Inhibitory Effects of Alpha-Connexin Carboxyl-Terminal Peptide on Canine Mammary Epithelial Cells: A Study on Benign and Malignant Phenotypes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Cell Lines
2.3. αCT1 Peptide
2.4. Experimental Procedures
2.5. Immunofluorescence for Cx 43
2.6. Statistical Analysis
3. Results
3.1. Canine Mammary Cell Lines, Their Shapes, and Growth Patterns
3.2. Viability of the LOEC- NMG Canine Mammary Epithelial Cell Line after Treatment with αCT1 Peptide
3.3. Viability of the LOEC-MAd1 Canine Mammary Epithelial Cell Line after Treatment with αCT1 Peptide
3.4. Viability of the LOEC-MAd2 Canine Mammary Epithelial Cell Line after Treatment with αCT1 Peptide
3.5. Viability of the LOEC-MCA1 Canine Mammary Cell Line after Treatment with αCT1 Peptide
3.6. Viability of the LOEC-MCA2 Canine Mammary Cell Line after Treatment with αCT1 Peptide
3.7. Viability of the LOEC-MCA3 Canine Mammary Cell Line after Treatment with αCT1 Peptide
3.8. Viability of the CF41.mg Canine Mammary Cell Line after Treatment with αCT1 Peptide
3.9. Summary of the Results
3.10. Expression and Subcellular Localization of Cx43 in Canine Mammary Cell Lines after TREATMENT with αCT1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grek, C.L.; Rhett, J.M.; Bruce, J.S.; Abt, M.A.; Ghatnekar, G.S.; Yeh, E.S. Targeting connexin 43 with alpha- connexin carboxyl-terminal (αCT1) peptide enhances the activity of the targeted inhibitors, tamoxifen and lapatinib, in breast cancer: Clinical implication for ACT1. BMC Cancer 2015, 15, 296. [Google Scholar] [CrossRef] [PubMed]
- Abt, M.A.; Grek, C.L.; Ghatnekar, G.S.; Yeh, E.S. Evaluation of Lung metastasis in mouse mammary tumor models by quantitative real-time PCR. J. Vis. Exp. 2016, 107, e53329. [Google Scholar] [CrossRef]
- Kirsner, R.S.; Baquerizo Nole, K.L.; Fox, J.D.; Liu, S.N. Healing refractory venous ulcers: New treatments offer hope. J. Investig. Dermatol. 2015, 135, 19–23. [Google Scholar] [CrossRef]
- Anderson, J.M.; Bald, M.S.; Fanning, A.S. The structure and regulation of tight junctions. Curr. Opin. Cell Biol. 1993, 5, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Laird, D.W. The life cycle of a connexin: Gap junction formation, removal, and degradation. J. Bioenerg. Biomembr. 1996, 28, 311–318. [Google Scholar] [CrossRef]
- Gallin, W.J. Evolution of the classical cadherin family of cell adhesion molecules in vertebrates. Mol. Biol. Evol. 1998, 15, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.A.; Owaribe, K.; Kartenbeck, J.; Franke, W.W. Desmosomes and hemidesmosomes: Constitutive molecular components. Annu. Rev. Cell Biol. 1991, 6, 461–491. [Google Scholar] [CrossRef]
- Simionescu, N.; Simionescu, M. Endothelial transport macromolecules: Transcytosis and endocytosis. Cell Biol. Rev. 1991, 25, 5–80. [Google Scholar]
- Loewenstein, W.R.; Kanno, Y. Intercellular communication and the control of tissue growth: Lack of communication between cancer cells. Nature 1966, 209, 1248–1249. [Google Scholar] [CrossRef]
- Mehta, P.P.; Bertram, J.S.; Loewenstein, W.R. Growth inhibition of transformed cells correlates with their junctional communication with normal cells. Cell 1986, 44, 187–196. [Google Scholar] [CrossRef]
- Mehta, P.P.; Lokeshwar, B.L.; Schiller, P.C.; Bendix, M.V.; Ostenson, R.C.; Howard, G.A.; Roos, B.A. Gap-junctional communication in normal and neoplastic prostate epithelial cells and its regulation by cAMP. Mol. Carcinog. 1996, 15, 18–32. [Google Scholar] [CrossRef]
- Nicolson, G.L. Cancer metastasis: Tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim. Biophys. Acta 1988, 948, 175–224. [Google Scholar] [CrossRef]
