Synchrotron Radiation Refraction-Contrast Computed Tomography Based on X-ray Dark-Field Imaging Optics of Pulmonary Malignancy: Comparison with Pathologic Examination
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Preparation
2.2. X-ray Source and Experimental Setup
2.3. Acquisition and Reconstruction of Images
2.4. Comparison with Pathologic Examinations
3. Results
3.1. Images from Primary Lung Adenocarcinoma
3.2. Lung Adenocarcinoma without Lepidic Pattern
3.3. Lung Adenocarcinoma with a Lepidic Pattern
3.4. Images from Secondary Lung Adenocarcinoma
3.5. Three-Dimensional Volume Estimation
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, Y.S.; Lynch, D.T. Histology, Lung; StatPearls: St. Petersburg, FL, USA, 2018. [Google Scholar]
- Boyars, M. Chest roentgenography for pulmonary evaluation. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Butterworths: Oxford, UK, 1990. [Google Scholar]
- Gao, J.-W.; Rizzo, S.; Ma, L.-H.; Qiu, X.-Y.; Warth, A.; Seki, N.; Hasegawa, M.; Zou, J.-W.; Li, Q.; Femia, M. Pulmonary ground-glass opacity: Computed tomography features, histopathology and molecular pathology. Transl. Lung Cancer Res. 2017, 6, 68. [Google Scholar] [CrossRef]
- Infante, M.; Lutman, R.; Imparato, S.; Di Rocco, M.; Ceresoli, G.; Torri, V.; Morenghi, E.; Minuti, F.; Cavuto, S.; Bottoni, E. Differential diagnosis and management of focal ground-glass opacities. Eur. Respir. J. 2009, 33, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Mitsudomi, T. Management of ground-glass opacities: Should all pulmonary lesions with ground-glass opacity be surgically resected? Transl. Lung Cancer Res. 2013, 2, 354. [Google Scholar]
- Travis, W.D.; Asamura, H.; Bankier, A.A.; Beasley, M.B.; Detterbeck, F.; Flieder, D.B.; Goo, J.M.; MacMahon, H.; Naidich, D.; Nicholson, A.G. The IASLC lung cancer staging project: Proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J. Thorac. Oncol. 2016, 11, 1204–1223. [Google Scholar] [CrossRef]
- Zehbe, R.; Haibel, A.; Riesemeier, H.; Gross, U.; Kirkpatrick, C.J.; Schubert, H.; Brochhausen, C. Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: From tissue morphology to individual cells. J. R. Soc. Interface 2010, 7, 49–59. [Google Scholar] [CrossRef]
- Saito, K.; Ohnishi, S.; Fuketa, S.; Kawata, Y.; Niki, N.; Umetani, K.; Sakai, H.; Nakano, Y.; Okamoto, T.; Itoh, H. Pulmonary blood vessels extraction from dual-energy CT images using a synchrotron radiation micro-CT. In Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging; SPIE: Bellingham, WA, USA, 2019; pp. 66–72. [Google Scholar]
- Saito, K.; Fukuda, K.; Kawata, Y.; Umetani, K.; Nakano, Y.; Sakai, H.; Okamoto, T.; Niki, N. Pulmonary alveoli cluster analysis of 3D human lung microstructure using synchrotron radiation micro-CT. In Medical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging; SPIE: Bellingham, WA, USA, 2022; pp. 127–131. [Google Scholar]
- Saito, K.; Fukuda, K.; Kawata, Y.; Niki, N.; Umetani, K.; Nakano, Y.; Sakai, H.; Okamoto, T. Alveolar sac analysis of 3D human lung microstructure using synchrotron radiation micro-CT. In Medical Imaging 2021: Biomedical Applications in Molecular, Structural, and Functional Imaging; SPIE: Bellingham, WA, USA, 2021; pp. 454–459. [Google Scholar]
