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Simple Summary: Finding the area of a skin lesion on dermoscopy images is important for diag-
nosing skin conditions. The accuracy of segmentation impacts the overall diagnosis. The quality of
segmentation depends on the amount of labeled data that is hard to obtain because it requires a lot of
time from experts. This study introduces a technique that enhances the segmentation process by using
a combination of expert-generated and computer-generated labels. The method uses a trained model
to generate labels for new data that are later used to improve the model. The findings suggest that
this approach could make skin cancer detection tools more accurate and efficient, potentially making
a big difference in the medical field, especially in situations where high-quality data are limited.

Abstract: Skin lesion segmentation plays a key role in the diagnosis of skin cancer; it can be a
component in both traditional algorithms and end-to-end approaches. The quality of segmentation
directly impacts the accuracy of classification; however, attaining optimal segmentation necessitates a
substantial amount of labeled data. Semi-supervised learning allows for employing unlabeled data
to enhance the results of the machine learning model. In the case of medical image segmentation,
acquiring detailed annotation is time-consuming and costly and requires skilled individuals so the
utilization of unlabeled data allows for a significant mitigation of manual segmentation efforts. This
study proposes a novel approach to semi-supervised skin lesion segmentation using self-training
with a Noisy Student. This approach allows for utilizing large amounts of available unlabeled images.
It consists of four steps—first, training the teacher model on labeled data only, then generating
pseudo-labels with the teacher model, training the student model on both labeled and pseudo-labeled
data, and lastly, training the student* model on pseudo-labels generated with the student model.
In this work, we implemented DeepLabV3 architecture as both teacher and student models. As a
final result, we achieved a mIoU of 88.0% on the ISIC 2018 dataset and a mIoU of 87.54% on the PH2
dataset. The evaluation of the proposed approach shows that Noisy Student training improves the
segmentation performance of neural networks in a skin lesion segmentation task while using only
small amounts of labeled data.

Keywords: deep learning; semi-supervised learning; skin lesion segmentation; skin cancer;
dermoscopy images

1. Introduction

Melanoma is the seventieth most common cancer worldwide and one of the most
common cancers among young adults [1]. Although it is one of the deadliest kinds of
skin cancer [2], it might be completely cured if detected early. Melanoma mortality rates
are highly correlated with the state of cancer at the moment of diagnosis. Statistics show
that a 5-year relative survival rate for people diagnosed in the localized stage reaches 99%,
while a diagnosis in the distant stage results in a significant drop in the survival rate down
to 30% [3]. Therefore, the monitoring and early diagnosis of skin lesions are crucial in
preventing cancer diseases.
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The majority of currently deployed solutions are focused on training complex systems
toward end-use tasks such as predicting a diagnosis. These solutions have many advan-
tages, including the computational efficiency and ease of optimization. However, excellent
performance of complex models requires sufficient training data, which is often challenging
in medical applications. At the same time, the performance of segmentation models has
been shown to improve logarithmically with the amount of training data [4]. It is helpful to
incorporate prior knowledge into the training in medical image analysis tasks with small
datasets and heterogeneous case distributions. One example of this type of approach is
the use of segmentation masks. This treatment reduces the complexity of understanding
images by machines by extracting representative features from lesions, leading to improved
diagnostic efficiency [5].

The research results presented indicate a positive correlation between enhanced seg-
mentation quality and improved classification accuracy [6–8]. Our other work has demon-
strated that using a segmentation mask for skin lesion classification enhances classification
accuracy, and the quality of the used segmentation mask directly influences classification
results [9].

A commonly used method to recognize melanoma assumes checking the ABCDE
criteria. This approach considers asymmetry, border features, color, diameter, and skin
lesion evolution to differentiate benign from malignant skin lesions. Approaches easily
understandable by humans are commonly implemented in computer-aided diagnosis
systems. They provide interpretability and explainability that end-to-end classifiers do not
deliver. Doctors require computer analysis methods to not only give correct diagnoses but
also explain terms on what such decision was made. The segmentation mask can provide
information about the boundary and symmetry of a skin lesion. Moreover, automatic
segmentation is an important preprocessing step in many medical use cases as it shows the
area of interest for a further analysis. Thus, accurate skin lesion segmentation is crucial in
an automated diagnosis. However, variations in shape and size, irregular lesion boundaries,
and low contrast differences between the lesion and the skin make developing automated
segmentation methods nontrivial.

Deep learning-based methods enable achieving state-of-the-art results in multiple
medical image segmentation tasks. However, they require considerable amounts of anno-
tated training samples, collecting which is time-consuming and costly as skilled individuals
are required to label images. We propose using a semi-supervised learning technique to
employ images without binary masks to improve neural network performance in a skin
lesion segmentation task.

We explore the possibility of implementing self-training with Noisy Student [10] in
medical image segmentation. Noisy Student training is a semi-supervised learning tech-
nique utilizing labeled and unlabeled data. It was first applied to semantic segmentation
by Y. Zhu et al. [11]. It consists of three main steps. First, the teacher model is trained on a
small set of labeled data, i.e., real labels. Second, labels are predicted for unlabeled data
and the student model is trained using generated pseudo-labels and real labels. Third,
new labels are predicted with the student model and the new student model (further
referred to as student*) is trained. The self-training approach is possible in the case of skin
lesion segmentation because there is an available quite large dataset of dermatoscopic skin
lesion images without segmentation masks, compared to other medical image datasets.
We decided to use the same architecture for the teacher and student model because there
are much less public data than in a typical ImageNet classification task where millions of
images are available.