- Zhu, D.; Caveney, S.; Kidder, G.M.; Naus, C.C.G. Transfection of C6 glioma cells with connexin43 cDNA: Analysis of expression, intercellular coupling, and cell proliferation. Proc. Natl. Acad. Sci. USA 1991, 88, 1883–1887. [Google Scholar] [CrossRef]
- Naus, C.C.G.; Elisevich, K.; Zhu, D.; Belliveau, D.J.; Del Maestro, R.F. In vivo growth of C6glioma cells transfected with connexin43 cDNA. Cancer Res. 1992, 52, 4208–4213. [Google Scholar] [PubMed]
- Brissette, J.L.; Kumar, N.M.; Gilula, N.B.; Dotto, P.G. The tumor promoter 12-O- tetradecanoylphorbol-13-acetate and the ras oncogene modulate expression and phosphorylation of gap junction protein. Mol. Cell. Biol. 1991, 11, 5364–5373. [Google Scholar] [CrossRef]
- Oh, S.Y.; Grupen, C.G.; Murray, A.W. Phorbol ester induces phosphorylation and downregulation of connexin 43 in WB cells. Biochim. Biophys. Acta 1991, 1094, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Berthoud, V.M.; Ledbetter, M.L.S.; Hertzberg, E.L.; Saez, J.C. Connexin43 in MDCK cells: Regulation by a tumor-promoter phorbol ester and Ca11. Eur. J. Cell Biol. 1992, 57, 40–50. [Google Scholar]
- Lau, A.F.; Kanemitsu, M.Y.; Kurata, W.E.; Danesh, S.; Boynton, A.L. Epidermal growth factor disrupts gap-junctional communication and induces phosphorylation of connexin43 on serine. Mol. Biol. Cell 1992, 3, 865–874. [Google Scholar] [CrossRef]
- Lau, A.F.; Kurata, W.E.; Kanemitsu, M.Y.; Loo, L.W.M.; Warn-Cramer, B.J.; Eckhart, W.; Lampe, P.D. Regulation of connexin43 function by activated tyrosine protein kinases. J. Bioenerg. Biomembr. 1996, 28, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, H.; Naus, C.C.G. Role of connexin genes in growth control. Carcinogenesis 1996, 17, 1199–1213. [Google Scholar] [CrossRef] [PubMed]
- Grek, C.L.; Rhett, J.M.; Ghatnekar, G.S. Cardiac to cancer: Connecting connexins to clinical opportunity. FEBS Lett. 2014, 588, 1349–1364. [Google Scholar] [CrossRef]
- Kumar, N.; Gilula, N.B. The gap junction communication channel. Cell 1996, 84, 381–388. [Google Scholar] [CrossRef]
- Makowski, L.; Caspar, D.L.; Phillips, W.C.; Goodenough, D.A. Gap junction structures. II. Analysis of the x-ray diffraction data. J. Cell Biol. 1977, 74, 629–645. [Google Scholar] [CrossRef] [PubMed]
- Naus, C.C.; Laird, D.W. Implications and challenges of connexin connections to cancer. Nat. Rev. Cancer 2010, 10, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, P.; Moss, D. Connexin expression and gap junctions in the mammary gland. Cell Biol. Int. 1996, 20, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Plante, I.; Laird, D.W. Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia. Dev. Biol. 2008, 318, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Plante, I.; Wallis, A.; Shao, Q.; Laird, D.W. Milk secretion and ejection are impaired in the mammary gland of mice harboring a Cx43 mutant while expression and localization of tight and adherens junction proteins remain unchanged. Biol. Reprod. 2010, 82, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Plante, I.; Stewart, M.K.; Barr, K.; Allan, A.L.; Laird, D.W. Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease. Oncogene 2011, 30, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
- Plante, I.; Stewar, M.K.; Laird, D.W. Evaluation of mammary gland development and function in mouse models. J. Vis. Exp. 2011, 53, e2828. [Google Scholar] [CrossRef]
- Stewart, M.K.; Gong, X.Q.; Barr, K.J.; Bai, D.; Fishman, G.I.; Laird, D.W. The severity of mammary gland developmental defects is linked to the overall functional status of Cx43 as revealed by genetically modified mice. Biochem. J. 2013, 449, 401–413. [Google Scholar] [CrossRef]
