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Simple Summary: Colorectal cancer is a leading cause of cancer mortality, and its incidence is
rapidly increasing worldwide. Colorectal cancer is considered a single entity based on anatomical
localization; however, it consists of multiple disease sub-types that are regulated by distinct cell
signaling programs that present different risks for disease progression. It is important to develop
chemotherapy approaches that target specific vulnerabilities for each major colorectal cancer sub-type.
Since alternative pathways may become activated in response to the inhibition of a primary signaling
pathway, the implementation of multi-component, comprehensive strategies that are founded in
cancer biology is required for successful treatment.

Abstract: Colorectal cancer (CRC) is the second-leading cause of cancer-related mortality world-
wide. CRC mortality results almost exclusively from metastatic disease (mCRC) for which systemic
chemotherapy is often a preferred therapeutic option. Biomarker-based stratification of mCRC
enables the use of precision therapy based on individual tumor mutational profiles. Activating
mutations in the RAS/RAF/MAPK pathway downstream of EGFR signaling have, until recently,
limited the use of EGFR-targeted therapies for mCRC; however, the development of anti-RAS and
anti-RAF therapies together with improved strategies to limit compensatory signaling pathways is
resulting in improved survival rates in several highly lethal mCRC sub-types (e.g., BRAF-mutant).
The use of fluoropyrimidine (FP)-based chemotherapy regimens to treat mCRC continues to evolve
contributing to improved long-term survival. Future advances in chemotherapy for mCRC will need
to position development relative to the advances made in precision oncology.
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1. Introduction

Colorectal cancer (CRC) is newly diagnosed in >1.9 million individuals each year
worldwide and is considered a single entity based on anatomical localization in the large
intestine affecting the colon or rectum. However, CRC is a heterogeneous collection
of cancer sub-types differentiated based on precise anatomical location (e.g., left-sided,
colon) and cellular properties including microsatellite instability (MSI) and RAS muta-
tion status that direct the course of treatment, particularly for metastatic CRC (mCRC).
CRC collectively is a leading cause of cancer-related mortality worldwide resulting in
>930,000 deaths [1]. By 2040, CRC-related deaths are projected to increase to >3.2 million
new cases per year causing >1.6 million new deaths. Recent trends in the U.S. counter the
rapid global increase in CRC incidence and mortality with a 1.2% decline reported in CRC
incidence according to U.S. cancer statistics. However, with 153,000 new cases annually
and 52,500 deaths, CRC is the third-leading cause of cancer-related deaths among men and
women combined in the U.S. [2]. CRC is also increasingly being diagnosed in younger
individuals [3] with >20% of new CRC cases now diagnosed in individuals 55 years or
younger. CRC is also a malignancy associated with serious health disparities related to
both race [4] and gender [5]. While survival rates in the U.S. are among the highest in the
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world with ~65% of CRC patients (all stages and sites combined) surviving 5 years, mCRC
remains highly lethal with <11% of mCRC patients surviving 5 years [6].

The dismal 5-year survival rate for mCRC represents a substantial improvement rel-
ative to the survival rate before the introduction and optimization of fluoropyrimidine
(FP) chemotherapy [7]. 5-Fluororuracil (5-FU) was introduced into the clinic >60 years ago,
and its use in the adjuvant setting in combination with folinic acid (leucovorin (LV)) was
shown to decrease the risk for disease recurrence for patients with primary colon cancer [8,9].
5-FU/LV is useful in palliative therapy for mCRC, but the development of effective dou-
blet combination therapy regimens, including FOLFOX (folinic acid (leucovorin), 5-FU,
oxaliplatin) and FOLFIRI (leucovorin, 5-FU, irinotecan) [10], resulted in significant survival
advantages. Recent trends in survival in mCRC using FP doublet therapies are encouraging,
and the median overall survival (OS) for mCRC now exceeds 32 months, an improvement
from 22.6 months in 2012 [11]. Numerous factors undoubtedly contribute to improved
survival in mCRC; however, precision targeting based on the specific mutational profiles of
individual CRC tumors is playing an important role [12]. Multiple clinical trials reported
in recent years have noted significantly improved survival using precision therapeutic
approaches that target some of the deadliest mCRC sub-types, including BRAFV600E mu-
tations [13]. Improved survival using targeted therapies has resulted from not only the
discovery of new drugs that target actionable driver mutations but also the elucidation of
the mechanisms for compensatory signaling pathways that are activated in response to
target inhibition [14]. Improvements in precision oncology for mCRC are augmenting gains
achieved through the introduction of immunotherapy [15] and improved surgical tech-
niques that collectively are contributing toward improved long-term survival for distinct
sub-types of mCRC [16].

In this review, we first address biomarker-based stratification for personalized therapy
of mCRC with an emphasis on recent developments in anti-EGFR, anti-RAS, and anti-BRAF
therapies and the use of anti-VEGF therapy in front-line and second-line settings. We then
address chemotherapeutic options in the third-line setting of mCRC and the development
of novel targeted therapies with the potential to further improve outcomes in mCRC.

