Robotic Bronchoscopy in Lung Cancer Diagnosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Rationale for the Use of Robotic Bronchoscopy
3. Robotic Bronchoscopy Procedure
4. Robotic Bronchoscopy Platforms
4.1. Monarch System
4.2. Ion Endoluminal System
4.3. Galaxy System
5. Feasibility and Efficacy of Robotic Bronchoscopy Platforms
Study | Country | Study Design | Platform | Lesions (n) | Lesion Size (mm) | Peripheral Location | Bronchus Sign | Position Confirmation | Successful Navigation | Navigation Time (Minutes) | Procedure Time (Minutes) | Diagnostic Yield * | Complication Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rojas-Solano et al. (2018) [51] | Costa Rica | Feasibility | Monarch | 15 | 26 (range: 10–63) | 80% | 100% | No | 93% | 21 | NR | - | 0% |
Chaddha et al. (2019) [37] | US | Retrospective | Monarch | 167 | 25 ± 15 | 71% | 63.5% | Yes (r-EBUS) | 88.6% | 17.8 ± 19.1 | 58.6 ± 31.4 | 69.1% (77% *) | Overall: 6.0%, pneumothorax (3.6%)—chest tube (2.4%), bleeding (2.4%) |
BENEFIT, Chen et al. (2021) [42] | US | Prospective (feasibility multicenter) | Monarch | 54 | 23 (IQR: 15–29) | 100% | 59.3% | Yes (r-EBUS) | 96.2% | 13 (IQR: 13–24) | 51 (IQR: 44–64) | 67% (74.1% *) | Pneumothorax (3.7%)—chest tube (1.9%) |
Ekeke et al. (2021) [38] | US | Retrospective | Monarch | 25 | Range: 8–69 | 64% | 84% | NR | 96% | NR | NR | 80% | 0% |
Cumbo-Nacheli et al. (2022) [39] | US | Retrospective | Monarch | 20 | 22 ± 7 | 90% | 50% | Yes (CBCT and r-EBUS) | 100% | 9.8 (range: 3–41) | 36.4 (range: 15–66) | 65% | NR |
Agrawal et al. (2023) [40] | US | Retrospective | Monarch | 124 | 20.5 (IQR: 13–30) | 45% | 75% | Yes (r-EBUS in 82% of cases) | 94.4% | NR | NR | 65% (77% *) | Overall: 4.8%, pneumothorax (1.6%), bleeding (3.2%) |
Khan et al. (2023) [41] | US | Retrospective | Monarch | 264 | 19.3 (range: 3.2–72.5) | 58.9% | 30.1% | Yes (r-EBUS, fluoroscopy) | 98% | NR | 62.3 ± 27.2 | 56% (85% *) | Overall: 7.2%, pneumothorax (5.7%)—chest tube (3.8%), bleeding (1.5%) |
Fielding et al. (2019) [43] | Australia | Feasibility | Ion | 29 | 12.2 ± 4.2 | - | 58.6% | Yes (r-EBUS) | 96.6% | NR | 63.9 ± 24.4 | 79.3% | 0% |
Benn et al. (2021) [27] | US | Prospective (single-center) | Ion | 59 | 21.9 ±11.9 (range: 7–60) | NR | 46% | Yes (CBCT) | 85% | NR | 65 ± 25 | 64% (79% *) | Pneumothorax (3.8%) |
Simmof et al. (PRECIsE) (2021) [28] | US | Prospective (multicenter) | Ion | 67 | 20 (IQR: 14–27) | - | 37.3% | Yes (r-EBUS, fluoroscopy) | 97% | 5.0 (IQR: 3–10) | 66.5 (IQR: 50–85.5) | NR | Overall: 3.4%, arrhythmia (1.7%), pneumonia (1.7%) |
Kalcheim-Dekel et al. (2022) [46] | US | Retrospective | Ion | 159 | 18 (IQR: 13–27) | 66.7% | 62.9% | Yes (r-EBUS, fluoroscopy) | 98.7% | NR | 64 (IQR: 40–116) | 63% (82% *) | Overall: 3.0%, pneumothorax (1.5%) |
Yu Lee-Mateus et al. (2022) [48] | US | Retrospective | Ion | 113 | 18 (13–27) | - | NR | Yes (r-EBUS) | 100% | NR | 78 (IQR: 62.5–92.5) | 76.9% (87.6% *) | Overall: 4.4%, pneumothorax (3.5%) |
Oberg et al. (2022) [26] | US | Retrospective (cryobiopsy) | Ion | 120 | 22 (IQR: 13–3) | 100% | 48% | Yes (r-EBUS) | 100% | NR | NR | 76% (90.2% *) | Overall: 8.1%, pneumothorax (5.4%)—chest tube (2.7%), bleeding (2.7%) |
Reisenauer et al. (2022) [22] | US | Prospective (single-center) | Ion | 30 | 17.5 (range: 10–30) | - | 40% | Yes (r-EBUS, fluoroscopy) | 96.7% | NR | NR | 76.7% (93.3% *) | Overall: 6.25% (arrhythmia, hypotension) |