- Yamanaka, I.; Kuraoka, A.; Inai, T.; Ishibashi, T.; Shibata, Y. Changes in the phosphorylation states of connexin43 in myoepithelial cells of lactating rat mammary glands. Eur. J. Cell. Biol. 1997, 72, 166–173. [Google Scholar]
- Elzarrad, M.K.; Haroon, A.; Willecke, K.; Dobrowolski, R.; Gillespie, M.N.; Al-Mehdi, A.B. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med. 2008, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Gould, V.E.; Mosquera, J.M.; Leykauf, K.; Gattuso, P.; Durst, M.; Alonso, A. The phosphorylated form of connexi1n43 is up-regulated in breast hyperplasias and carcinomas and in their neoformed capillaries. Hum. Pathol. 2005, 36, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, S.; Going, J.J.; D’Arcy, R.; George, W.D. Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours. J. Pathol. 1998, 184, 37–43. [Google Scholar] [CrossRef]
- Kanczuga-Koda, L.; Sulkowska, M.; Koda, M.; Reszec, J.; Famulski, W.; Baltaziak, M.; Sulkowski, S. Expression of connexin 43 in breast cancer in comparison with mammary dysplasia and the normal mammary gland. Folia Morphol. 2003, 62, 439–442. [Google Scholar]
- Kanczuga-Koda, L.; Sulkowski, S.; Tomaszewski, J.; Koda, M.; Sulkowska, M.; Przystupa, W.; Golaszewska, J.; Baltaziak, M. Connexins 26 and 43 correlate with Bak, but not with Bcl-2 protein in breast cancer. Oncol. Rep. 2005, 14, 325–329. [Google Scholar] [CrossRef]
- Kanczuga-Koda, L.; Sulkowski, S.; Lenczewski, A.; Koda, M.; Wincewicz, A.; Baltaziak, M.; Sulkowska, M. Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J. Clin. Pathol. 2006, 59, 423–429. [Google Scholar] [CrossRef]
- Kanczuga-Koda, L.; Sulkowska, M.; Koda, M.; Rutkowski, R.; Sulkowski, S. Increased expression of gap junction protein–connexin 32 in lymph node metastases of human ductal breast cancer. Folia Histochem. Cytobiol. 2007, 45 (Suppl. 1), S175–S180. [Google Scholar]
- Laird, D.W.; Fistouris, P.; Batist, G.; Alpert, L.; Huynh, H.T.; Carystinos, G.D. Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res. 1999, 59, 4104–4110. [Google Scholar]
- Li, Z.; Zhou, Z.; Donahue, H.J. Alterations in Cx43 and OB-cadherin affect breast cancer cell metastatic potential. Clin. Exp. Metastasis 2008, 25, 265–272. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Z.; Welch, D.R.; Donahue, H.J. Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Cli.n Exp. Metastasis 2008, 25, 893–901. [Google Scholar] [CrossRef]
- Locke, D. Gap junctions in normal and neoplastic mammary gland. J. Pathol. 1998, 186, 343–349. [Google Scholar] [CrossRef]
- Laird, D.W. Life cycle of connexins in health and disease. Biochem J. 2006, 394 Pt 3, 527–543. [Google Scholar] [CrossRef]
- Langlois, S.; Cowan, K.N.; Shao, Q.; Cowan, B.J.; Laird, D.W. The tumor-suppressive function of Connexin43 in keratinocytes is mediated in part via interaction with caveolin-1. Cancer Res. 2010, 70, 4222–4232. [Google Scholar] [CrossRef]
- Ito, A.; Watabe, K.; Koma, Y.; Kitamura, Y. An attempt to isolate genes responsible for spontaneous and experimental metastasis in the mouse model. Histol. Histopathol. 2002, 17, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.; Wu, Q.; Acquafondata, M.; Dhir, R.; Wells, A. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron. 2012, 5, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Solan, J.L.; Hingorani, S.R.; Lampe, P.D. Changes in connexin43 expression and localization during pancreatic cancer progression. J. Membr. Biol. 2012, 245, 255–262. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, E.; Shao, Q.; Wang, H.L.; Langlois, S.; Laird, D.W. Connexins act as tumor suppressors in three-dimensional mammary cell organoids by regulating differentiation and angiogenesis. Cancer Res. 2006, 66, 9886–9894. [Google Scholar] [CrossRef]