2. Biomarker-Based Stratification of mCRC

Approaches for precision targeting of mCRC sub-types derive from an understanding
of colorectal carcinogenesis initiated in the pioneering work of Fearon and Vogelstein [17].
The initiating event for adenomas is mutation in APC, a component of the destruction
complex that degrades β-catenin, while the initiating event for serrated polyps involves an
activating mutation in the BRAF oncogene [18]. The adenoma-to-carcinoma progression
proceeds via the chromosomal instability (CIN) pathway in ~65–70% of sporadic CRC
with the MSI pathway (~15%) and serrated neoplasia (~15%) alternative pathways of CRC
carcinogenesis [18]. CIN involves an accelerated rate in either gain or loss of large parts
or entire chromosomes or chromosomal rearrangements [19] with 17 sub-types of CIN
identified in a pan-cancer analysis [20]. While CRC developing via the CIN pathways is
characterized by defects in chromosomal segregation, tumors developing via this mech-
anism are not hypermutated, and current immunotherapy is generally not effective for
these tumors.

Following initiating APC mutations, CRC tumors developing via the CIN pathway
frequently include activating mutations in KRAS (~40%) and NRAS (3–5%) [21]. Activating
mutations in RAS-family GTPases or in BRAF decouple proliferative signaling via the
RAS/RAF/MEK pathway from upstream signaling regulated by EGFR and other receptor
tyrosine kinases (RTKs) leading to uncontrolled cell growth. EGFR plays an important role
in normal colon development [22], and it is an important target for treatment of mCRC in
which the RAS/RAF/MEK pathway is not activated through mutation (Figure 1). Molecu-
lar testing for activating KRAS and NRAS mutations (comprehensive RAS panel) and BRAF
mutations is recommended by the National Comprehensive Cancer Network (NCCN)
and the European Society for Medical Oncology (ESMO) to select patients for anti-EGFR
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therapy [23]. Activating mutations in KRAS may also contribute to an immunosuppres-
sive tumor microenvironment [24] and the lack of response of mCRC originating via the
CIN pathway rather than the MSI pathway. Direct pharmacological targeting of mutated
KRAS was not possible until recently, and drugs for KRAS mutations common in mCRC
(e.g., KRASG12D) are not yet clinically validated. Hence, cytotoxic chemotherapy using
fluoropyrimidine drugs (FPs), 5-fluororuracil (5-FU), or capecitabine in regimens such as
FOLFOX and FOLFIRI is, in many cases, a preferred option for front-line treatment of
mCRC with activating KRAS mutations.
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Figure 1. Biomarker-based stratification for front-line treatment of mCRC. ESMO and NCCN guide-
lines recommend MSI/MSS testing and comprehensive RAS and BRAF mutation status. Most mCRC
is MSS (~95%) and treated with a combination of chemotherapy and targeted therapy. MSI (~5%) is
treated with immune checkpoint blockade (ICB) immunotherapy. About 40% of mCRC expresses a
mutant RAS protein (KRAS or NRAS), and front-line treatment frequently consists of either FOLFOX
or FOLFIRI chemotherapy in combination with anti-VEGF therapy (e.g., bevacizumab). Inhibitors
for specific RAS mutations (e.g., sotorasib and adagrasib for KRASG12C) are in clinical development.
About 5% of mCRC expresses BRAFV600E, and recently, the combination of encorafenib+anti-EGFR
(cetuximab) was FDA-approved for front-line treatment. HER2 is amplified in ~5% of mCRC, and a
preferred front-line treatment is trastuzumab+lapatinib. For RASWT mCRC without BRAF mutation
or HER2 amplification, chemotherapy combined with anti-EGFR therapy (cetuximab or panitu-
mumab) is recommended front-line treatment. Acquired resistance to anti-EGFR therapy can result
from ALK-fusion or NTRK-fusion with the indicated treatment.

3. Targeting EGFR in mCRC

Epidermal growth factor (EGF) receptor (EGFR/ErbB1/HER1) is widely expressed
in CRC, and its elevated expression is associated with metastases and poor outcomes [25].
EGFR signaling proceeds via the binding of EGF or another EGFR-specific ligand (TGF-α,
amphiregulin (AREG)) followed by EGFR-dimer formation, which promotes transautophos-
phorylation [26]. The EGFR family includes HER2/Neu/ERBB2, HER3/ERBB3, and
HER4/ERBB4 in addition to EGFR/ErbB1/HER1. The formation of either homo- or het-
erodimers is possible resulting in 28 possible combinations that regulate diverse signaling
pathways including RAS/RAF/MAPK, PI3K/AKT/mTOR, and JAK/STAT3 that collec-
tively promote mCRC progression. HER3 and HER4 bind neuregulins (NRGs), and ligand
binding promotes the formation of homodimers or preferentially heterodimers with HER2.
HER2/HER3 and HER3/HER4 heterodimers are tumor promoting [27].
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3.1. Targeting EGFR

