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Simple Summary: Lung cancer therapeutics have dramatically improved in recent years. Indeed,
precision oncology could be exemplified by non-small cell lung cancer (NSCLC), with molecular
profiling and programmed death ligand 1 (PD-L1) immunohistochemical expression representing an
integral part of its tailored treatment. The present narrative review aims to highlight the promising
role of artificial intelligence (AI) technologies in the optimal, patient-centered management of NSCLC,
by distilling as well as interpreting big data.

Abstract: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality
among women and men, in developed countries, despite the public health interventions including
tobacco-free campaigns, screening and early detection methods, recent therapeutic advances, and
ongoing intense research on novel antineoplastic modalities. Targeting oncogenic driver mutations
and immune checkpoint inhibition has indeed revolutionized NSCLC treatment, yet there still
remains the unmet need for robust and standardized predictive biomarkers to accurately inform
clinical decisions. Artificial intelligence (AI) represents the computer-based science concerned with
large datasets for complex problem-solving. Its concept has brought a paradigm shift in oncology
considering its immense potential for improved diagnosis, treatment guidance, and prognosis. In
this review, we present the current state of AI-driven applications on NSCLC management, with a
particular focus on radiomics and pathomics, and critically discuss both the existing limitations and
future directions in this field. The thoracic oncology community should not be discouraged by the
likely long road of AI implementation into daily clinical practice, as its transformative impact on
personalized treatment approaches is undeniable.

Keywords: artificial intelligence; AI; machine learning; big data; radiomics; pathomics; treatment;
biomarkers; non-small cell lung cancer; lung cancer

1. Introduction

Lung cancer (LC) represents an aggressive malignancy of significant prevalence, world-
wide, with an estimated 238,340 new cases and 127,070 deaths in 2023 in the United States
(US) alone [1]. Small cell LC (SCLC) and non-small cell LC (NSCLC) are the main his-
tological subtypes, with the latter being the most common and further being classified
into adenocarcinoma (adNSCLC), squamous cell carcinoma (sqNSCLC), and large cell
carcinoma (LCLC) [2]. Global disparities in both LC incidence and mortality have been
acknowledged, reflecting health inequities, smoking divergences, varying patterns of en-
vironmental exposure, and genetic factors [3]. Historically, LC rates were predominantly
higher in older male smokers, yet recent epidemiological data suggest not only a continu-
ously increasing female-to-male incidence rate ratio [4], exceeding 1.0 in the younger age
group of 30–49 years [5], but also a quite significant proportion of non-smoking LC cases
varying between 10 and 16% for men and women, respectively [6,7].
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Hence, the rather strict eligibility criteria of certain high-risk individuals (heavy
smoking history in adults aged 50 and over in particular) for annual low-dose computed to-
mography (LDCT) screening may need to be modified [8]. Moreover, despite robust clinical
evidence of LDCT efficiency [9,10], its low uptake rates could, at least partially, explain the
rather delayed diagnoses [11–13]. Nevertheless, major advances in LC therapeutics, includ-
ing targeted therapy in patients with an actionable driver mutation or antibody-directed
immunotherapy against the specific checkpoint molecules programmed death-1 (PD-1), its
ligand (PD-L1), and the cytotoxic T-lymphocyte-associated protein 4 receptor (CTLA-4),
with or without classic cytotoxic chemotherapy, have undoubtedly contributed to survival
improvements during the last decade [14]. It is, therefore, of paramount importance to
accurately identify those patients who are most or least likely to derive benefit from these
novel therapies.

Currently, according to the European Society for Medical Oncology (ESMO) and the
National Comprehensive Cancer Network (NCCN) guidelines, comprehensive molecular
testing via high-throughput next-generation sequencing (NGS) is recommended in ev-
ery patient with advanced non-squamous carcinomas and in unusual cases of sqNSCLC
(i.e., younger than 50 years of age, never- or former light- or long-time ex-smokers), as
oncogene-addicted metastatic NSCLC epitomizes a prominent example of ‘precision oncol-
ogy’, whereas PD-L1 immunohistochemistry (IHC) testing remains the solely established
predictive biomarker for immune checkpoint inhibition (ICI) [15,16]. Focal tissue sampling,
however, fails to assess both the spatial and temporal tumor heterogeneity [17], while
diverse prognosis to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors
(TKIs) highlights the necessity of EGFR genotype stratification [18,19]. Of note, EGFR
gene mutations were the first to be targeted and are found in about 15–32% of NSCLC
cases [20,21]. PD-L1 expression is also characterized by intra- and inter-tumoral heterogene-
ity [22], whilst inter-assay discordances among several approved companion diagnostic
tests make PD-L1 positivity interpretation challenging [23].