- Ando, M.; Sunaguchi, N.; Shimao, D.; Pan, A.; Yuasa, T.; Mori, K.; Suzuki, Y.; Jin, G.; Kim, J.-K.; Lim, J.-H. Dark-field imaging: Recent developments and potential clinical applications. Phys. Medica 2016, 32, 1801–1812. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Sunaguchi, N.; Sung, Y.; Shimao, D.; Kim, J.-K.; Li, G.; Suzuki, Y.; Yuasa, T.; Mori, K.; Ichihara, S. Crystal-based X-ray Medical Imaging Using Synchrotron Radiation and Its Future Prospect. In Synchrotron Radiation Applications; World Scientific: Singapore, 2018; pp. 287–342. [Google Scholar]
- Shimao, D.; Sunaguchi, N.; Yuasa, T.; Ando, M.; Mori, K.; Gupta, R.; Ichihara, S. X-ray Dark-Field Imaging (XDFI)—A Promising Tool for 3D Virtual Histopathology. Mol. Imaging Biol. 2021, 23, 481–494. [Google Scholar] [CrossRef]
- Jin, G.; Okamura, K.; Suzuki, Y.; Sun, Y.; Chikaura, Y.; Ando, M. Small Angle X-Ray Scattering Imaging of Soft Tissue by Using Laue Diffraction Optical System. Open J. Med. Imaging 2018, 8, 54–63. [Google Scholar] [CrossRef]
- Sunaguchi, N.; Huang, Z.; Shimao, D.; Yuasa, T.; Ichihara, S.; Nishimura, R.; Iwakoshi, A.; Ando, M. Three-dimensional visualization of cribriform pattern in ductal carcinoma in situ with x-ray dark field computed tomography. In Proceedings of the 15th International Workshop on Breast Imaging (IWBI2020), Leuven, Belgium, 25–27 May 2020; pp. 492–497. [Google Scholar]
- Sunaguchi, N.; Shimao, D.; Yuasa, T.; Ichihara, S.; Nishimura, R.; Oshima, R.; Watanabe, A.; Niwa, K.; Ando, M. Three-dimensional microanatomy of human nipple visualized by X-ray dark-field computed tomography. Breast Cancer Res. Treat. 2020, 180, 397–405. [Google Scholar] [CrossRef]
- Ando, M.; Gupta, R.; Iwakoshi, A.; Kim, J.-K.; Shimao, D.; Sugiyama, H.; Sunaguchi, N.; Yuasa, T.; Ichihara, S. X-ray dark-field phase-contrast imaging: Origins of the concept to practical implementation and applications. Phys. Med. 2020, 79, 188–208. [Google Scholar] [CrossRef]
- Yi, E.; Sunaguchi, N.; Lee, J.H.; Kim, C.-Y.; Lee, S.; Jheon, S.; Ando, M.; Seok, Y. Synchrotron radiation-based refraction-contrast tomographic images using X-ray dark-field imaging optics in human lung adenocarcinoma and histologic correlations. Diagnostics 2021, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Sunaguchi, N.; Yuasa, T.; Shimao, D.; Ichihara, S.; Gupta, R.; Ando, M. Superimposed wavefront imaging of diffraction-enhanced x-rays: A method to achieve higher resolution in crystal analyzer-based x-ray phase-contrast imaging. Appl. Phys. Lett. 2023, 122, 123702. [Google Scholar] [CrossRef]
- Jones, K.D. Whence lepidic?: The history of a Canadian neologism. Arch. Pathol. Lab. Med. 2013, 137, 1822–1824. [Google Scholar] [CrossRef] [PubMed]
- Yotsukura, M.; Asamura, H.; Motoi, N.; Kashima, J.; Yoshida, Y.; Nakagawa, K.; Shiraishi, K.; Kohno, T.; Yatabe, Y.; Watanabe, S.-I. Long-term prognosis of patients with resected adenocarcinoma in situ and minimally invasive adenocarcinoma of the lung. J. Thorac. Oncol. 2021, 16, 1312–1320. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Noguchi, M.; Nicholson, A.G.; Geisinger, K.R.; Yatabe, Y.; Beer, D.G.; Powell, C.A.; Riely, G.J.; Van Schil, P.E. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J. Thorac. Oncol. 2011, 6, 244–285. [Google Scholar] [CrossRef]