The liver is the most frequent site of CRC metastasis, and 79% of CRC liver metastases
express EGFR (vs. 38% non-metastatic CRC); strategies targeting EGFR are central to the
treatment of liver metastatic disease (Figure 2). EGFR is frequently overexpressed but is
rarely mutated in CRC, and tyrosine kinase inhibitors (TKIs) targeting mutant-selective
EGFR are not effective as single agents for mCRC treatment [28]. However, two anti-EGFR
monoclonal antibodies (mAbs) are widely used for mCRC treatment: (i) cetuximab, a
chimeric human–mouse mAb; and (ii) panitumumab, a fully humanized mAb. Anti-EGFR
mAbs are used in combination with fluoropyrimidine-based combination chemotherapy
regimens (FOLFOX and FOLFIRI) for front-line treatment of mCRC provided that there are
no activating RAS or BRAF mutations downstream of EGFR that would render anti-EGFR
therapy ineffective. Elevated plasma levels of EGFR ligands such as epiregulin (EREG) and
amphiregulin (AREG) may be indicative of resistance to anti-EGFR therapy [29]. Cetuximab
and panitumumab treatment results in similar survival benefit. Although not common,
the use of these mAbs may be associated with adverse reactions with decreased paronychia
(nail infection) observed with panitumumab [30].
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Figure 2. Therapeutic targeting of mCRC. EGFR-family signaling initiates proliferative signaling in
mCRC via the RAS/RAF/MAPK cascade. Monoclonal antibodies targeting EGFR dimer and specific
heterodimers have activity in mCRC without mutations in a RAS protein or BRAF. Small molecule
inhibitors of specific KRAS mutant forms and BRAFV600E have activity in mCRC. Fluoropyrimidine-
based chemotherapy targets thymidylate synthase (TS) and DNA topoisomerase 1 (Top1) and causes
DNA damage and replication stress.

3.2. Targeting Other EGFR-Family Members

Increasingly, the expression of EGFR-family members other than EGFR/ErbB1/HER1
is used to guide treatment. HER2 is overexpressed in 3–5% of mCRC [31], and HER2
amplification is associated with lower incidence of activating KRAS mutations and occurs
more commonly in left-sided CRC tumors. HER2 overexpression is a negative predictor as-
sociated with reduced efficacy of anti-EGFR therapy [31], and >36% of cetuximab-resistant
mCRC with wild-type KRAS, NRAS, BRAF, and PI3K was found to display HER2 overex-
pression [32]. The combined inhibition of EGFR and HER2 displayed promising activity
in mCRC patients with HER2 overexpression; however, monotherapy with the anti-HER2
mAb trastuzumab shows relatively low efficacy, although combining trastuzumab with
chemotherapy displays promise. Lapatanib [33], a small molecule inhibitor of EGFR
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and HER2, also shows promising activity in combination with trastuzumab for the treat-
ment of HER2-overexpressed mCRC [34]. Combining pertuzumab, a mAb that prevents
HER2/HER3 dimer formation, with trastuzumab also shows promise in combination for
this indication [35]. The National Comprehensive Cancer Network recommends the sys-
tematic evaluation of HER2 status in determining mCRC treatment, and multiple new
approaches to target HER2 overexpression in mCRC are in clinical development [36].

HER3 is widely expressed in mCRC, and elevated HER3 expression was shown to
be an independent prognostic factor that was associated with poor outcomes [37]. HER3
displays intrinsically low kinase activity and must dimerize with either another EGFR-
family member, including HER2 and EGFR, or a non-EGFR receptor tyrosine kinase (RTKs),
including fibroblast growth factor receptor (FGFR), MET, or Axl to stimulate cell survival
and proliferation signaling [38]. HER3 was also shown to be upregulated in CRC cells
in response to factors secreted from liver endothelial cells (ECs), and blocking HER3
using a humanized anti-HER3 mAb seribantumab inhibited EC-induced CRC survival [39].
Multiple antibody therapies are in development targeting HER3 [40] including patritumab
deruxtecan that includes an anti-HER3 mAb linked to a topoisomerase 1 (Top1) inhibitor
payload [41]. Multi-targeting antibodies that include HER3 as a target such as istiratumab,
which binds HER3 and insulin-like growth factor 1 receptor (IGF-1R) [42], also display
promise for CRC. HER4 is also expressed in mCRC, and, paradoxically, it may act as either
a tumor suppressor or an oncoprotein depending on its dimerization status [43]. In contrast
to other EGFR-family members, relatively little therapeutic development for mCRC is
directly targeted at HER4.

3.3. Alternative Targets in EGFR-Resistant mCRC

First-line treatment of mCRC includes anti-EGFR antibodies (cetuximab or panitu-
mumab) in combination with FP-based chemotherapy unless activating mutations in RAS
proteins or BRAF confer intrinsic resistance. Elevated levels of EGF and other EGFR ligands
(e.g., TGF-α, epiregulin (EREG), and AREG) also are indicative of decreased probability of
anti-EGFR efficacy [44]. Progressive disease following anti-EGFR therapy may result from
acquired resistance [45,46], which may result from any one of several causes [47]. Several
somatic mutations in an EGFR extracellular domain (ECD), including G465R, G465E, S468R,
and S492R, interfere with the binding of anti-EGFR antibodies to EGFR. Post-translational
modifications in an extracellular domain, such as arginine methylation (R198/R200) can
also inhibit binding of EGFR by anti-EGFR antibodies. The S492R mutation is selective for
resistance to cetuximab, and treatment with panitumumab may be an option for patients
with this EGFR mutation [48]. Monoclonal antibodies that bind different epitopes of EGFR,
including Sym004 [49], which is a combination of two mAbs that target EGFR extracellular
domain III, and MM-151 [50], have the potential to overcome these forms of acquired
resistance to cetuximab or panitumumab.