Artificial intelligence (AI), an expanding branch of computer science for human
intelligence augmentation, has emerged as a transformative force in oncology [24].
In fact, Luchini et al. have reported that, by the end of 2021, 71 AI-enabled medical
devices have been authorized by the United States Food and Drug Administration (FDA)
within several oncological settings, mainly in radiology and pathology (54.9% and 19.7%,
respectively), and mostly for breast malignancies (31%) [25]. While, just a few months
ago, ISM3091, a novel highly selective small molecule inhibitor of ubiquitin-specific
peptidase 1 (USP1), became the first AI-engineered targeted therapy to be entered in
a phase 1 trial in patients with advanced, homologous recombination deficient (HRD)
solid tumors (NCT05932862) [26]. The scope of this review is to present the concept of
AI integration into NSCLC treatment in order to further optimize patient care and to
discuss limitations as well as future perspectives.

2. Artificial Intelligence (AI)

AI refers to an umbrella term for a broad range of computational systems capable of
simulating human cognitive functions like learning, perception, reasoning, and problem-
solving, independently [27]. Its subfield, machine learning (ML), focuses on algorithmic
methods development based on datasets, without explicit programming and with self-
adjusting abilities through data and experience [28]. Four distinct and mutually exclusive
learning types can be incorporated into the ML training process; supervised learning using
labeled input data, unsupervised learning using unlabeled data, semi-supervised learning
combining labeled and unlabeled data, and reinforcement learning within an interactive
environment of reward and punishment mechanisms [28,29]. Deep learning (DL), a subset
of ML algorithms, stands for artificial neural networks that mimic the complexity of human
brain structure and activity and are capable of automatic representation learning [30].

Despite human interest in intelligent machines being encountered since antiquity,
the modern AI theoretical foundation was first introduced in 1950 by Alan Turing [31],
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whereas the Dartmouth conference during the summer of 1956 has been widely considered
the ‘birthplace’ workshop of AI [32]. The slow progress within the next decades, mainly
due to insufficient funding, was followed by a huge resurgence of interest in the late 20th
century. Since then, AI has witnessed remarkable advancements and has transformed
various aspects of our daily lives, including biomedical research and healthcare [27,28].

AI holds the potential to reshape LC management, encompassing new and promising
approaches for screening, early diagnosis, molecular characterization, optimized manage-
ment, and accelerated drug development [33]. With regards to the specific focus of our
review, AI-based technologies leverage vast data sources (i.e., patients’ clinical records,
imaging data, genomics, etc.) to identify potential biomarkers of prognosis, accurate predic-
tion of treatment efficacy, and real-time monitoring of individualized responses, permitting
tailored therapeutic plan [34].

2.1. AI-Driven Radiomics

Imaging with CT and/or positron emission tomography/CT (PET/CT), which has
traditionally been the gold standard for treatment planning in LC patients [35], could be
combined with the sophisticated computational approaches of AI into radiomics models,
for non-invasively extraction of subtle peri- and intra-tumoral features, providing unbiased
information for LC and its microenvironment [36,37]. Apart from being non-invasive and
less susceptible to tumor heterogeneity, radiomics can be reproducible and less expen-
sive compared to tissue sampling [37]. The typical workflow of radiomics involves the
following steps:

• Medical image acquisition using the proper modality (CT, PET/CT, other);
• Acquired image preprocessing, using noise reduction, image resizing, and contrast

enhancement, to improve data quality;
• Segmentation of tissue in order to define the region of interest (ROI);
• Quantitative features extraction, including tumor size, shape, texture, and signal in-

tensities, which can reflect the lesion’s malignant potential as well as its heterogeneity;
• Relevant features selection for improved subsequent analyses;
• Extracted features normalization in datasets to eliminate inconsistencies among differ-

ent imaging techniques or protocols;
• AI-based model development;
• AI-based model (internal or external) validation in independent datasets to assess its

performance and generalizability;
• Correlation of model predictions (radiomic features) with patients’ data (clinical

outcomes); and
• Integration, validation, and refinement of validated radiomics within clinical

workflows [38].