Firstly, the best architecture for the teacher model was selected. Architectures like
U-Net [12], U-Net++ [13], and DeepLabV3 [14] were tested. The best-performing model
(DeepLabV3) was used as a teacher. The second step was to train the student model on
labeled data. Then, the best student was set as a new teacher. It should be noted that
the optimal ratio of labeled and unlabeled data in the training dataset was found and the
further increase in the number of generated labels led to a performance decrease. Research
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has also shown that generated labels with better quality result in better performance of
a student model. Student* slightly improves segmentation performance but only for a
smaller real-to-generated labels ratio.

The evaluation of this approach shows that Noisy Student training improves the
segmentation performance of neural networks in a skin lesion segmentation task while
using only small amounts of labeled data. We reached state-of-the-art performance on ISIC
2018 and PH2 datasets. The code used for this research is available at https://github.com/
Oichii/Improving-skin-lesion-segmentation-with-self-training (accessed on 6 March 2024).

1.1. Related Work
1.1.1. Image Segmentation

Before deep learning grew in popularity, skin lesion segmentation methods were
based on traditional image processing techniques such as adaptive thresholding based
on a grayscale image histogram [15], iterative active contour adjustments [16], and region
growth based on color space quantization [17].

With the rapid development of deep learning, traditional methods were replaced by
convolutional neural networks. The first proposed architecture was a fully convolutional
network (FCN) [18] followed by U-Net [12]. The success of encoder–decoder-type archi-
tectures led to many modifications of U-Net, like U-Net++ [13] or ResU-Net [19]. Also,
different backbones were applied to improve segmentation results.

U-Net consists of a contracting path (encoder) and a symmetric expanding path
(decoder). The novelty of the architecture is the concatenation of encoder intermediate
feature maps with the corresponding feature maps of the decoder, enabling the network
to learn context and correct localization simultaneously. The encoder follows the typical
convolutional network architecture where each layer halves the input size and doubles the
number of features. Each decoder layer doubles the image size and halves the number of
feature channels. It is also concatenated with the appropriate feature map from the encoder.
At the final layer, each feature vector is mapped to the selected number of classes [12].
DeepLab is also an encoder–decoder architecture. It utilizes dilated convolution and Atrous
Spatial Pyramid Pooling (ASPP). The encoder is a convolutional network that replaces
standard convolution with dilated convolution to overcome localization invariance caused
by pooling operations [14]. The dilated convolution also allows the use of pre-trained
weights in the encoder. DeepLab also addresses the issue of segmenting objects of varying
scales through the ASPP module, which uses convolution with multiple filter sizes and
dilation rates to capture multi-scale features. This approach is inspired by pyramid pooling,
which showed that resampled convolutional features extracted at a single scale could
correctly classify regions of any scale [20].

A specially crafted loss function combined with general-purpose architectures was
applied in skin lesion segmentation. For example, a loss function based on Jaccard distance
is proposed to overcome the re-weighting need [21].

Some architectures were explicitly proposed for skin lesion segmentation. A Dermo-
scopic Skin Network (DSNet) uses depth-wise separable convolution to eliminate the need
to learn redundant features by reducing the number of parameters [22].

Wang et al. [23] proposed a boundary-aware transformer that can effectively model
global long-range dependencies and capture local features by fully utilizing boundary
prior knowledge provided by a boundary-wise attention gate (BAG). Because it provides
detailed spatial information, BAG’s auxiliary supervision can assist transformers in learning
position embedding.

Tang et al. [24] proposed the Dual-Aggregation Transformer Network (DuAT), which
combines Global-to-Local Spatial Aggregation (GLSA), which, in turn, aggregates both
global and local spatial features and is useful for locating objects with various scales, and
Selective Boundary Aggregation (SBA), which accumulates low-level boundary character-
istics and high-level semantic information for a better object localization and preservation
of borders [24].

https://github.com/Oichii/Improving-skin-lesion-segmentation-with-self-training
https://github.com/Oichii/Improving-skin-lesion-segmentation-with-self-training
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Bagheri et al. [25] proposed an ensemble of neural networks that uses a graph-based
method to combine segmentation results of Mask R-CNN and Retina-Deeplab.

Input image preprocessing is also important in skin lesion image segmentation. Some
recent approaches also showed that preprocessing of an input image, such as transformation
to polar coordinates using the centroid or center of the object found using another method,
increases skin lesion segmentation performance [26]. The proposed preprocessing method
includes a hair removal technique using a black top hat filter to create a hair mask combined
with an image inpainting technique to restore a clean skin image [27].

1.1.2. Semi-Supervised Learning

Semi-supervised learning aims to train a model using both labeled and unlabeled
data that is better than a supervised model trained on labeled data only [28]. The labeled
portion of the data is usually smaller than the unlabeled portion, thus representing the
most common real-life scenario. This is especially the case with medical imaging, where
data collection and labeling need to be performed by a qualified doctor. The preparation
of detailed masks for image segmentation is also time-consuming, even more so than for
classification tasks. Consequently, segmentation benefits more from methods that allow for
using only a small amount of labeled images. Semi-supervised learning can be used with
both handcrafted features and deep learning-based classifiers.

You et al. [29] proposed an approach that uses self-training combined with an SVM
classifier based on radial projection to segment retinal blood vessels. Portela, Cavalcanti,
and Ren [30] used clustering to label voxel clusters combined with Gaussian mixture
models to label the remaining pixels of a brain MR scan.