Acquired resistance to anti-EGFR therapy can also result from the activation of key
signaling pathways downstream of EGFR, either through acquired activating mutations
in the RAS/RAF/MEK or PI3K/AKT/mTOR pathways or through amplification or ac-
tivation of alternative receptor tyrosine kinases capable of alternatively activating these
signaling cascades independently of EGFR, including MET and IGF-1R. MET amplification,
which is rare in untreated mCRC (0.6%), is detected in ~7% of mCRC patients treated with
anti-EGFR therapy. The combination of anti-MET therapy using a multi-tyrosine kinase
inhibitor cabozantinib [51] or tepotinib [52] with anti-EGFR therapy may be effective in
patients with acquired resistance to anti-EGFR therapy through MET amplification [53]
(Figure 1). Proliferative and cell survival signaling via RAS/RAF/MEK and PI3K/AKT/
mTOR may also be upregulated downstream of IGF-1R, potentially circumventing a re-
quirement for EGFR-mediated signaling and attenuating the effect of anti-EGFR therapy.
Studies combining cetuximab with anti-IGF-1R therapies [54,55] have not yet yielded favor-
able clinical outcomes that would be consistent with this approach overcoming acquired
resistance to anti-EGFR therapy. Regorafenib, a multi-kinase inhibitor targeting EGFR1-3,
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TIE2 (angiopoietin receptor), platelet-derived growth factor receptor β (PDGFR-β), FGFR,
KIT, RET, and BRAF [56], is approved for the treatment of refractory mCRC [57] and,
in combination with cetuximab, displays potential for overcoming acquired resistance to
anti-EGFR therapy [58].

The development of acquired resistance to anti-EGFR therapy can result from acquired
mutations in downstream signaling pathways (RAS/RAF/MAPK and PI3K/AKT/mTOR)
with one study finding that 28.6% of patients showed activating alterations in either a RAS
protein, BRAF, ERK, or an alternative receptor tyrosine kinase receptor (RTK) [59]. Combin-
ing anti-EGFR therapy with a MEK inhibitor (e.g., selumetinib [60] or pimasertib [61]) may
hold therapeutic promise in limiting resistance via this mechanism. Resistance to anti-EGFR
therapy also occurs in mCRC expressing ALK fusions (0.2% of cases) or neurotrophic tyro-
sine receptor kinase (NTRK) fusions (0.7%), and these may be detected through sequencing
circulating tumor DNA (ctDNA) [62]. Tumors expressing the fusion gene protein products
benefit from treatment with ALK inhibitors such as ceritinib [63] or NTRK inhibitors such
as larotrectinib or entrectinib [64].

4. Targeting Mutant KRAS

Mutations in KRAS frequently occur in mCRC, at ~40%, while an additional 4% display
activating NRAS mutation with few cases displaying HRAS mutations. Determining the
RAS mutation status is central to identifying an appropriate therapeutic strategy for mCRC
patients since activating mutations in any RAS gene or in BRAF render therapeutic targeting
of EGFR and EGFR-family members ineffective. RAS is activated downstream of EGFR
transphosphorylation via a signaling cascade composed of Shc2 → GRB2 → SOS (son
of sevenless). SOS is a guanosine exchange factor (GEF) that stimulates the exchange of
GDP for GTP on RAS converting it to its active state. Activating RAS mutations bypass
a requirement for EGFR-pathway activation to stimulate RAS-mediated signaling and
maintain RAS in a constitutively activated state. In its activated state, RAS stimulates cell
proliferation and survival signaling by activating the RAF/MEK/ERK, PI3K/AKT/mTOR,
and Ral pathways.

Despite the prevalence of activating KRAS mutation in CRC and its importance for
determining the choice of therapy in mCRC [65], until recently, no drugs were available to
directly target mutant KRAS. The most frequent KRAS mutations in CRC occur at codon
12 (75%), while activating mutations at codon 13 (23%) and codon 61 (2%) also occur [66].
In general, activating KRAS mutations in mCRC are associated with accelerated metastatic
progression [67] and relatively poor outcomes with G12S mutations associated with a
particularly high mortality rate [68]. Challenges in targeting KRAS through direct targeting
of the GTP binding pocket include the high affinity for its native substrate GTP, which is
abundant in cancer cells [69]. Alternative strategies, including inhibiting post-translational
modification of KRAS using farnesyl transferase inhibitors (FTI [70], e.g., tipifarnib [71]
and salirasib [72]) to prevent localization to the inner plasma membrane, did not, how-
ever, evoke objective responses in clinical trials, possibly due to activation of a bypass
prenylation pathway via geranylgeranylation [73]. Alternative therapeutic approaches
include inhibiting the interaction of farnesylated KRAS with cGMP phosphodiesterase
delta (PDEδ) using small molecule inhibitors including deltarasin; however, this approach
is not selective for cancer cells and causes systemic toxicities [74]. Targeting mutant KRAS
at the mRNA or gene level is also under investigation; a 16mer antisense oligonucleotide
(AZD4785) targeting the 3′-untranslated region was evaluated in a Phase 1 clinical trial, but
no follow-up studies are yet reported [75].