Styrvoky et al. (2022) [25] | US | Retrospective | Ion | 209 | 19 (range: 7–73) | 85% | 60.3% | Yes (r-EBUS, CBCT) | 77.6% | NR | NR | 76.5% (91.4% *) | Pneumothorax (1.0%)—chest tube (0.5%) |
Hammad-Altaq et al. (2023) [45] | US | Retrospective | Ion | 42 | 12 (IQR: 10–18) | 71.4% | 59.5% | Yes (r-EBUS) | 100% | NR | NR | 81% (88.1% *) | 0% |
Low et al. (2023) [47] | US | Retrospective | Ion | 143 | 17 (IQR: 12–27) | 48% | 40% | Yes (r-EBUS) | 91.9% | NR | NR | 77% | Pneumothorax (1.5%)—chest tube (1.5%) |
Reisenauer et al. (2022) [52] | US | Prospective | Ion | 270 | 18.8 ± 6.5 | 100% | NR | Yes (r-EBUS) | NR | NR | 63 ± 30 | NR | Overall: 4.1%, pneumothorax (3.3%)—chest tube (0.4%), bleeding (0.8%) |
FRONTIER, Saghaie et al. (2023) # [49] | Australia | Prospective | Galaxy | 19 | 20 | NR | NR | NR | 100% | NR | NR | 89.5% (94.7% *) | Pneumothorax (11%)—chest tube (5%), pneumonia (5%) |
6. Robotic Bronchoscopy Safety
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients with Non-Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824–1832. [Google Scholar] [CrossRef]
- Detterbeck, F.C.; Boffa, D.J.; Kim, A.W.; Tanoue, L.T. The Eighth Edition Lung Cancer Stage Classification. Chest 2017, 151, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Howington, J.A.; Blum, M.G.; Chang, A.C.; Balekian, A.A.; Murthy, S.C. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e278S–e313S. [Google Scholar] [CrossRef] [PubMed]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef] [PubMed]
- National Lung Screening Trial Research Team; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Nadig, T.R.; Thomas, N.; Nietert, P.J.; Lozier, J.; Tanner, N.T.; Wang Memoli, J.S.; Pastis, N.J.; Silvestri, G.A. Guided Bronchoscopy for the Evaluation of Pulmonary Lesions: An Updated Meta-analysis. Chest 2023, 163, 1589–1598. [Google Scholar] [CrossRef] [PubMed]
- Gould, M.K.; Tang, T.; Liu, I.L.; Lee, J.; Zheng, C.; Danforth, K.N.; Kosco, A.E.; Di Fiore, J.L.; Suh, D.E. Recent Trends in the Identification of Incidental Pulmonary Nodules. Am. J. Respir. Crit. Care Med. 2015, 192, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Skouras, V.S.; Tanner, N.T.; Silvestri, G.A. Diagnostic approach to the solitary pulmonary nodule. Semin. Respir. Crit. Care Med. 2013, 34, 762–769. [Google Scholar] [CrossRef]
- Patel, V.K.; Naik, S.K.; Naidich, D.P.; Travis, W.D.; Weingarten, J.A.; Lazzaro, R.; Gutterman, D.D.; Wentowski, C.; Grosu, H.B.; Raoof, S. A practical algorithmic approach to the diagnosis and management of solitary pulmonary nodules: Part 2: Pretest probability and algorithm. Chest 2013, 143, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.K.; Naik, S.K.; Naidich, D.P.; Travis, W.D.; Weingarten, J.A.; Lazzaro, R.; Gutterman, D.D.; Wentowski, C.; Grosu, H.B.; Raoof, S. A practical algorithmic approach to the diagnosis and management of solitary pulmonary nodules: Part 1: Radiologic characteristics and imaging modalities. Chest 2013, 143, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Gould, M.K.; Donington, J.; Lynch, W.R.; Mazzone, P.J.; Midthun, D.E.; Naidich, D.P.; Wiener, R.S. Evaluation of individuals with pulmonary nodules: When is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e93S–e120S. [Google Scholar] [CrossRef] [PubMed]
- Callister, M.E.; Baldwin, D.R.; Akram, A.R.; Barnard, S.; Cane, P.; Draffan, J.; Franks, K.; Gleeson, F.; Graham, R.; Malhotra, P.; et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules. Thorax 2015, 70 (Suppl. 2), ii1–ii54. [Google Scholar] [CrossRef] [PubMed]