- Asamura, H.; Suzuki, K.; Watanabe, S.-I.; Matsuno, Y.; Maeshima, A.; Tsuchiya, R. A clinicopathological study of resected subcentimeter lung cancers: A favorable prognosis for ground glass opacity lesions. Ann. Thorac. Surg. 2003, 76, 1016–1022. [Google Scholar] [CrossRef]
- Ikeda, N.; Maeda, J.; Yashima, K.; Tsuboi, M.; Kato, H.; Akada, S.; Okada, S. A clinicopathological study of resected adenocarcinoma 2 cm or less in diameter. Ann. Thorac. Surg. 2004, 78, 1011–1016. [Google Scholar] [CrossRef]
- Suzuki, K.; Kusumoto, M.; Watanabe, S.-I.; Tsuchiya, R.; Asamura, H. Radiologic classification of small adenocarcinoma of the lung: Radiologic-pathologic correlation and its prognostic impact. Ann. Thorac. Surg. 2006, 81, 413–419. [Google Scholar] [CrossRef]
- Migliore, M.; Fornito, M.; Palazzolo, M.; Criscione, A.; Gangemi, M.; Borrata, F.; Vigneri, P.; Nardini, M.; Dunning, J. Ground glass opacities management in the lung cancer screening era. Ann. Transl. Med. 2018, 6, 90. [Google Scholar] [CrossRef]
- Pan, X.-L.; Liao, Z.-L.; Yao, H.; Yan, W.-J.; Wen, D.-Y.; Wang, Y.; Li, Z.-L. Prognostic value of ground glass opacity on computed tomography in pathological stage I pulmonary adenocarcinoma: A meta-analysis. World J. Clin. Cases 2021, 9, 10222. [Google Scholar] [CrossRef]
- Sun, F.; Huang, Y.; Yang, X.; Zhan, C.; Xi, J.; Lin, Z.; Shi, Y.; Jiang, W.; Wang, Q. Solid component ratio influences prognosis of GGO-featured IA stage invasive lung adenocarcinoma. Cancer Imaging 2020, 20, 87. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, R. Methods of lung fixation. In Forensic Pathology Reviews; Humana Press: Totowa, NJ, USA, 2006; pp. 437–451. [Google Scholar]
- Snoeckx, A.; Reyntiens, P.; Desbuquoit, D.; Spinhoven, M.J.; Van Schil, P.E.; van Meerbeeck, J.P.; Parizel, P.M. Evaluation of the solitary pulmonary nodule: Size matters, but do not ignore the power of morphology. Insights Imaging 2018, 9, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Jeong, W.G.; Kim, Y.-H. Differentiation of primary lung cancer from solitary lung metastasis in patients with colorectal cancer: A retrospective cohort study. World J. Surg. Oncol. 2021, 19, 28. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.B.; Im, J.-G.; Goo, J.M.; Chung, M.J.; Kim, M.-Y. Atypical pulmonary metastases: Spectrum of radiologic findings. Radiographics 2001, 21, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Mimae, T.; Miyata, Y.; Tsutani, Y.; Shimada, Y.; Ito, H.; Nakayama, H.; Ikeda, N.; Okada, M. Role of ground-glass opacity in pure invasive and lepidic component in pure solid lung adenocarcinoma for predicting aggressiveness. JTCVS Open 2022, 11, 300–316. [Google Scholar] [CrossRef] [PubMed]
- Kadota, K.; Villena-Vargas, J.; Yoshizawa, A.; Motoi, N.; Sima, C.S.; Riely, G.J.; Rusch, V.W.; Adusumilli, P.S.; Travis, W.D. Prognostic significance of adenocarcinoma in situ, minimally invasive adenocarcinoma, and nonmucinous lepidic predominant invasive adenocarcinoma of the lung in patients with stage I disease. Am. J. Surg. Pathol. 2014, 38, 448. [Google Scholar] [CrossRef]