Studies in recent years have, for the first time, demonstrated the feasibility and clinical
utility of directly targeting mutant KRAS with small molecule therapeutics designed to
exploit specific structural features present only in the mutant protein [76] (Table 1). Thera-
peutic development has primarily focused on targeting KRAS mutations at codon 12 with
compounds targeting G12C activating mutations most advanced with some development
of G12D and G12V specific therapies. In contrast to lung adenocarcinoma, in which it is
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present in 11% of cases [77], KRASG12C occurs in <4% of mCRC cases [78]. Therapeutic
development targeting KRASG12C has progressed in mCRC, and clinical development of
RAS direct inhibitors has begun to impact treatment [79]. In a Phase 2 study, Sotorasib
(AMG510, Amgen), a selective KRASG12C inhibitor, displayed activity in mCRC patients
expressing the target mutation with approximately 10% of patients displaying an objective
response [80]. Similar results were obtained with the KRASG12C-targeted therapy ada-
grasib (MRTX849, Mirati) in clinical studies for mCRC [81]. To circumvent the relatively
modest response rates in mCRC patients observed with selective KRASG12C inhibitors
as single agents, combination therapy with anti-EGFR antibodies is under investigation
with promising results. The rationale for combining selective KRASMT inhibition therapy
with anti-EGFR therapy is that adaptive feedback mediated by EGFR may stimulate the
RAS/MAPK pathway [82]. Sotorasib and adagrasib both displayed increased activity
in combination with panitumumab [83] (CODEBREAK 300, NCT05198934) and cetux-
imab [84] (KRYSTAL-1, NCT03785249), respectively. KRASG12C inhibitors are also being
investigated in combination with MEK inhibitors, anti-AKT drugs, and other strategies
to block feedback and bypass pathways that alternatively activate proliferative and sur-
vival signaling [79]. Additional KRASG12C inhibitors are undergoing clinical development
including JNJ-74699157 (NCT04006301) and LY3499446 (NCT04165031).

Table 1. Anti-Ras therapies approved and in clinical development.

Drug Brand Name Company Mutation Status

Sotorasib Lumakras AMGEN G12C Approved
Adagrasib KRAZATI Mirati G12C Approved

JDQ443 Novartis G12C Phase 2
MRTX1133 Mirati G12D Phase 1
RMC-6236 Revolution Multiple Phase 1

KRASG12D mutation is relatively more frequent than KRASG12C in mCRC, particu-
larly in black patients (13% vs. 6% in white patients) [4]. However, the development
of small molecule inhibitors selective for this mutation has lagged behind the devel-
opment of KRASG12C inhibitors. Recent studies with the KRASG12D specific inhibitor
MRTX1133 [85] have, however, showed promise that this mutant form of KRAS is also
druggable. MRTX1133 displayed strong and selective activity in KRASG12D xenograft
models; however, pERK reactivation is detected with continued treatment indicating that
co-development with inhibitors of bypass pathways may be important for clinical develop-
ment. Multiple studies have demonstrated the clinical potential of targeting downstream
signaling to selectively intervene in KRAS-mutant cancer. Encouraging results were ob-
tained in clinical studies for non-small cell lung cancer (NSCLC) with MEK inhibitors
including trametinib; however, in CRC, it was observed that a MEK inhibitor, AZD6244,
caused the upregulation of c-MET/JAK/STAT signaling as an adaptive resistance mech-
anism. Further development combining MEK and MET inhibition [86] is being further
evaluated in clinical studies (NCT02510001) to target both downstream signaling and puta-
tive adaptive resistance for the treatment of KRAS-mutant CRC. The challenges of targeting
mutant KRAS and the insufficiency of MEK inhibition led to studies investigating comple-
mentary pathways to potentially enhance MEK inhibition resulting in the identification
of Src inhibition with dasatinib as a potential effective combination treatment; but in vivo
studies have not yet been successful with this approach [87].

5. Targeting Mutant BRAF

BRAF mutations occur in ~8.5% of CRC cases [88] with BRAFV600E, a class I BRAF
mutation and the predominant mutation comprising two-thirds of all BRAF mutations in
CRC. Class I BRAF mutations enable BRAF to signal as a monomer and independent of
upstream input or RAS activation [89]. Class II mutations that, in CRC, include BRAFK601E

and BRAF kinase fusions are also independent of upstream activation but function as
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dimers. Front-line chemotherapy for BRAFV600E mCRC is not firmly established but fre-
quently consists of doublet therapy (FOLFOX or FOLFIRI) in combination with targeted
therapy (e.g., bevacizumab) [90]. BRAFV600E mutation is associated with decreased median
survival, only 13.5 months relative to 30.6 months for BRAF wild-type tumors [4], while
non-V600E BRAF mutations did not serve as a factor for poor prognosis in mCRC [91].
The increased aggressiveness of BRAFV600E mCRC led to evaluation of more aggressive
first-line chemotherapy; however, triplet therapy with FOLFOXIRI did not demonstrate
an advantage relative to doublet therapy (FOLFOX or FOLFIRI) with bevacizumab [92].
Consistent with BRAFV600E mutation, signaling independent of upstream input, anti-EGFR
therapy is not useful in patients with BRAFV600E tumors as single agents [93] or in com-
bination with chemotherapy [94]. Class II BRAF mutations also display limited response
to anti-EGFR therapy, while class III BRAF mutations, which are dependent on upstream
input for signaling, are responsive to anti-EGFR therapy [95]. Inhibition of BRAFV600E with
vemurafenib [96] or dabrafenib [97] has limited activity in mCRC even when combined with
anti-MEK therapy with trametinib. Feedback upregulation of EGFR is considered the cause
for the lack of efficacy for drugs that directly target mutant BRAFV600E to be ineffective in
mCRC with this activating mutation, and acquired resistance to anti-BRAFV600E therapy
is associated with EGFR mutations and amplification and activating RAS or alternative
BRAF mutations [98]. Inclusion of anti-EGFR therapy (e.g., cetuximab) in combination
with direct targeting of BRAFV600E (encorafenib) increased the objective response rate to
19.5% relative to control (irinotecan or FOLFIRI plus cetuximab; 1.8%) [99], and inclusion
of anti-MEK therapy (binimetinib) further increased the objective response rate to 26.8%.
Doublet therapy (encorafenib+cetuximab) is FDA-approved as the standard of care for
BRAFV600E mutant mCRC [89]. Activation of the WNT/β-catenin pathway may also cause
resistance to anti-BRAF therapy, and the combination of a WNT inhibitor (WNT974) with
encorafenib and cetuximab is under evaluation for the treatment of BRAFV600E-mutant
CRC (NCT02278133). Amplification of cyclin D1 and mutation in CDK4/6 and other CDKs
are associated with resistance to BRAF inhibitors [100], and inclusion of CDK inhibitors,
including CDK12 [101], which is activated via the RAS/MAPK pathway, with anti-BRAF
therapy is being investigated for overcoming resistance to targeted therapy in multiple
types of cancer with BRAFV600E mutations.