In 2020, the Image Biomarker Standardization Initiative (IBSI) reported a list of
169 radiomic features characterized by their standard definition and their proven re-
producibility [39]. Furthermore, to reduce any diverging distributions within LC ra-
diomic datasets, several statistical harmonization techniques have been proposed, with
BM-ComBat providing the best performance thus far [40].

In addition, multi-region radiomics might be explored for their useful information
regarding lung background. Indeed, areas affected by pulmonary fibrosis or chronic ob-
structive pulmonary disease, emphysema in particular, carry a higher risk of carcinogenesis,
while areas of ground glass opacity tend to confer a more favorable prognosis [41,42]. Cur-
rent literature also suggests that the combination of imaging features with the underlying
genomic phenotypes, also known as radiogenomics, enables the refined assessment of
“whole-tumor” biological complexity and the evidence-based guidance of personalized
treatment [43]. A selection of representative studies regarding radiomics applications in
NSCLC therapy is presented in Table 1.
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Table 1. Selected studies of AI-based radiomics in NSCLC treatment.

Reference Author, Year AI-Based
Methodology Model Features Target Variable Patient Population Training Cohort Validation Cohort Best Performance

[44] Cheng et al.,
2022

Gradient boosting
decision tree

(GBDT)
CT radiomics EGFR mutation adNSCLC N = 464 N = 172

0.838 (training set); 0.822
(internal validation set); 0.803

(external validation set)

[45] Li et al., 2019 Logistic regression
(LG) CT radiomics EGFR 19del and

L858R NSCLC N = 236 N = 76 0.7925 (19del); 0.775 (L858R)

[46] Yang et al.,
2022

Least absolute
shrinkage and

selection operator
(LASSO)

regression model

CT radiomics T790M mutation

EGFR-mutated
adNSCLC

post-progression on
1st line with 1st or 2nd
generation EGFR TKI

N = 186 N = 74 0.71

[47] Yang et al.,
2020

LASSO regression
model CT radiomics Response to

EGFR-TKI

EGFR-mutated
adNSCLC, clinical
stage IIIB-IV, under

1st line with
EGFR-TKI

N = 253 N/A
0.7268 (unenhanced phase);

0.7793 (arterial phase); 0.9104
(venous phase)

[48] Wang et al.,
2022

LASSO regression
model CT radiomics

EGFR genotype;
Response to
EGFR-TKI

NSCLC, stage I-IV
from 9 cohorts
(7 retrospective

Chinese cohorts, The
Cancer Imaging

Archive cohort, and a
prospective Chinese

cohort)

N = 5645 (EGFR
genotype and

thick CT);
N = 4782 (EGFR

genotype and thin
CT); N = 490
(Response to
EGFR-TKI)

N = 3364 (EGFR
genotype and

thick CT);
N = 6528 (EGFR

genotype and thin
CT); N = 110
(Response to
EGFR-TKI)

0.755–0.770 (EGFR genotype
and thick CT); 0.748–0.797

(EGFR genotype and thin CT);
Genotype predicted by the fully

automated AI-system (FAIS)
combined with clinical factors

(FAIS-C model) was
significantly associated with

EGFR-TKI prognosis (p < 0.05)

[49] Hao et al.,
2022

LASSO regression
model

CT radiomics,
clinical and

radiographic
(CT) features

ALK
rearrangement

In situ and invasive
adNSCLC, stage I-IV N = 154 N = 39

0.914 (CT image and clinical
features-based ML model); 0.89
(CT image-based ML model);

0.735 (clinical features)

[50] Chang et al.,
2021

LASSO regression
model

PET/CT
radiomics

ALK
rearrangement adNSCLC, stage I-IV N = 367 N = 159 0.88
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Table 1. Cont.