- Rivera, M.P.; Mehta, A.C.; Wahidi, M.M. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e142S–e165S. [Google Scholar] [CrossRef] [PubMed]
- Herth, F.J.; Eberhardt, R.; Sterman, D.; Silvestri, G.A.; Hoffmann, H.; Shah, P.L. Bronchoscopic transparenchymal nodule access (BTPNA): First in human trial of a novel procedure for sampling solitary pulmonary nodules. Thorax 2015, 70, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, G.A.; Gonzalez, A.V.; Jantz, M.A.; Margolis, M.L.; Gould, M.K.; Tanoue, L.T.; Harris, L.J.; Detterbeck, F.C. Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143, e211S–e250S. [Google Scholar] [CrossRef]
- Wiener, R.S.; Schwartz, L.M.; Woloshin, S.; Welch, H.G. Population-based risk for complications after transthoracic needle lung biopsy of a pulmonary nodule: An analysis of discharge records. Ann. Intern. Med. 2011, 155, 137–144. [Google Scholar] [CrossRef]
- Wang Memoli, J.S.; Nietert, P.J.; Silvestri, G.A. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest 2012, 142, 385–393. [Google Scholar] [CrossRef]
- Murgu, S.D. Robotic assisted-bronchoscopy: Technical tips and lessons learned from the initial experience with sampling peripheral lung lesions. BMC Pulm. Med. 2019, 19, 89. [Google Scholar] [CrossRef]
- Bhadra, K.; Rickman, O.B.; Mahajan, A.K.; Hogarth, D.K. “Tool-in-lesion” Accuracy of Galaxy System—A Robotic Electromagnetic Navigation BroncHoscopy with Integrated Tool-in-lesion-Tomosynthesis Technology: The MATCH Study. J. Bronchol. Interv. Pulmonol. 2023, 31, 23–29. [Google Scholar] [CrossRef]
- Reisenauer, J.; Simoff, M.J.; Pritchett, M.A.; Ost, D.E.; Majid, A.; Keyes, C.; Casal, R.F.; Parikh, M.S.; Diaz-Mendoza, J.; Fernandez-Bussy, S.; et al. Ion: Technology and Techniques for Shape-sensing Robotic-assisted Bronchoscopy. Ann. Thorac. Surg. 2022, 113, 308–315. [Google Scholar] [CrossRef]
- Donna, E.; Wu, S.; Arias, S. Proof of concept: Shape-sensing robotic-assisted bronchoscopy performed under moderate sedation. Respir. Med. Case Rep. 2023, 41, 101787. [Google Scholar] [CrossRef]
- Lin, J.; Ost, D.E. Robotic bronchoscopy for peripheral pulmonary lesions: A convergence of technologies. Curr. Opin. Pulm. Med. 2021, 27, 229–239. [Google Scholar] [CrossRef]
- Styrvoky, K.; Schwalk, A.; Pham, D.; Chiu, H.T.; Rudkovskaia, A.; Madsen, K.; Carrio, S.; Kurian, E.M.; De Las Casas, L.; Abu-Hijleh, M. Shape-Sensing Robotic-Assisted Bronchoscopy with Concurrent use of Radial Endobronchial Ultrasound and Cone Beam Computed Tomography in the Evaluation of Pulmonary Lesions. Lung 2022, 200, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Oberg, C.L.; Lau, R.P.; Folch, E.E.; He, T.; Ronaghi, R.; Susanto, I.; Channick, C.; Tome, R.G.; Oh, S. Novel Robotic-Assisted Cryobiopsy for Peripheral Pulmonary Lesions. Lung 2022, 200, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Benn, B.S.; Romero, A.O.; Lum, M.; Krishna, G. Robotic-Assisted Navigation Bronchoscopy as a Paradigm Shift in Peripheral Lung Access. Lung 2021, 199, 177–186. [Google Scholar] [CrossRef]
- Simoff, M.J.; Pritchett, M.A.; Reisenauer, J.S.; Ost, D.E.; Majid, A.; Keyes, C.; Casal, R.F.; Parikh, M.S.; Diaz-Mendoza, J.; Fernandez-Bussy, S.; et al. Shape-sensing robotic-assisted bronchoscopy for pulmonary nodules: Initial multicenter experience using the IonTM Endoluminal System. BMC Pulm. Med. 2021, 21, 322. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Zhang, Q.; Liu, S.; Yan, L.; Zhou, Y.; Sun, J. Learning curve of a robotic-assisted bronchoscopy system in sampling peripheral pulmonary nodules. Chin. Med. J. 2022, 135, 2753–2755. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Jaimes, G.; Reisenauer, J. Real-World Impact of Robotic-Assisted Bronchoscopy on the Staging and Diagnosis of Lung Cancer: The Shape of Current and Potential Opportunities. Pragmatic Obs. Res. 2023, 14, 75–94. [Google Scholar] [CrossRef] [PubMed]