6. Alternative Targets of Activated EGFR

Much of the current success in targeted therapy for mCRC is based on anti-EGFR anti-
body therapy and, more recently, anti-KRAS and anti-BRAF therapies. In addition to acti-
vating the RAS/RAF/MAPK pathway, EGFR signaling may activate the PI3K/AKT/mTOR
and RAL pathways to stimulate proliferative and survival signaling. Mutations in the
PI3K/AKT/mTOR pathway are common in mCRC [102], contribute to malignant trans-
formation [103], and are implicated in resistance to front-line therapy [104]. However,
targeting of the PI3K/AKT/mTOR pathway has not yet proven to be a successful strategy
for treating mCRC [105], although this remains an area of investigation. RALA and RALB
are upregulated in CRC [106] and are implicated in invasion and metastasis in pancreatic
cancer, but analogous roles in CRC have not been reported [107]. RAL proteins activate
EGFR/MAPK signaling [108] in the intestine in Drosophila, but a role in human CRC
development is not established. However, since RAL proteins have a role as RAS effectors,
the potential of this pathway to be activated in acquired resistance may emerge.

7. Wnt-Pathway Targeting

Wnt signaling plays a major role in sustaining the dynamic biology of intestinal
epithelia in which proliferative progenitors derived from stem cells at the base of the crypts
propagate culminating in differentiation into one of the mature cell lineages present in
villi: goblet cells, enteroendocrine cells, and absorptive epithelial cells. The Wnt/β-catenin
pathway also plays a critical role in maintaining the cancer stem cell (CSC) population in
malignant tissues making Wnt a potential target in CRC [109], even though its essential role
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in normal intestine function makes toxicity of agents targeting the Wnt pathway a serious
concern. While loss of the tumor suppressor APC is the characteristic mutation resulting
in Wnt-pathway activation in CRC etiology, cancer therapeutic development targeting
the Wnt pathway is focused on downstream mediators including tumor necrosis factor
receptor-associated factor (TRAF) and NCK-interacting protein kinase (TNIK), an essential
regulator of the TCF4/β-catenin complex [110]. The TNIK inhibitor NCB0846 as well as
the FDA-approved mebendazole that targets TNIK display promising activity in preclinical
CRC models demonstrating the therapeutic potential of Wnt-pathway targeting for CRC
treatment [111]. A Tankyrase inhibitor, IWR-1 [112], also shows promise in targeting CSCs
by modulating PARylation of AXIN, a key component of both the β-catenin destruction
complex and the WNT signalosome [113]. Other modulators of canonical Wnt signaling
include niclosamide that decreases Dv1-2 and β-catenin expression [114] and now is in
clinical trials for CRC [115]. Recently, niclosamide and two other β-catenin inhibitors
(FH535 [116] and LF3 [117]) have been shown to downregulate MACC1-regulated S100A4
expression to decrease CRC propensity for metastatic progression [118]. Multiple agents
targeting both canonical and the β-catenin-independent non-canonical Wnt signaling
including v-ATPase inhibitors and anti-RSPO antibody are undergoing clinical trials in
CRC and other malignancies [119,120].

8. Targeting VEGFR

The anti-VEGF antibody bevacizumab (BEV) is used in combination with chemother-
apy (FOLFOX or FOLFIRI) for the treatment of mCRC with activating mutations in the
RAS/RAF/MAPK pathway [121]. Multiple clinical trials support an advantage for anti-
VEGF therapy in combination with chemotherapy in second-line mCRC [122]. A rationale
for combining anti-VEGF therapy with chemotherapy is that anti-VEGF therapy caused
tumor vasculature to normalize resulting in increased drug delivery to tumors [123]. How-
ever, in some studies, BEV actually decreased tumor perfusion and drug delivery [124].
Angiogenesis is an important process promoting mCRC progression; and, in addition
to BEV, which targets VEGF-A, several drugs targeting angiogenesis display activity in
mCRC, including ramucirumab, a humanized mAb targeting VEGF-R2; regorafenib, which
inhibits multiple RTKs; and aflibercept, a recombinant fusion protein that serves as a
decoy receptor for VEGF-A, VEGF-B, and placental growth factor [125]. In front-line
treatment for mCRC, anti-VEGF therapy was shown to be comparable with anti-EGFR
therapy when either was combined with chemotherapy [126], and while some previous
studies indicated that chemotherapy was more effective in right-sided CRC [127], no side
dependence was detected. Second-line therapy may involve an alternative anti-VEGF
drug (e.g., chemotherapy+Aflibercept) for patients progressing following treatment with
front-line chemotherapy+BEV [125], while regorafenib whose targets include VEGF-R1,
VEGF-R2, and VEGF-R3 or Fruquintinib is used in combination with TAS-102 (combination
of trifluridine and Tiperacil) for third-line treatment [128].