- Sakurai, H.; Asamura, H. Sublobar resection for early-stage lung cancer. Transl. Lung Cancer Res. 2014, 3, 164. [Google Scholar]
- Albert, R.H.; Russell, J.J. Evaluation of the solitary pulmonary nodule. Am. Fam. Physician 2009, 80, 827–831. [Google Scholar]
- Gould, M.K.; Donington, J.; Lynch, W.R.; Mazzone, P.J.; Midthun, D.E.; Naidich, D.P.; Wiener, R.S. Evaluation of individuals with pulmonary nodules: When is it lung cancer?: Diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e93S–e120S. [Google Scholar] [CrossRef]
- Truong, M.T.; Ko, J.P.; Rossi, S.E.; Rossi, I.; Viswanathan, C.; Bruzzi, J.F.; Marom, E.M.; Erasmus, J.J. Update in the evaluation of the solitary pulmonary nodule. Radiographics 2014, 34, 1658–1679. [Google Scholar] [CrossRef]
- Varoli, F.; Vergani, C.; Caminiti, R.; Francese, M.; Gerosa, C.; Bongini, M.; Roviaro, G. Management of solitary pulmonary nodule. Eur. J. Cardio-Thorac. Surg. 2008, 33, 461–465. [Google Scholar] [CrossRef]
- Baldwin, D.R.; Callister, M.E. The British Thoracic Society guidelines on the investigation and management of pulmonary nodules. Thorax 2015, 70, 794–798. [Google Scholar] [CrossRef]
- Eguchi, T.; Kadota, K.; Park, B.J.; Travis, W.D.; Jones, D.R.; Adusumilli, P.S. The new IASLC-ATS-ERS lung adenocarcinoma classification: What the surgeon should know. In Seminars in Thoracic and Cardiovascular Surgery; Elsevier: Amsterdam, The Netherlands, 2014; pp. 210–222. [Google Scholar]
- Trejo Bittar, H.E.; Incharoen, P.; Althouse, A.D.; Dacic, S. Accuracy of the IASLC/ATS/ERS histological subtyping of stage I lung adenocarcinoma on intraoperative frozen sections. Mod. Pathol. 2015, 28, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, R.; Zhang, Y.; Li, Y.; Cheng, C.; Pan, Y.; Xiang, J.; Zhang, Y.; Chen, H.; Sun, Y. Precise diagnosis of intraoperative frozen section is an effective method to guide resection strategy for peripheral small-sized lung adenocarcinoma. J. Clin. Oncol. 2016, 34, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.; Tafforeau, P.; Wagner, W.; Jafree, D.; Bellier, A.; Werlein, C.; Kühnel, M.; Boller, E.; Walker-Samuel, S.; Robertus, J. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 2021, 18, 1532–1541. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Nakao, Y.; Jin, G.; Sugiyama, H.; Sunaguchi, N.; Sung, Y.; Suzuki, Y.; Sun, Y.; Tanimoto, M.; Kawashima, K. Improving contrast and spatial resolution in crystal analyzer-based x-ray dark-field imaging: Theoretical considerations and experimental demonstration. Med. Phys. 2020, 47, 5505–5513. [Google Scholar] [CrossRef]
Number | Age | Sex | Diagnosis | Pathologic Information |
---|---|---|---|---|
#1 | 64 | M | primary lung cancer (RLL 1) | adenocarcinoma, acinar-predominant, pT2bN0M0 |
#2 | 55 | F | primary lung cancer (LLL 2) | adenocarcinoma, acinar-predominant pT1cN0M0 |
#3 | 49 | F | secondary lung cancer (RLL) | adenocarcinoma (sigmoid colon origin) |
#4 | 66 | M | secondary lung cancer (RLL) | adenocarcinoma (sigmoid colon origin) |
Variables | Condition | ||
---|---|---|---|
incident X-ray beam | |||
X-ray energy | Monochromatic 19.8 keV | ||