Bai et al. [31] developed an iterative semi-supervised framework for cardiac MR image
segmentation where in each iteration, pseudo-labels for unlabeled images are generated by
the network and refined by a conditional random field [32]. The model is then updated
using generated pseudo-labels.

Adversarial learning can also incorporate unlabeled data in semi-supervised image
segmentation. Zhang et al. [33] implemented two networks, one that segments images and
a second that distinguishes between segmentation results of labeled and unlabeled images.
In the adversarial training process, the segmentation network learns to produce similar
results on both types of data.

Li et al. [34] proposed self-loop uncertainty, which involves optimizing a neural
network with a self-supervised task to generate pseudo-labels, which are then used as
ground truth for unlabeled images to enhance the training set and improve segmentation
accuracy. This approach is a fast alternative to ensembling multiple models to estimate
uncertainty as it reduces inference time.

This work is based on the Noisy Student training method introduced by Xie et al.
in [10] as an extension to pseudo-labeling [35] and self-training [36]. To improve model
performance, it uses unlabeled images with pseudo-labels generated by a model trained on
limited labeled data. In other words, it uses the model’s own confident predictions to create
more training data by producing labels for unlabeled data [28]. Image augmentations and
model size also play an essential role in this approach. The student model is no smaller
than the teacher to better capture the complexity of a larger dataset, and random image
augmentations lead to a better generalization of the student model. It was successfully
used in the segmentation task in [37] where it improved the score on PASCAL VOC 2012
and Cityscapes datasets. We found no previous use of Noisy Student training in skin lesion
segmentation.

Our approach is different from other comparable solutions in the following aspects:
We used deep learning instead of clustering and SVM, as proposed by You et al. [29] and
Portela et al. [30]. Differently from Bai et al. [31], our pseudo-labels are generated once at the
beginning of iteration and do not change during iteration. Compared to Zhang et al. [33],
self-training models do not influence each other directly as in adversarial training. In our
case, only pseudo-labels generated by a model are used in the next steps. We have a batch
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that contains labeled and unlabeled data, and we use a pseudo-label for unlabeled data. The
solution proposed by Li et al. [34] also uses a batch that contains labeled and unlabeled data,
but their solution uses a self-supervised subtask of image permutations for unlabeled data.

2. Materials and Methods

This section introduces a semi-supervised self-training framework with Noisy Student
for skin lesion image segmentation. Teacher–student training, as employed in the study,
is described in Figure 1. Our goal is to combine a limited set of labeled data and a large
amount of unlabeled data to increase the accuracy and robustness of lesion segmentation.
Such an approach allows for reducing human effort on labeling. Questions we want to
answer in the study are (1) will self-training with Noisy Student enhance the segmentation
of skin lesion images?; (2) what is the largest amount of unlabeled data that we can use
to enhance the performance?; (3) what is the best combination of augmentations to use for
input noise?

Labeled data

TEACHER

Unlabeled data

Training
Pseudo-labels

New 
pseudo-labeled

data

Labeled data

STUDENT

Unlabeled data
Training

New pseudo-labels

Labeled data

STUDENT*

test data
Training

Segmentation mask

Pseudo-labeled
data

a)

b)

c)

Figure 1. Self-training with Noisy Student for skin lesion image segmentation. (a) Train teacher
model on labeled data and generate pseudo-labels. (b) Train the student model on labeled and
pseudo-labeled data and generate new pseudo-labels. (c) Train the student* model on labeled and
new pseudo-labeled data. Blue arrows in the Figure represent the model training process, and red
arrows describe pseudo-labels flow.
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The input to the algorithm is both labeled and unlabeled images. Training a teacher
model using solely labeled data is the first stage. Then, the trained teacher model predicts
segmentation masks (pseudo-labels) for unlabeled images. Images with corresponding
generated masks and images with real labels define a new training dataset. The teacher
model generates an output image with probabilities for each pixel to belong to either the
background or a skin lesion. The generated mask is then thresholded with a threshold of
0.5 to create a binary mask.

Images with generated masks that were empty or only had a small number of pixels
are excluded from the dataset since they can have a negative impact on the training. In
other words, the predicted confidence of skin lesion pixels was low, so the image was
removed from the training dataset to increase self-training efficiency. The student model is
trained to minimize the loss on both labeled and unlabeled data while validation uses only
images with real labels. Finally, we run the second iteration of the training in which we
select the student model with the highest IoU on the validation dataset for a new teacher. It
is then employed to generate new pseudo-labels for unlabeled data. New masks are used
to train a new student model (student*). The same model architecture is used for both
student and teacher models so it will have enough capacity to learn from a larger dataset
while preserving generalization capabilities. For student model training, we use dropout
with p = 0.5 as model noise and image augmentations that include random flips, rotation,
and hue shift as input noise.

2.1. Model Architectures

In the study, we used model architectures with a notable position in the literature as
we want to focus our research on designing a scalable training approach rather than on
deep learning network architecture. We want to separate the influence of Noisy Student
training and application-specific model adjustments. We tested four model architectures:
U-Net, U-Net++, DeepLabV3, and DeepLabV3+.

U-Net was first proposed for medical image segmentation. It consists of an encoder
and decoder in a U-shaped architecture. It also implements skip connections between
corresponding encoder and decoder blocks, which enhance segmentation performance.