Reference Author, Year AI-Based
Methodology Model Features Target Variable Patient Population Training Cohort Validation Cohort Best Performance

[51] Shao et al.,
2022

Multi-label
multi-task deep

learning (MMDL)
system

CT radiomics

Various driver
mutations;

PD-L1 tumor
proportion score

(TPS) ≥ 50%

NSCLC N = 876 N = 110
0.796 (EGFR); 0.867 (ALK); 0.680

(BRAF); 0.816 (KRAS); 0.912
(PD-L1 TPS ≥ 50%)

[52] Jiang et al.,
2021

ML-based models,
including random

forest, decision
tree, LG,

AdaBoost,
Gaussian process,

and support
vector machine

CT radiomics PD-L1
expression Resected adNSCLC N = 91 N = 34

0.85 (CT-based hand-crafted
radiomic signature); 0.61

(radiomics-nomogram model);
0.38 (clinical model)

[53] Tian et al.,
2021

Deep
convolutional

neural network
CT radiomics PD-L1 TPS ≥

50% NSCLC, stage IIIB-IV N = 750 N = 96
0.78 (training cohort); 0.71

(validation cohort); 0.76 (test
cohort)

[54] Wang et al.,
2022 DL CT radiomics PD-L1

expression NSCLC N = 908 N = 227 0.950 (TPS < 1%); 0.934 (TPS:
1–49%); 0.946 (TPS ≥ 50%)

[55] Mu et al.,
2021

Small-residual-
convolutional-

network
(SResCNN)

PET/CT
radiomics

PD-L1
expression;

Response to ICI

NSCLC, stage I-IV
from 5 cohorts

(bi-institutional;
China and Florida)

N = 284 (PD-L1
expression); N =
177 (Response to

ICI)

N = 116 (PD-L1
expression); N =
35 (Response to

ICI)

0.82 (PD-L1 expression);
c-indexes of 0.7–0.87 for the

combination of Deep-Learned
score (DLS) with clinical

characteristics (response to ICI)

[56] Jiang et al.,
2020

LASSO regression
model

CT, PET, and
PET/CT

radiomics

PD-L1
expression NSCLC, stage I-IV N = 266 N = 133

0.97, 0.61, and 0.97 (PD-L1 >
1%, CT, PET, and PET/CT

radiomics, respectively); 0.80,
0.65, and 0.77 (PD-L1 > 50%,

CT, PET, and PET/CT
radiomics, respectively)

[57] Trebeschi
et al., 2019

Gene set
enrichment

analysis (GSEA)
CT radiomics Response to

PD-1 ICI

Advanced NSCLC
under anti-PD1

therapy
N = 123 N = 262 0.79
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Table 1. Cont.

Reference Author, Year AI-Based
Methodology Model Features Target Variable Patient Population Training Cohort Validation Cohort Best Performance

[58] Gong et al.,
2022

Support vector
machine (SVM)

classifier
Delta radiomics Response to ICI

NSCLC, clinical stage
III–IV, under

immunotherapy alone
N = 93 N = 131 0.82–0.87

[59] Ramella
et al., 2018

Random forest
classifier CT radiomics

Response to
concurrent

chemoradiation
(cCRT)

NSCLC, stage III,
treated with cCRT N = 91 N/A 0.82

[60] Sun et al.,
2018

Linear elastic-net
ML model CT radiomics

CD8 gene
expression;

tumor immune
phenotype

LC N = 30

N = 119 (CD8 gene
expression); N =

100 (tumor
immune

phenotype)

0.67 (CD8 gene expression);
0.76 (tumor immune

phenotype)

[61] Sun et al.,
2020 N/A CT radiomics

CD8 gene
expression as a

predictive
biomarker of

response to ICI +
RT

Advanced NSCLC N = 14 N/A 0.63

[62] Mu et al.,
2020

LASSO regression
model

PET/CT
radiomics

TME image
features to

predict response
to ICI

NSCLC, stage IIIB–IV N = 99 N = 95
0.86 (training cohort); 0.83

(retrospective test cohort); 0.81
(prospective test cohort)
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Cheng et al. applied gradient boosting to differentiate the EGFR mutation status in a
total of 1476 radiomics features using pre-operative CT images from 636 adNSCLC patients.
The established ML-based model consisted of 102 features, yielding an area under the
curve (AUC) of 0.8 for the external validation cohort [44]. Considering that not all EGFR-
mutated adNSCLC patients respond equally to EGFR-TKIs, the EGFR genotype is rather
crucial [18,19]. In a retrospective study, Li et al. investigated the potential of CT radiomics
to predict the common EGFR mutations, exon19 deletion, and exon21 L858R point mutation,
and reported an AUROC for the test data set of 0.79 for 19del and 0.78 for L858R [45]. Both
of these respond rather well to EGFR-TKIs, yet 19del seems to correlate with better survival
outcomes [63,64]. The most frequent mechanism of resistance to EGFR-targeted therapy,
the acquired exon20 T790M mutation, can also be predicted via ML-driven radiomics,
especially in conjunction with clinical factors [46].