Diffraction plane of double-crystal monochromator | Symmetric Bragg-case Si (111) | ||
Beam size after diffraction by MC | 23H × 21V mm2 | ||
Number of photons | Approximately 108 photons/mm2/s | ||
Measurement time per sample | 3 h | ||
AMC 1 | |||
Diffraction plane | Asymmetric Bragg-case Si (111) | ||
Thickness | 20.5 mm | ||
Area size | 124.8H × 42.8V mm2 | ||
Asymmetric angle | 5.4 degree | ||
LAA 2 | |||
Diffraction plane | Asymmetric Laue-case Si (111) | ||
Thickness | 166 μm | ||
Area size | 55H’× 50V mm2 | ||
Asymmetric angle | 5 degrees | ||
sample rotation stage | |||
Step angle | 0.144 degree | ||
Rotation angle | 360 degrees | ||
Number of projections | 2500 | ||
X-ray camera | |||
Optical camera | ORCA-Lightning digital CMOS camera | ||
Hamamatsu Photonics K.K. | |||
FOV 3 | 25.3H´ × 14.3V mm2 | ||
Pixel size | 5.5 μm | ||
X-ray scintillator | LuAG: Ce, Thickness: 100 μm | ||
Lens optics | 85 mm, F1.2, Canon inc. (Tokyo, Japan) |
Variables | Conventional Microscopy of Stained Tissue Section | μ-CT Based on Absorption Contrast Imaging | XDFI 2-Based SR 3 Imaging |
---|---|---|---|
Source | Visible light | Tube X-ray | Synchrotron X-ray |
Physical quantity of pixels | Color difference by tissue staining | Attenuation coefficient | Electron density |
Contrast | High enough to delineate cell nuclei | Poor soft-tissue contrast | High soft-tissue contrast |
Spatial resolution | Sub-μm | Sub-μm~20 μm | μm |
(depends on imaging condition) | data | ||
Field of view | Several cm × several cm | Several cm × several cm | 23.5 × 14.3 mm2 |
(depends on imaging condition) | data | ||
3D 4 imaging quality | Management in connection | High quality | High quality |
Between slices | |||
Measurement time | Long time required due to huge | 10 s~several hours | 3 h |
amount of slices and staining | (depends on imaging condition) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, E.; Sunaguchi, N.; Lee, J.H.; Seo, S.-J.; Lee, S.; Shimao, D.; Ando, M. Synchrotron Radiation Refraction-Contrast Computed Tomography Based on X-ray Dark-Field Imaging Optics of Pulmonary Malignancy: Comparison with Pathologic Examination. Cancers 2024, 16, 806. https://doi.org/10.3390/cancers16040806
Yi E, Sunaguchi N, Lee JH, Seo S-J, Lee S, Shimao D, Ando M. Synchrotron Radiation Refraction-Contrast Computed Tomography Based on X-ray Dark-Field Imaging Optics of Pulmonary Malignancy: Comparison with Pathologic Examination. Cancers. 2024; 16(4):806. https://doi.org/10.3390/cancers16040806
Chicago/Turabian StyleYi, Eunjue, Naoki Sunaguchi, Jeong Hyeon Lee, Seung-Jun Seo, Sungho Lee, Daisuke Shimao, and Masami Ando. 2024. "Synchrotron Radiation Refraction-Contrast Computed Tomography Based on X-ray Dark-Field Imaging Optics of Pulmonary Malignancy: Comparison with Pathologic Examination" Cancers 16, no. 4: 806. https://doi.org/10.3390/cancers16040806
APA StyleYi, E., Sunaguchi, N., Lee, J. H., Seo, S. -J., Lee, S., Shimao, D., & Ando, M. (2024). Synchrotron Radiation Refraction-Contrast Computed Tomography Based on X-ray Dark-Field Imaging Optics of Pulmonary Malignancy: Comparison with Pathologic Examination. Cancers, 16(4), 806. https://doi.org/10.3390/cancers16040806