U-Net++ is an extension of the original U-Net architecture that was proposed to
address some of the limitations of U-Net, particularly its limited capacity to capture
complex patterns and its tendency to produce coarse segmentation results. U-Net++ takes
advantage of the semantic similarity between the encoder’s and decoder’s feature maps
by introducing dense skip connections. These skip connections are designed to connect
each encoder layer to every layer of the corresponding decoder block. The connections
also include a dense convolution block, which helps increase the network’s capacity and
capture more complex patterns.

DeepLabV3 is also a commonly used solution in medical applications. It performs
atrous convolution with multiple rates to capture image features at multiple scales. Model
architecture is presented in Figure 2. DeepLabV3+ enhances the segmentation of object
boundaries compared to DeepLabV3 by incorporating an improved decoder module.

Figure 2. DeepLab V3 model architecture [14].
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2.2. Data
2.2.1. Labeled Dataset

To train the baseline (teacher) model, freely accessible dermatoscopy image datasets
released by the International Skin Imaging Collaboration (ISIC) were used. The combined
datasets released from 2016 to 2018 contain 3074 image and segmentation mask pairs.
ISIC 2016 and ISIC 2017 [38] validation and training subsets and ISIC 2018 [39,40] training
subsets combined were used for model training and validation in the 4:1 ratio. The test
subsets of ISIC 2016 and ISIC 2017 as well as the validation subset of ISIC 2018 were used
to test the model. Acquired subsets were checked to ensure no overlap between the data.
In total, there are 1572 training, 523 validation, and 979 testing mask and image pairs.

For the final evaluation, we used the PH2 dataset that contains 200 dermoscopic
images with segmentation masks.

2.2.2. Unlabeled Dataset

Unlabeled images were also obtained from freely accessible dermatoscopy image
datasets, i.e., ISIC 2020 [41,42] and ISIC 2019 [43] datasets. Those datasets combined
provide almost 60k skin lesion images without segmentation masks. The number of
samples in each of the datasets is presented in Figure 3; for the training dataset, we used
a maximal number of pseudo-labels in the study, i.e., for ratio m = 8. Images from the
labeled datasets were filtered out from the unlabeled data. Then, the model trained on
labeled data was run on the images to predict segmentation masks. Masks with a pixel size
of less than 100 were screened. This was performed because the masks containing only a
few pixels are less accurate or contain errors. The examples of rejected images are shown in
Figure 4.

Figure 3. Number of real and pseudo-labeled samples in train, validation, and test datasets.

2.3. Implementation Details

We implemented the method described above using the PyTorch framework [44].
Encoder models were initialized with weights pre-trained on ImageNet, and decoder
weights were initialized randomly. Pre-trained weights are used due to their beneficial
influence on skin lesion segmentation performance, as it was shown in [45]. Images and
masks were resized to the resolution of 256 × 256 pixels, and values were scaled to the
range of [0, 1]. We used a batch size of bs = 10 by default and reduced it when we could
not fit the model into the memory.



Cancers 2024, 16, 1120 8 of 22

Figure 4. Examples of images for which masks were not created or were too small and thus not
included in the dataset.

For training, a stochastic gradient descent optimizer (SGD) [46] was used with an initial
learning rate of lr = 0.002 and cosine annealing learning rate scheduler [47]; momentum
was set to β = 0.54 and weight decay was set to wd = 0.01.

We trained each DeepLabV3 with a ResNet18 backbone for 60 epochs and DeepLabV3
with ResNet34 for 90 epochs or until IoU on the validation dataset no longer decreased.

As a loss function, dice loss presented in Equation (1) was used, where λ = 1 is the
smoothing parameter. It provides better results in terms of both the IoU and dice coefficient
compared to the weighted cross-entropy function.

LDice = 1 − 2|X ⋂
Y|+ λ

|X|+ |Y|+ λ
(1)

2.4. Evaluation Metrics

Model performance was evaluated with the dice coefficient (Dice), presented in
Equation (2), and Intersection over Union (IoU), also known as the Jaccard index, pre-
sented in Equation (3), where X is the predicted mask and Y is the ground truth mask.
The Jaccard index is used to quantify the overlap area between the true and predicted
lesion masks, and the dice coefficient is used to assess the similarity between real and
predicted masks.

Dice =
2|X ⋂

Y|
|X|+ |Y| (2)

IoU =
|X ⋂

Y|
|X ⋃

Y| (3)

In addition, precision (Prec) and recall (Rec) were calculated in a pixel-wise manner
as in Equations (4) and (5), where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives. Precision is used to measure
the number of pixels that belong to the lesion region that are correctly classified. Recall
calculates the number of pixels outside of the lesion area that are incorrectly classified.

Prec =
TP

TP + FP
(4)

Rec =
TP

TP + FN
(5)

All evaluation metrics take values in the range [0, 1] and the higher values correspond
to better results. Following the approach from work [27], the percentage of images with
IoU over 0.8 was calculated and a visual inspection of the worst and best examples was per-
formed. It is due to the expert dermatologists’ agreement that only skin lesion segmentation
with IoU over 78.6% is helpful and useful for medical purposes [40]. Also, segmentation
with the Jaccard index equal to 0.8 or above is, in general, visually correct [38].
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3. Results

In this section, we describe the details of our experiments. Then, we report the
method’s performance on ISIC 2018 and PH2 datasets as they are the most benchmarked
and freely accessible skin lesion segmentation datasets. Finally, we compare our method
with the state-of-the-art skin lesion segmentation models described in the literature.