9. FP-Based Chemotherapy in CRC

5-FU-based chemotherapy is central to both adjuvant therapy of primary CRC and
for systemic therapy for mCRC. However, deficiencies in DNA mismatch repair (dMMR
or microsatellite high (MSI-high)) render FP-based chemotherapy relatively ineffective.
Approximately 15% of primary CRC is dMMR/MSI-high, but in mCRC, this is only <5%
of cases. MSI-high or dMMR mCRC patients favorably respond to immune checkpoint
blockade (ICB), and this is now the preferred front-line treatment [129]. Microsatellite
instability involves mutations in DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6,
and PMS2) or epigenetic silencing of MLH1. About 3% of all CRC diagnoses result from
germline mutation in one of the MMR genes (e.g., Lynch syndrome). Deficiencies in MMR
are detected using a consensus marker panel (Bethesda panel) and immunohistochemistry
(IHC), although a more rapid PCR method using seven markers of MSI (Idylla MSI assay)
appears promising [130].



Cancers 2024, 16, 1029 10 of 19

9.1. Adjuvant Chemotherapy in Primary Colorectal Cancer

Adjuvant chemotherapy is administered to reduce the risk for disease recurrence
in CRC patients undergoing surgical resection for primary colon cancer with curative
intent [131]. Adjuvant chemotherapy is recommended for most CRC patients with stage III
CRC and for stage II CRC patients who are deemed at high risk for disease recurrence. Fac-
tors associated with high risk for stage IIA (T3) disease include sampling <12 lymph nodes
in the surgical specimen, an undifferentiated tumor grade, and perineural or lymphovascu-
lar invasion [132]. For CRC patients with stage IIB disease (T4, lesions penetrating visceral
peritoneum) and stage IIC CRC (T4, invasion of surrounding organs), adjuvant chemother-
apy is recommended. The inclusion of oxaliplatin with fluoropyrimidine chemotherapy
(e.g., 5-FU or capecitabine with leucovorin (LV)) provides benefit relative to adjuvant FP
chemotherapy alone. However, oxaliplatin chemotherapy is associated with peripheral
neuropathy, and strategies to limit the duration of oxaliplatin treatment in the adjuvant
setting are being investigated to reduce toxicity without compromising efficacy [133]. Circu-
lating tumor DNA (ctDNA) is emerging as a predictive factor for the necessity of adjuvant
chemotherapy, and the use of ctDNA is expected to inform standard practice in the near
future, potentially reducing toxicity due to unnecessary chemotherapy [134,135].

9.2. Chemotherapy in Metastatic Colorectal Cancer

5-FU-based chemotherapy is central to systemic therapy for mCRC [136] (Figure 3).
The introduction of 5-FU and its modulation with leucovorin (LV) resulted in a substantial
benefit in overall survival, 3–6 months [137]. Capecitabine, an oral FP that is enzymatically
converted to 5-FU, was shown to be equivalent to 5-FU in survival benefit [138]. FP-based
doublet therapies in which 5-FU/LV is combined with oxaliplatin (FOLFOX) or irinotecan
(FOLFIRI) are now a preferred first-line treatment for mCRC. Addition of oxaliplatin to
5-FU/LV resulted in a higher response rate (50.7 vs. 22.3%) and improved progression-free
survival (9.0 vs. 6.2 months), although overall survival (16.2 vs. 14.7 months) was not
significantly improved [139]. Similar trends were observed for the addition of irinotecan
to 5-FU/LV that resulted in an improved objective response rate (49 vs. 31%) and longer
time to progression (6.7 vs. 4.4 months), but, in this case, overall survival benefit was
significantly increased (17.4 vs. 14.1 months) [140].
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Figure 3. Sequential administration of FP-based chemotherapy for the treatment of mCRC that is
RASMT and microsatellite-stable (MSS) following disease progression. Front-line treatment consists of
either FOLFOX or FOLFIRI, which may be combined with anti-VEGF therapy. Second-line treatment
generally uses the alternative FP-based regimen (e.g., FOLFOX → FOLFIRI) and may be combined
with an alternative anti-VEGF agent (e.g., Aflibercept). Third-line treatment uses an alternative
FP-based treatment, TAS-102, in which FP trifluridine is combined with Tiperacil. Regorafenib is also
widely used in third-line treatment of mCRC.

FP-based chemotherapy, either FOLFOX/XELOX or FOLFIRI/XELIRI, is widely used
in the front-line treatment of mCRC, often in combination with anti-EGFR or anti-VEGF
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therapy depending on the patient mutation profile (Figure 1). Multiple FOLFOX variants
are clinically used. For example, FOLFOX4 (oxaliplatin 85 mg/m2 on day 1; LV 200 mg/m2,
bolus 5-FU 400 mg/m2, and continuous infusion 5-FU 600 mg/m2 over 22 h, days 1–2
every two weeks) resulted in an overall response rate (ORR) of 23.5% and progression-
free survival (PFS) of 5.1 months. The alternative FP doublet therapy is often used for
second-line treatment following disease progression (e.g., FOLFOX (1st) → FOLFIRI (2nd)),
and there is no evidence for a preferred sequencing of these regimens [141]. The overall
percent of mCRC patients treated with FOLFOX or FOLFIRI has not diminished even as
the introduction of targeted therapies since 2012 has improved OS [11]. The duration of
chemotherapy in first-line therapy is also a matter of debate as serious adverse events
including peripheral neuropathy are associated with the oxaliplatin component in FOL-
FOX. Collectively, the implementation of targeted therapies directed at actionable driver
mutations in conjunction with strategies to counter feedback inhibition and circumvent
compensatory signaling pathways is extending survival in mCRC patients with some of
the historically most rapidly lethal mCRC sub-types (e.g., BRAFV600E).