Using the least absolute shrinkage and selection operator (LASSO) regression model,
Yang et al. showed that the numerous radiomics features extracted from different time
phases of CT imaging could not only predict EGFR mutation status but also assess the
sensitivity to TKIs, with the venous-derived features being correlated with the best per-
formance (AUC: 0.91) [47]. In another large study of >18,000 LC patients, the research
group combined a fully automated whole-lung AI analysis with conventional CT imaging
and confirmed the superiority of incorporating radiomics-based genotype into clinical
data, like age, sex, stage, histology, and smoking status, for the prediction of response to
EGFR-TKIs [48].

Anaplastic lymphoma kinase (ALK) aberrations have been identified, since 2007, in
<7% of NSCLC cases [65], and currently several TKIs are approved for the treatment of
advanced ALK+ disease [15,16]. Both CT- and PET/CT-based radiomics have successfully
predicted ALK rearrangement status, with AUC of 0.89 and 0.88, respectively, but in the case
of PET/CT radiomics the ML model performance was not improved when implemented
both imaging and clinical data [49,50]. Among the studies regarding comprehensive
genotyping, Shao et al. used a DL methodology to evaluate not only a panel of oncogenic
driver mutations but also the IHC assessment of PD-L1, reflecting the realistic daily clinical
practice, with varying AUC of 0.796–0.912 [51].

Various CT- and/or PET/CT-derived radiomics have been utilized to predict PD-L1
expression levels [52–56]. Despite being single-center and of retrospective design, the study
by Wang et al. used a DL algorithm based on CT radiomics and reported robust, high
AUC scores of 0.95, 0.934, and 0.946 for PD-L1 tumor proportion score (TPS) < 1%, 1–49%,
and ≥50%, respectively [54]. Similarly promising results have been achieved in a cohort
of 399 NSCLC patients with an ML methodology using CT- and PET/CT radiomics; CT
radiomics outperformed selected features from other imaging modalities in both PD-L1
TPS > 1% (AUC: 0.97) and TPS > 50% (AUC: 0.80) [56].

Regarding treatment response, Trebeschi et al. evaluated the gene set enrichment
analysis computational method in a cohort of 385 patients with advanced-stage NSCLC,
under anti-PD-1 immunotherapy and showed that CT radiomics could provide predic-
tive biomarkers in a non-invasive way [57]. Valuable information in regard to treatment
response could be provided in earlier stages too; Ramella et al. developed an ML-based
radiomics model to predict the therapeutic efficacy of concurrent chemoradiation (cCRT) in
91 stage III NSCLC patients, yielding quite satisfactory results (AUC: 0.82) [59].

AI can also play a crucial role in tumor microenvironment (TME) analysis [36,37].
TME, comprising of tumor cells, infiltrating immune cells (i.e., neutrophils, macrophages,
T- and B- lymphocytes, etc.), stroma cells, chemokines, and other cellular and non-cellular
components, determines disease aggressiveness and therapeutic response, thus highly
influences clinical outcome [66–69]. In-depth characterization of the TME landscape using
AI-based approaches in combination with single-cell technology could unveil novel pre-
dictive biomarkers for optimized treatment decisions. Indicatively, Sun et al. developed
an AI model based on CT radiomics in order to predict CD8 infiltration and its predictive
value of response to ICI, with rather modest results (AUC of 0.63–0.76) [60,61]. On the
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contrary, an ML-based PET/CT radiomics signature successfully identified TME features
predictive of immunotherapy response in a cohort of 194 patients with locally advanced
and metastatic NSCLC [62].

2.2. AI-Driven Pathomics

Tissue biopsy specimen analysis remains the cornerstone of definitive diagnosis and
comprehensive molecular analysis of cancer, including NSCLC. The integration of multi-
omics (genomics, transcriptomics, proteomics, and metabolomics) into histopathology
datasets could provide the missing information on structural–morphological tissue changes
in disease [70]. AI-driven technologies can be used to analyze the vast amount of these
complex pathomics data for improved diagnostic, prognostic, predictive, and stratification
purposes [71,72]. Moreover, the digitalization of traditional pathological tissue slides
using whole-slide imaging (WSI), for clinical, research, and educational initiatives [73],
subsequently led to the development of such computer-based algorithms [74].