3.1. Architecture Selection for Teacher Model

We compared U-Net, U-Net++, DeepLabV3, and DeepLabV3+ architectures to deter-
mine the optimal architecture for skin lesion segmentation, and the best one was selected
for further experiments. All the models were tested with a ResNet34 backbone. Results are
shown in Table 1.

Table 1. Comparison of model architectures for skin lesion segmentation.

IoU Dice Precision Recall

U-Net 0.6941 0.7396 0.8758 0.6460
U-Net++ 0.8137 0.8978 0.8902 0.8202
DeepLabV3 0.8205 0.8822 0.9170 0.8080
DeepLabV3+ 0.8166 0.8843 0.9140 0.7915

U-Net++ provides the highest dice coefficient and recall, and DeepLabV3 produces
the most promising IoU and precision. We decided to optimize our model for an optimal
Jaccard index so for further experiments, a model with the best IoU on a test set containing
combined images from ISIC 2017 + 2018 datasets was selected. We assumed the same
network architecture for teacher and student models. Thus, in the following, unless stated
otherwise, the baseline for all of our experiments is DeepLabV3 with a ResNet34 backbone,
which achieved a mIoU of 82.05%.

3.2. Real- to Pseudo-Label Ratio

We proposed an experiment to find the optimal composition of the dataset for training
the student model. It will determine if adding more unlabeled data has a positive influence
on segmentation results. The training set consisted of n = 1572 images with real labels
and n × m pseudo-labels where m ∈ {1, 2, 4, 8}. The validation set was the same in each
experiment and included 523 images with real labels.

Results of training models described in Section 2 for the ISIC 2018 dataset are shown
in Table 2 for the ResNet18 backbone and Table 3 for the ResNet34 backbone.Results for the
PH2 dataset are shown in Table 4 for the ResNet18 backbone and Table 5 for the ResNet34
backbone. For both backbones, the addition of unlabeled data enhances segmentation
results in all metrics compared with the teacher model. However, ratios higher than m = 4
might decrease performance compared with smaller ratios, as shown in Figure 5.

Table 2. Results of student with simple augmentations model (ResNet18 backbone) depending on
train set composition on ISIC 2018 dataset.

mIoU Dice Precision Recall

teacher 0.8659 0.9194 0.8781 0.9308
m = 1 0.8789 0.9355 0.9030 0.9303
m = 2 0.8713 0.9215 0.8690 0.9482
m = 4 0.8657 0.9245 0.8760 0.9382
m = 8 0.8714 0.9292 0.8808 0.9396
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Table 3. Results of student with simple augmentations model (ResNet34 backbone) depending on
train set composition on ISIC 2018 dataset.

mIoU Dice Precision Recall

teacher 0.8568 0.9133 0.8408 0.9596
m = 1 0.8647 0.9173 0.8498 0.9561
m = 2 0.8601 0.9159 0.8622 0.9389
m = 4 0.8567 0.9180 0.8368 0.9579
m = 8 0.8593 0.9124 0.8448 0.9571

Table 4. Results of student with simple augmentations model (ResNe18 backbone) depending on
train set composition on PH2 dataset.

mIoU Dice Precision Recall

teacher 0.8649 0.9273 0.8962 0.9385
m = 1 0.8740 0.9382 0.8969 0.9503
m = 2 0.8723 0.9333 0.8816 0.9652
m = 4 0.8578 0.9224 0.8590 0.9671
m = 8 0.8734 0.9346 0.8877 0.9590

Table 5. Results of student with simple augmentations model (ResNet34 backbone) depending on
train set composition on PH2 dataset.

mIoU Dice Precision Recall

teacher 0.8574 0.9192 0.8502 0.9760
m = 1 0.8554 0.9181 0.8459 0.9782
m = 2 0.8575 0.9200 0.8475 0.9791
m = 4 0.8603 0.9222 0.8484 0.9811
m = 8 0.8537 0.9135 0.8380 0.9825
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Figure 5. Influence of training dataset composition on IoU for different backbones on ISIC 2017 + 2018
dataset. Ratio of labeled to unlabeled data is 1/m where m = 0 denotes teacher model.

3.3. Input Noise

Image augmentations are a key part of this study as they address two problems—
overfitting and input noise for student training. The overfitting appears during the teacher
training process while using limited labeled data. In this case, augmentations make the
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model more robust for unseen data. A controlled input noise level enhances the results of
semi-supervised training because it enforces consistency of the decision on labeled and
unlabeled data [10]. It is due to the fact that the student must replicate the high-quality
pseudo-label that the teacher created on the original version of the image on the augmented
noisy version [48].

We implemented simple, commonly used augmentations, which include random
brightness, contrast and saturation adjustments, blur, the rotation of a random angle, and
horizontal and vertical flips as a baseline. Moreover, we examined the influence of modern
augmentations, i.e., coarse dropout, optical distortion, elastic transform, and grid distortion,
on segmentation performance. We combined each modern augmentation with a set of
simple augmentations. Figure 6 shows the described sets of used augmentations.

original simple transforms grid distortion

elastic transform optical transform coarse dropout

Figure 6. Original skin lesion image and its augmented versions. Each shows the augmentation set
used in the study as input noise for training student model.

