, if they change with disease progression,
or if they have potential utility in disease surveillance.

5. Conclusions

The histological similarities between MCC and SCLC necessitate the use of IHC
markers to make accurate pathological diagnoses. Meta-analysis of published studies
demonstrated the most utilized diagnostic markers for this purpose, CK20 and TTF-1,
which have limited specificity and sensitivity. In cases where these markers are insufficient
for a clear diagnosis, using additional IHC markers such as ATOH1 and TFAP2B for MCC
and CEA-P for SCLC may increase diagnostic sensitivity and specificity.
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