AI-driven pathomics workflow complements a quite comparable approach used in
radiomics [75]. To the best of our knowledge, contrary to the latter, AI-assisted pathomics
studies in NSCLC are limited. Table 2. summarizes the reviewed literature regarding
pathomics-based technologies in NSCLC treatment guidance.

Coudray et al. trained a DL algorithm on >1000 WSI from the Cancer Genome Atlas
(TCGA) for further histological classification of NSCLC cases and accurate prediction of
their mutational status. The AI-based pathomics model successfully discriminated LC
from normal tissues (AUC of 0.99), distinguished non-squamous histology from sqNSCLC
cases (AUC of 0.97), and demonstrated high accuracy in molecular genotype (AUC of 0.754,
0.814, and 0.845 for EGFR, KRAS, and STK11 mutations, respectively) [76].

A convolutional neural network (CNN), a subset of ML approaches, has been used
to generate image classification for gene fusion detection. More specifically, an Israeli
research institution validated such an AI-driven pathomics approach to detect ALK and
ROS-1 rearrangements, which were found to be highly sensitive (100%) and specific (100%
and 98.6% for ALK and ROS-1 fusions, respectively) [77]. The relevant issue of tissue
insufficiency to continue with molecular testing has been addressed by a Chinese study, in
which a CNN-based methodology not only differentiated benign from malignant pleural
effusions with an AUC of 0.93 but also identified the primary tumor site (accuracy rate for
adNSCLC of 0.81) and predicted gene aberrations with the usage of pleural effusion cell
block WSI [78].
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Table 2. Selected studies of AI-based pathomics in NSCLC treatment.

Reference Author, Year AI-Based
Methodology Model Features Target Variable Dataset Source Training Cohort Validation Cohort Best Performance

[76] Coudray
et al., 2018

Deep
convolutional

neural network
(CNN)

Pathomics Molecular
classification

The Cancer Genome
Atlas (TCGA)

database

N = 1144 whole
slide images

N = 490 whole
slide images

0.97 (adNSCLC, sqNSCLC,
and healthy tissue

discrimination); 0.733–0.856
(molecular classification)

[77] Mayer et al.,
2022 Advanced CNN Pathomics ALK and ROS1

fusion identification
NSCLC patients

(single institution) N = 162 N = 72

Sensitivity: 100% (for both
genes); Specificity: 100%

(for ALK fusion) and 98.6%
(for ROS1 fusion)

[78] Ren et al.,
2023 DL Pathomics Diagnosis and gene

alteration prediction

Pleural effusion cell
block whole-slide

images (single
institution)

N = 410 N/A

0.932 (diagnosis); 0.869
(ALK fusion); 0.804 (KRAS

mutation); 0.644 (EGFR
mutation); 0.774 (no

alterations)

[79] Rakaee et al.,
2023

QuPath v.0.2.3
(supervised ML

algorithm)
Pathomics

Tumor-infiltrating
lymphocytes (TILs),
TMB, and PD-L1 as

predictive
biomarkers of ICI

ICI-treated,
advanced-stage

NSCLC
N = 284 N = 97

0.70 (PD-L1/TMB); 0.56
(PD-L1/TILs); 0.52 (PD-L1);

0.77 (TILs, in
PD-L1 TPS < 1%); 0.65

(TMB, in PD-L1 TPS < 1%)

[80] Hondelink
et al., 2022 4 separate CNNs Pathomics PD-L1 expression NSCLC N = 60 N = 139 79% concordance with the

reference score

[81] Nibid et al.,
2023 5 separate CNNs Pathomics Response to cCRT NSCLC, stage

IIIA/IIIB under cCRT N = 33 N = 2 TPr = 0.75; TNr = 90.1

[82] Lin et al.,
2022 ML Pathomics

CD3+ T-cell and
CD8+ T-cell density

in TME and its
prognostic value

NSCLC patients who
underwent upfront

surgery
N = 145 N = 180 DFS HR: 0.57 for the high

l-score (p = 0.022)
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PD-L1 TPS IHC testing represents the sole validated biomarker of response to im-
munotherapy [15,16], yet its interpretation through routine histopathology reports remains
subjective and semi-quantitative [83]. AI-driven computational pathology may overcome
such limitations relative to the human bias of manual scoring [79,80]. Additionally, it
could quantify tumor-infiltrating lymphocytes (TILs), which have been correlated with
favorable prognosis and ICI efficacy [84,85]. Rakaee et al. developed an ML-based method-
ology to evaluate TILs and combined predictive models (TILs/PD-L1, TMB/PD-L1) in
immunotherapy responders. Interestingly enough, both models outperformed PD-L1
expression assessment with regards to the ICI response (AUC of 0.77 and 0.65 for TILs/PD-
L1 and TMB/PD-L1, respectively), whilst in the PD-L1 negative cohort, TILs preferably
identified responders compared with TMB [79]. The authors concluded that TIL-level
quantification is a cost-effective, easily implemented method that could be translated into
routine clinical practice if validated in larger, prospective studies [79].