Table 6 compares teacher and student models trained with different augmentation
sets and values of the real- to pseudo-label ratio in training dataset m for which the student
model was best-performing. The use of grid distortion results in a better teacher model, but
the performance of student models decreases rapidly with higher ratios of pseudo-labeled
data in the training dataset. Coarse dropout results in the weakest teacher model but gives
the highest increase in performance from teacher to student. However, improvement from
teacher to student is still insufficient compared to other models (see Figure 7). Optical
distortion provides good performance of the teacher model and a slighter decrease in
performance with higher pseudo-labeled data ratios in the training dataset, so it was
selected for further experiments. Results are shown in Tables 7 and 8.

Table 6. IoU on ISIC 2017 + 2018 of DeepLabV3 with ResNet34 backbone with different augmentations.
m stands for real- to pseudo-labeled data in the student training dataset.

Teacher Student m

simple augmentations 0.8475 0.8540 4
coarse dropout 0.8360 0.8501 2
elastic transform 0.8169 0.8299 1
grid distortion 0.8499 0.8532 1
optical distortion 0.8519 0.8550 2
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Figure 7. Influence of real- to pseudo-label ratio on IoU for different augmentation sets on ISCI
2017 + 2018 dataset. Ratio of labeled to unlabeled data is 1/m where m = 0 denotes teacher model.

Table 7. IoU on PH2 of DeepLabV3 with ResNet34 backbone with optical distortion augmentation. m
stands for real- to pseudo-labeled data in the student training dataset.

mIoU Dice Precision Recall

teacher 0.8512 0.9226 0.8451 0.9820
m = 1 0.8586 0.9253 0.8536 0.9804
m = 2 0.8550 0.9222 0.8454 0.9843
m = 4 0.8546 0.9217 0.8473 0.9806
m = 8 0.8484 0.9227 0.8425 0.9826

Table 8. IoU on ISIC 2018 of DeepLabV3 with ResNet34 backbone with optical distortion augmenta-
tion. m stands for real- to pseudo-labeled data in the student training dataset.

mIoU Dice Precision Recall

teacher 0.8598 0.9209 0.8404 0.9710
m = 1 0.8559 0.9207 0.8470 0.9603
m = 2 0.8681 0.9220 0.8596 0.9590
m = 4 0.8657 0.9245 0.8760 0.9382
m = 8 0.8439 0.9104 0.8367 0.9477

3.4. Second Iteration of Student Training

The best-performing models from previous experiments were used for the second iter-
ation of training. Using these models, new pseudo-labels were generated for unlabeled data
in place of pseudo-labels used in the previous iteration. The dataset for student* training
also contains real- and pseudo-labels with different ratios m as in the previous experiment.

Figure 8 shows progress between teacher, student, and student* models. Progress
from teacher to student is significant, but the second iteration of Noisy Student training
does not bring considerable improvement. This dependence is more visible for a model
with a ResNet34 backbone, which started from a better teacher. In this case, growth from
teacher to student is only 0.78% while the model with a ResNet18 backbone that started
with a worse teacher enhanced its performance by 2.93%.
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Figure 8. Progress in each iteration of self-training for DeepLabV3 with ResNet18 backbone and
DeepLabV3 with ResNet34 backbone on ISIC 2017 + 2018 dataset.

The introduction of advanced augmentation, i.e., optical transform, leads to better
performance of the second iteration of Noisy Student training. This effect is shown in
Figure 9. The use of optical distortion leads to significant accuracy improvement between
student and student* models compared to the model with simple augmentations.
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Figure 9. Progress in each iteration of self-training for DeepLabV3 with ResNet34 backbone with
simple augmentations and optical transform on ISIC 2017 + 2018 dataset.

Progress of each iteration of self-training is shown in Figure 10 on the ISIC 2018
dataset and Figure 11 on the PH2 dataset. An increase in performance is still visible on
those datasets for each configuration. For the student model with a ResNet34 backbone
and simple augmentations, better performance on the ISIC 2018 dataset was achieved for
models with an m = 2 ratio as shown in Figure 5; nonetheless, the model with m = 4 was
used as a teacher based on performance on the ISIC 2017 + 2018 dataset.
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Figure 10. Progress in each iteration of self-training on ISIC 2018 dataset. Results for DeepLabV3
(DLV3) with ResNet34 (R34) and ResNet18 (R18) backbones.
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Figure 11. Progress in each iteration of self-training on PH2 dataset. Results for DeepLabV3 (DLV3)
with ResNet34 (R34) and ResNet18 (R18) backbones.

Figure 12 shows a comparison of student and student* models for each ratio of real- to
pseudo-labels. The student* model improves only in a small ratio of real- to pseudo-labels
and for a bigger ratio performance decreases below the teacher model. The higher the ratio,
the higher the decrease in performance. Higher ratios of 1:4 and 1:8 decline performance
even below the new teacher model for the same ratio. Results on the ISIC 2018 validation
subset are presented in Tables 9 and 10 and for the PH2 dataset in Tables 11 and 12. Results
with optical transform are shown in Table 13 (ISIC 2018) and Table 14 (PH2). We also ran a
test with test time augmentations to verify that our model has satisfactory generalization
capabilities. We applied random augmentations including flips, shifts, brightness and
contrast adjustments, hue shifts, histogram equalization, and rotation to PH2 data and
achieved an IoU of 0.8704, a precision of 0.8801, and a recall of 0.9611 (mean of 10 runs
with random augmentations), which is similar to the described test results on the original
dataset shown in Table 11.