Chemotherapy is important for reducing tumor burden prior to resection and qualify-
ing patients with potentially resectable disease for surgery, which significantly improves
the likelihood of long-term survival [16]. For patients deemed able to tolerate more ag-
gressive therapy, the inclusion of both irinotecan and oxaliplatin together with 5-FU/LV in
FOLFOXFIRI triplet chemotherapy improved ORR, PFS, and median OS relative to doublet
therapy [142]. Furthermore, an improved surgical resection rate was found with triplet ther-
apy [143]. In the third-line setting, a thymidine-based FP analog trifluridine is used rather
than 5-FU. TAS-102, a combination of trifluridine and a thymidine phosphorylase inhibitor
(Tiperacil), was shown to improve OS relative to placebo [144]. TAS-102 displays promising
activity in combination with bevacizumab for the third-line treatment of mCRC. The ther-
apeutic benefit of TAS-102 in the third-line setting for mCRC is consistent with FPs with
more DNA-directed mechanism having therapeutic potential, and the second-generation
polymeric FP CF10 shows promising activity in preclinical studies [145].

10. Immunotherapy Approaches for mCRC

Immune checkpoint blockade (ICB) therapy with anti-PD-1 drug Pembrolizumab
or Nivolumab is the approved first-line treatment for mCRC that is dMMR or MSI-high;
however, this is only <5% of mCRC, and some estimates indicate that only 2% of mCRC
patients are candidates for successful therapy with ICB therapy [129]. The lack of efficacy for
ICB therapy in MSS mCRC is considered to result from a relatively lower tumor mutational
burden (TMB) reducing the presentation of neo-antigens. mCRC that originates via Pol
epsilon mutations displays relatively higher TMB, and these patients show increased
response to ICB therapy [146]. Published genomic studies show that 7.5% of mCRC
patients with MSS tumor display high TMB, and sequencing may identify candidates for
ICB therapy not detected based on dMMR/MSI [147]. Clinical studies have investigated
the potential of chemotherapy to improve the activity of immunotherapy in MSS mCRC,
but no therapeutic benefit has been established for this approach [148].

11. Conclusions and Future Perspectives

Improvements in precision therapy for mCRC have yielded impressive gains in sur-
vival with median overall survival (OS) for mCRC now exceeding 32 months [11] and many
patients now surviving for third-line treatment. A limitation is that reported improvements
in survival are often based on outcomes from clinical trials that involve a small percent of
patients and often those with favorable performance characteristics. Consistent with this,
5-year survival rates in mCRC remain dismal [6] indicating a great need for further thera-
peutic advances. For decades, targeted anti-EGFR therapy has proven highly successful in
treating mCRC for which neither activating RAS or BRAF mutations were detected [30].
Recent progress in accounting for the contribution of other EGFR-family members, HER3
and especially HER2, as drivers of malignancy progression and drug resistance is enabling
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more precise targeting of this important signaling pathway. The role of alternative RTKs
in compensatory signaling with EGFR inhibition, or as driver mutations when expressed
as an oncogenic fusion protein, is established thus allowing for precision targeting to be
expanded to a more comprehensive list of mCRC-related targets. The direct targeting
of specific KRAS mutations with small molecule inhibitors is starting to impact mCRC
treatment and will likely continue to expand as alternative KRAS mutations that are more
common in mCRC become druggable targets and as strategies to control compensatory
signaling pathways that maintain cell viability and proliferative potential upon KRASMUT

inhibition become clinically validated [84].
While the development of targeted therapies directed at RTKs and KRASMUT and

BRAFV600E inhibitors is extensively contributing to improved survival in mCRC, the major-
ity of patients still receive FP-based chemotherapy, and this is expected to continue even as
new targeted agents enter clinical development. The refinement of FP-based chemother-
apy regimens and their sequential administration to overcome resistance has resulted in
important advances in survival. The more recent introduction of TAS-102 (trifluridine-
tipiracil) [149] is further extending the survival of patients in third-line treatment. The
long-established role for FP chemotherapy in CRC treatment holds promise for new FPs,
including CF10, a polymeric fluoropyrimidine [145], to further advance the survival benefit
of this important drug class in mCRC.

There is also potential to identify novel targets that are important for mCRC progres-
sion. The increased availability and reduced cost of next-generation sequencing technolo-
gies may enable important new targets to be identified [150]. Furthermore, there remains
the potential to selectively target proteins and pathways with established importance in
mCRC progression including TGF-β, p53, and PI3K/AKT/mTOR in new ways such as
targeting regulatory miRNA, enabling therapeutic targeting for mCRC for established
targets that has not proven possible to date. Collectively, these approaches may further
extend survival and eventually render mCRC manageable long-term chemotherapy in
conjunction with surgery and other modalities in conjunction with surgery and radiation.
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