Nibid et al. showed that deep pathomics, based on ore-treatment specimens, was
not only highly specific (true negative rate of 90.1) but also rather sensitive (true positive
rate of 0.75) to predict responses of patients with locally advanced NSCLC treated with
cCRT [81]. These results, in accordance with their previous radiomics study, underscore
the capabilities of AI-driven analysis of omics for the optimal management of patients with
stage III NSCLC, who are at risk of relapse [59,81].

Lastly, prognostic stratification is critical for guiding adjuvant treatment recommen-
dations for early-stage disease. In a multicenter retrospective study, Lin et al. proposed
an immune scoring system based on TME of automated assessment of cell density in
NSCLC patients, who underwent upfront surgery with curative intent, which could predict
disease-free survival (DFS) [82].

3. Discussion

As thoroughly discussed in the present review, AI integration into NSCLC manage-
ment represents a continuously expanding and transformative field, utilizing data-driven,
personalized strategies. The ever-growing literature accentuates the potential of AI-driven
radiomics and pathomics in predicting treatment response, both directly and indirectly,
using accurate predictive biomarkers like PD-L1, TME, and mutational status. However,
various hurdles still exist and need to be addressed.

With regards to radiomics, feature reproducibility is of utmost importance, consid-
ering the varying image acquisition (including the highly variable CT protocols and slice
thickness), preprocessing, and segmentation [86,87]. PET/CT scan undeniably provides
a vast amount of imaging data and parametric information, yet it can be correlated with
pitfalls and/or artifacts, while it remains more expensive and difficult from a technical
requirement perspective [88]. The absence of universal consensus on the optimal threshold
for LC radiomics should also be considered [89]. In the case of pathomics, differences
in staining techniques, time, and definitions (terminology) of histopathological features
are among the main implementation barriers [90]. Moreover, working with AI-based ap-
proaches should be considered as a rather specialized skill for which the next generation of
radiologists and pathologists should be educated.

Furthermore, various distinct AI algorithms have been developed in NSCLC patient-
centered studies (the majority of which were retrospective and single-center) and have been
evaluated in rather small training sample sizes without external validation. Thereby, both their
interpretability and generalizability are hindered [91]. We should also emphasize that clear
ethical and legal frameworks from the engaged stakeholders (i.e., healthcare professionals,
research institutions, patient advocacy groups, and government) are strictly required [92].

Future applications of AI for precision medicine in NSCLC may implement radiomics
and liquid biopsies (circulating tumor cells and/or nucleic acids detection) into novel
companion diagnostics, to provide valuable information on tumor biology, clonal evolu-
tion, disease progression, and response to treatment, in a minimally invasive, longitudinal
fashion [93,94]. Last but not least, the novel AI-based delta radiomics model targets the
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quantitative features of imaging at different acquisition time points (most often during
therapy) in order to accurately document data changes and, thus, reveal disease bio-
logical behavior [95]. Currently, only a limited number of publications evaluate delta
radiomics in LC patients with regard to prognosis, EGFR mutation status, and response
to treatment [58,95,96]. Of note, the United Kingdom (UK)-based project AIRIaL, which
stands for Artificial Intelligence and Resistance Imaging in Lung Cancer, aims to develop
novel predictive imaging features based on PET as well as AI-engineered biomaterials for
targeted payloads of drugs directly to the resistant clones [97].

4. Conclusions

AI-based technologies, despite their infancy, have gained great attention within the
oncology community as they could potentially foster optimal, personalized management
of cancer patients. Indeed, by tackling the complexity of the highly heterogeneous NSCLC
disease, AI approaches will pave the way for a paradigm shift in the field of informed,
data-driven clinical decisions in the near future. Several challenges still remain, yet their
prospective validation within a large number of institutions over diverse populations will
ultimately lay the foundation for their real-world implementation.
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