The PH2 dataset was used for the statistical analysis. For the teacher model, we
achieved IoU of 0.87 with a 95% confidence interval of [0.84, 0.89], precision of 0.90 with
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a 95% confidence interval of [0.88, 0.91], recall of 0.94 with a 95% confidence interval of
[0.92, 0.95]. For the student* model, we achieved IoU of 0.88 with a 95% confidence interval
of [0.85, 0.89], precision of 0.89 with a 95% confidence interval of [0.87, 0.90], recall of 0.97
with a 95% confidence interval of [0.95, 0.98].

Table 9. Results of teacher, student, and student* on ISIC 2018 dataset (ResNet18 backbone).

mIoU Dice Precision Recall

teacher 0.8659 0.9194 0.8781 0.9308
student 0.8789 0.9355 0.9030 0.9303
student* 0.8800 0.9373 0.9002 0.9342

Table 10. Results of teacher, student, and student* on ISIC 2018 dataset (ResNet34 backbone).

mIoU Dice Precision Recall

teacher 0.8568 0.9133 0.8408 0.9596
student 0.8567 0.9180 0.8368 0.9579
student* 0.8670 0.9213 0.8593 0.9565

Table 11. Results of teacher, student, and student* on PH2 dataset (ResNet18 backbone).

mIoU Dice Precision Recall

teacher 0.8649 0.9273 0.8962 0.9385
student 0.8740 0.9382 0.8969 0.9503
student* 0.8754 0.9372 0.8858 0.9651

Table 12. Results of teacher, student, and student* on PH2 dataset (ResNet34 backbone).

mIoU Dice Precision Recall

teacher 0.8574 0.9192 0.8502 0.9760
student 0.8603 0.9222 0.8484 0.9811
student* 0.8652 0.9259 0.8554 0.9810

Table 13. Results of teacher, student, and student* on ISIC 2018 dataset (ResNet34 backbone with
optical distortion augmentation).

mIoU Dice Precision Recall

teacher 0.8598 0.9209 0.8404 0.9710
student 0.8681 0.9220 0.8596 0.9590
student* 0.8686 0.9189 0.8632 0.9545

Table 14. Results of teacher, student, and student* on PH2 dataset (ResNet34 backbone with optical
distortion augmentation).

mIoU Dice Precision Recall

teacher 0.8512 0.9226 0.8451 0.9820
student 0.8550 0.9222 0.8454 0.9843
student* 0.8556 0.9182 0.8404 0.9804
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Figure 12. Influence of real- to pseudo-label ratio on student and student* models on ISIC 2017 + 2018
dataset. The ratio of labeled to unlabeled data is 1/m, where m = 0 denotes the teacher model. For
student*, IoU improves only for 1:1 real- to pseudo-labels, and for higher ratios, performance starts
to decrease, while for the student model, optimal performance is for a 1:4 ratio.

4. Discussion

From the experiments presented above, it is clearly seen that the introduction of
unlabeled data leads to a performance increase in the student model above the baseline
teacher model in all presented configurations of network architecture and input noise.
Figures 5 and 7 show the influence of the composition of the training set on segmentation
performance measured by mIoU on the combined ISIC 2017 + 2018 test dataset. Increasing
the pseudo-labeled data number in the dataset results in the enhancement in segmentation
only to a certain extent. The optimal ratio lies between 1:2 and 1:4 depending on augmen-
tations and the backbone used. The best-performing configuration, which is DeepLabV3
with a ResNet34 backbone with an optical distortion augmentation, achieves a mIoU value
of 85.49% for the ratio of 1:2; further increasing the pseudo-labeled data number in the
training dataset leads to a significant performance decline. The second promising configu-
ration, which is DeepLabV3 with a ResNet34 backbone with simple augmentations, has the
optimal segmentation performance when the dataset consists of 4/5 of pseudo-labeled and
1/5 of real-labeled data. This configuration achieves a mIoU value of 85.40%. A higher ratio
of real- to pseudo-labels decreases the performance of the student model. Different input
noise was tested in Section 3.3, and the most suitable turned out to be optical transform.
This configuration gives the most robust model on combined ISIC 2017 and 2018 datasets.

In terms of the backbone, ResNet18 is insufficient for the task due to a smaller amount
of parameters, so it cannot learn more complex boundary information. This leads to worse
performance compared to ResNet34, which can capture skin lesion texture and boundaries
better as shown in Figure 5.

Results show that the better the teacher model, the better performance the student
model will achieve. On the other side, better teacher performance results in a smaller
increase in student performance. The teacher model that has a higher accuracy allows for
achieving better results in Noisy Student training. A possible reason for this can be that the
ResNet34 backbone allows predicting the pseudo-labels more accurately than the ResNet18
model. The incorrect labels will make the student model learn the wrong segmentation
labels, which leads to a decrease in the effectiveness of the learner model.
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Results on the ISIC 2018 dataset are better than on the full test subset containing test
sets from all ISIC segmentation challenges because images in the 2018 dataset are less
diverse and have better annotations tight to the skin lesion boundary so they are more in
line with the model’s specification. Conversely, the smaller datasets will better fit models
with fewer parameters. Therefore, for the ISIC 2018 dataset, we can see the advantage of the
model with the ResNet18 backbone over the model with the ResNet34 backbone. A smaller
model allows for better generalization with a limited number of training examples, which
prevents overfitting during training. This smaller number of model parameters helps the
student model learn better from fewer images.