- Momiyama, M.; Omori, Y.; Ishizaki, Y.; Nishikawa, Y.; Tokairin, T.; Ogawa, J. Connexin26-mediated gap junctional communication reverses the malignant phenotype of MCF-7 breast cancer cells. Cancer Sci. 2003, 94, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Pollmann, M.A.; Shao, Q.; Laird, D.W.; Sandig, M. Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Res. 2005, 7, R522–R534. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Shao, Q.; Curtis, H.; Galipeau, J.; Belliveau, D.J.; Wang, T. Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J. Biol. Chem. 2002, 277, 29132–29138. [Google Scholar] [CrossRef]
- Talhouk, R.S.; Fares, M.B.; Rahme, G.J.; Hariri, H.H.; Rayess, T.; Dbouk, H.A. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA- MB231 cells and MCF-7 cells: Role of beta-catenin/connexin43 association. Exp. Cell Res. 2013, 319, 3065–3080. [Google Scholar] [CrossRef]
- Bigelow, K.; Nguyen, T.A. Increase of gap junction activities in SW480 human colorectal cancer cells. BMC Cancer 2014, 14, 502. [Google Scholar] [CrossRef]
- Rhett, J.M.; Jourdan, J.; Gourdie, R.G. Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol. Biol. Cell 2011, 22, 1516–1528. [Google Scholar] [CrossRef]
- Hunter, A.W.; Barker, R.J.; Zhu, C.; Gourdie, R.G.; Taranger, C.K.; Noer, A.; Sørensen, A.L.; Håkelien, A.-M.; Boquest, A.C.; Collas, P. Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol. Biol. Cell 2005, 16, 5686–5698. [Google Scholar] [CrossRef] [PubMed]
- Spray, D.C.; Hanstein, R.; Lopez-Quintero, S.V.; Stout, J.R.F.; Suadicani, S.O.; Thi, M.M. Gap junctions and bystander effects: Good Samaritans and executioners. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2012, 2, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.P.; Hossain, M.Z.; Huang, R.; Gano., J.; Fan, Y.; Boynton, A.L. Connexin 43 (cx43) enhances chemotherapy-induced apoptosis in human glioblastoma cells. Int. J. Cancer 2001, 92, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Carystinos, G.D.; Bier, A.; Batist, G. The role of connexin mediated cell-cell communication in breast cancer. J. Mammary Gland Biol. Neoplasia 2001, 6, 431–440. [Google Scholar] [CrossRef]
- Scaltriti, M.; Verma, C.; Guzman, M.; Jimenez, J.; Parra, J.L.; Pedersen, K.; Smith, D.J.; Landolfi, S.; Cajal, S.R.; Arribas, J.; et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 2009, 12, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; da Fonseca, I.I.M.; Nagamine, M.K.; de Toledo, G.F.; Olio, R.; Hernandez-Blazquez, F.J.; Yano, T.; Yeh, E.S.; Dagli, M.L.Z. Effects of alpha-connexin carboxyl- terminal peptide (aCT1) and Bowman-Birk protease inhibitor (BBI) on canine oral mucosal melanoma (OMM) cells. Front. Vet. Sci. 2021, 8, 670451. [Google Scholar] [CrossRef] [PubMed]
- Gentile, L.B.; Nagamine, M.K.; Biondi, L.R.; Sanches, D.S.; Toyota, F.; Giovani, T.M.; de Jesus, I.P.; da Fonseca, I.I.M.; Queiroz-Hazarbassanov, N.; Diaz, B.L.; et al. Establishment of primary mixed cell cultures from spontaneous canine mammary tumors: Characterization of classic and new cancer-associated molecules. PLoS ONE 2017, 12, e0184228. [Google Scholar] [CrossRef] [PubMed]
- Sai, K.; Kanno, J.; Hasegawa, R.; Trosko, J.E.; Inoue, T. Prevention of the down- regulation of gap junctional intercellular communication by green tea in the liver of mice fed pentachlorophenol. Carcinogenesis 2000, 21, 1671–1676. [Google Scholar] [CrossRef]