Analyzing the distribution of IoU scores is just as significant as investigating the
mean IoU on the test set as it shows how many images are below the threshold of clinical
relevance. Figure 13 shows the distribution of IoU scores for images in the test set. For the
student* model, 83.0% of images achieved an IoU value above 0.8 on the ISIC dataset and
86.5% on the PH2 dataset.
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Figure 13. Distribution of IoU in ISIC 2017 + 2018 test set. The dashed line marks IoU = 0.8 as
threshold of correct segmentation.

4.1. Qualitative Analysis

Figure 14 shows images with the smallest IoU for teacher, student, and student* models
compared with ground truth masks. The main reasons for segmentation failures are small
skin lesions with low contrast between healthy skin and lesion tissues. Another typical
failure case was subjectively incorrect annotation not tight to the skin lesion boundary.
In the case of incorrect ground truth, the model predicted masks that resembled actual
lesion shapes.

Figure 15 shows images with the highest IoU achieved by the student* model. This
case shows that the student* model learns to segment detailed boundaries better even
though the teacher model only roughly outlined the shape of the lesion.
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image ground truth teacher student student*

Figure 14. Images with the worst acquired IoU scores. Subjective assessment of some ground truth
masks shows that images are annotated incorrectly. Nevertheless, the model predicted masks that
resembled actual lesions.

image ground truth teacher student student*

Figure 15. Images with the best acquired IoU scores. We demonstrate that each iteration of self-
training leads to more detailed skin lesion boundary segmentation.

4.2. Comparison with State of the Art

Table 15 shows the comparison with other skin lesion segmentation methods published
in recent years representing state-of-the-art results. We compare models on the ISIC 2018
dataset, as this is the dataset used in most publications to report results. Our presented
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model is DeepLabV3 with a ResNet18 backbone student* model as it achieved the best
performance on this dataset.

Presented top-performing methods are end-to-end networks [23,24,49], or multistage
segmentation methods [26], but they do not utilize any additional unlabeled data to increase
segmentation performance. We have shown that by using simple, general-purpose architec-
ture and self-training, it is possible to outperform complex, specifically tailored methods.

Table 15. Segmentation performance metrics for the proposed method and other state-of-the-art
methods on ISIC 2018 dataset. Note that the Polar method authors reported median IoU (result
marked with *).

Method mIoU Dice Ref.

DuAT 0.867 0.923 [24]
BAT 0.843 0.912 [23]
DoubleU-Net 0.821 0.896 [49]
Polar 0.874 * 0.925 [26]

Ours (ResNet18) 0.880 0.937 [this work]
Ours (ResNet34) 0.869 0.919 [this work]

4.3. The Robustness of the Model

The problem of the robustness of a model for skin cancer segmentation has been
discussed in many publications [50]. It depends on various factors, including its architec-
ture, training data, generalization ability, and performance across different datasets and
scenarios.

Augmenting the training data with techniques like transposition, vertical and horizon-
tal flip, brightness, contrast, hue adjustments, CLAHE, shifts, rotation, and coarse dropout
improves the model’s ability to generalize to unseen data and enhance its robustness. The
results of experiments with test time augmentations on the PH2 dataset, i.e., IoU = 0.87,
Prec = 0.88, Recall = 0.96, confirm that the proposed solution maintains high accuracy
even with minor variations in the input data.

The metrics proposed in the validation experiment provide insights into the model’s
performance and help identify potential weaknesses. For the student* model, we notice the
increasing precision and recall parameters. Calculated confidence intervals for evaluation
metrics to quantify the uncertainty in the model’s performance estimates, presented in
Section 3.4, confirm the high robustness of the proposed solution.

The models were evaluated on unseen data from different sources to assess their
generalization ability. The PH2 dataset was used in the final evaluation. Our models
generalize well to diverse datasets and imaging conditions beyond the training distri-
bution. The obtained evaluation metrics for the PH2 dataset remain at the same level
as those calculated for the ISIC dataset. The low variability of the result suggests good
generalization performance.

5. Conclusions

In this work, we introduced and discussed the self-training framework for skin lesion
segmentation. The approach is based on iterative model training and generating new labels
for available unlabeled data. The self-training strategy can use vast amounts of unlabeled
data to increase the accuracy of the segmentation model. Experiments have shown that the
addition of unlabeled data leads to performance improvement in all tested configurations.
We performed a quantitative and qualitative analysis of model performance, which shows
that the proposed model yields state-of-the-art results in skin lesion segmentation tasks
on two skin lesion segmentation benchmark datasets, ISIC 2018 and PH2. Finally, we
achieved a mIoU value of 88.0% on ISIC 2018 and 87.5% on PH2 datasets. Such results were
acquired for the second iteration of Noisy Student training in which pseudo-labels were
generated from a model trained on real- and pseudo-labels. The study’s main contribution
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is to prove that a simple network with self-training can outperform a complex network in a
skin lesion segmentation task. In the future research, we plan to investigate the influence
of self-training on application-specific model architecture. Additionally, we found the
optimal composition of the training dataset and the most suitable augmentation set for
training data to achieve optimal performance of the student model. When the ratio of real-
to pseudo-labels is too high, performance of the models starts to decrease in some cases
even below the teacher model level. We have shown that a better teacher model, thereby
pseudo-labeled data of better quality, results in better performance of the student model.
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ISIC The International Skin Imaging Collaboration
FCN Fully Convolutional Network
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DSNet Dermoscopic Skin Network
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SGD Stochastic Gradient Descent
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