- Sawey, M.J. Role of gap-junctional communication in breast cancer progression and chemoprevention. J. Nutr. 2001, 131, 167S–169S. [Google Scholar] [CrossRef] [PubMed]
- Nalewajska, M.; Marchelek-Myśliwiec, M.; Opara-Bajerowicz, M.; Dziedziejko, V.; Pawlik, A. Connexins-therapeutic targets in cancers. Int. J. Mol. Sci. 2020, 21, 9119. [Google Scholar] [CrossRef] [PubMed]
Lineage | Breed | Age (Years) | Neoplasm | Number of Passages |
---|---|---|---|---|
LOEC-NMG | Labrador Retriever | 10 | Normal canine mammary gland | P10 |
LOEC-MCA1 | Yorkshire | 7 | Canine mixed mammary adenocarcinoma | P8 |
LOEC-MCA2 | Teckel | 8 | Canine complex mammary adenocarcinoma | P11 |
LOEC-MCA3 | Labrador Retriever | 10 | Canine mammary adenocarcinoma | P9 |
LOEC-MAd1 | German Shepherd | 10 | Canine mixed mammary adenoma | P9 |
LOEC-MAd2 | Dachshund | 13 | Canine myoepithelial mammary adenoma | P10 |
CF41.mg | Beagle | 10 | Canine mammary adenocarcinoma | P32 |
Canine Mammary Cell Lines | Growing Conditions |
---|---|
LOEC-NMG, LOEC-MCA1, LOEC-MCA2, LOEC-MCA3, LOEC-MAd1, LOEC-MAd2 | Advanced DMEM, HEPES (10 mM), L-glutamine (2 mM), 1% antibiotic–antimycotic, cholera toxin (10 ng/mL), 1% MEGS (mammary epithelial growth supplement), and 0.5% SFB |
CF41.mg (commercial canine mammary tumor cell line) | DMEM, 10% fetal bovine serum, and L-glutamine (2 mM) |
Treatment 48 h | LOEC-NMG | LOEC-MAd1 | LOEC-MAd2 | LOEC-MCA1 | LOEC-MCA2 | LOEC-MCA3 | CF41.mg |
---|---|---|---|---|---|---|---|
αCT1 25 µM | |||||||
αCT1 50 µM | |||||||
αCT1 100 µM | * | ||||||
αCT1 150 µM | |||||||
αCT1 200 µM | |||||||
αCT1 250 µM | |||||||
αCT1 300 µM | |||||||
Treatment 72 h | LOEC-NMG | LOEC-MAd1 | LOEC-MAd2 | LOEC-MCA1 | LOEC-MCA2 | LOEC-MCA3 | CF41.mg |
αCT1 25 µM | * | ||||||
αCT1 50 µM | * | *** | |||||
αCT1 100 µM | * | * | *** | ||||
αCT1 150 µM | ** | *** | |||||
αCT1 200 µM | * | *** | |||||
αCT1 250 µM | *** | *** | |||||
αCT1 300 µM | * | *** | |||||
Treatment 96 h | LOEC-NMG | LOEC-MAd1 | LOEC-MAd2 | LOEC-MCA1 | LOEC-MCA2 | LOEC-MCA3 | CF41.mg |
αCT1 25 µM | *** | * | |||||
αCT1 50 µM | *** | ||||||
αCT1 100 µM | *** | * | |||||
αCT1 150 µM | * | *** | * | ||||
αCT1 200 µM | *** | * | |||||
αCT1 250 µM | * | *** | |||||
αCT1 300 µM | *** | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Fonseca, I.I.M.; Nagamine, M.K.; Sato, A.; Rossatto-Jr, C.A.; Yeh, E.S.; Dagli, M.L.Z. Inhibitory Effects of Alpha-Connexin Carboxyl-Terminal Peptide on Canine Mammary Epithelial Cells: A Study on Benign and Malignant Phenotypes. Cancers 2024, 16, 820. https://doi.org/10.3390/cancers16040820
da Fonseca IIM, Nagamine MK, Sato A, Rossatto-Jr CA, Yeh ES, Dagli MLZ. Inhibitory Effects of Alpha-Connexin Carboxyl-Terminal Peptide on Canine Mammary Epithelial Cells: A Study on Benign and Malignant Phenotypes. Cancers. 2024; 16(4):820. https://doi.org/10.3390/cancers16040820
Chicago/Turabian Styleda Fonseca, Ivone Izabel Mackowiak, Marcia Kazumi Nagamine, Ayami Sato, Carlos Alberto Rossatto-Jr, Elizabeth Shinmay Yeh, and Maria Lucia Zaidan Dagli. 2024. "Inhibitory Effects of Alpha-Connexin Carboxyl-Terminal Peptide on Canine Mammary Epithelial Cells: A Study on Benign and Malignant Phenotypes" Cancers 16, no. 4: 820. https://doi.org/10.3390/cancers16040820
APA Styleda Fonseca, I. I. M., Nagamine, M. K., Sato, A., Rossatto-Jr, C. A., Yeh, E. S., & Dagli, M. L. Z. (2024). Inhibitory Effects of Alpha-Connexin Carboxyl-Terminal Peptide on Canine Mammary Epithelial Cells: A Study on Benign and Malignant Phenotypes. Cancers, 16(4), 820. https://doi.org/10.3390/cancers16040820