- Diddams, M.J.; Lee, H.J. Robotic Bronchoscopy: Review of Three Systems. Life 2023, 13, 354. [Google Scholar] [CrossRef]
- Mondoni, M.; Sotgiu, G. Bronchoscopic management of peripheral pulmonary lesions: Robotic approach paves the way to the future. BMC Pulm. Med. 2019, 19, 166. [Google Scholar] [CrossRef]
- Lu, M.; Nath, S.; Semaan, R.W. A Review of Robotic-Assisted Bronchoscopy Platforms in the Sampling of Peripheral Pulmonary Lesions. J. Clin. Med. 2021, 10, 5678. [Google Scholar] [CrossRef]
- Vachani, A.; Maldonado, F.; Laxmanan, B.; Zhou, M.; Kalsekar, I.; Szapary, P.; Dooley, L.; Murgu, S. The Effect of Definitions and Cancer Prevalence on Diagnostic Yield Estimates of Bronchoscopy: A Simulation-based Analysis. Ann. Am. Thorac. Soc. 2023, 20, 1491–1498. [Google Scholar] [CrossRef]
- Chen, A.C.; Gillespie, C.T. Robotic Endoscopic Airway Challenge: REACH Assessment. Ann. Thorac. Surg. 2018, 106, 293–297. [Google Scholar] [CrossRef]
- Chen, A.C.; Pastis, N.J.; Machuzak, M.S.; Gildea, T.R.; Simoff, M.J.; Gillespie, C.T.; Mahajan, A.K.; Oh, S.S.; Silvestri, G.A. Accuracy of a Robotic Endoscopic System in Cadaver Models with Simulated Tumor Targets: ACCESS Study. Respiration 2020, 99, 56–61. [Google Scholar] [CrossRef]
- Chaddha, U.; Kovacs, S.P.; Manley, C.; Hogarth, D.K.; Cumbo-Nacheli, G.; Bhavani, S.V.; Kumar, R.; Shende, M.; Egan, J.P., 3rd; Murgu, S. Robot-assisted bronchoscopy for pulmonary lesion diagnosis: Results from the initial multicenter experience. BMC Pulm. Med. 2019, 19, 243. [Google Scholar] [CrossRef]
- Ekeke, C.N.; Vercauteren, M.; Istvaniczdravkovic, S.; Semaan, R.; Dhupar, R. Lung Nodule Evaluation Using Robotic-Assisted Bronchoscopy at a Veteran’s Affairs Hospital. J. Clin. Med. 2021, 10, 3671. [Google Scholar] [CrossRef] [PubMed]
- Cumbo-Nacheli, G.; Velagapudi, R.K.; Enter, M.; Egan, J.P., 3rd; Conci, D. Robotic-assisted Bronchoscopy and Cone-beam CT: A Retrospective Series. J. Bronchol. Interv. Pulmonol. 2022, 29, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Ho, E.; Chaddha, U.; Demirkol, B.; Bhavani, S.V.; Hogarth, D.K.; Murgu, S. Factors Associated with Diagnostic Accuracy of Robotic Bronchoscopy with 12-Month Follow-up. Ann. Thorac. Surg. 2023, 115, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Seaman, J.; Hunter, T.D.; Ribeiro, D.; Laxmanan, B.; Kalsekar, I.; Cumbo-Nacheli, G. Diagnostic outcomes of robotic-assisted bronchoscopy for pulmonary lesions in a real-world multicenter community setting. BMC Pulm. Med. 2023, 23, 161. [Google Scholar] [CrossRef]
- Chen, A.C.; Pastis, N.J., Jr.; Mahajan, A.K.; Khandhar, S.J.; Simoff, M.J.; Machuzak, M.S.; Cicenia, J.; Gildea, T.R.; Silvestri, G.A. Robotic Bronchoscopy for Peripheral Pulmonary Lesions: A Multicenter Pilot and Feasibility Study (BENEFIT). Chest 2021, 159, 845–852. [Google Scholar] [CrossRef]
- Fielding, D.I.K.; Bashirzadeh, F.; Son, J.H.; Todman, M.; Chin, A.; Tan, L.; Steinke, K.; Windsor, M.N.; Sung, A.W. First Human Use of a New Robotic-Assisted Fiber Optic Sensing Navigation System for Small Peripheral Pulmonary Nodules. Respiration 2019, 98, 142–150. [Google Scholar] [CrossRef]
- Yarmus, L.; Akulian, J.; Wahidi, M.; Chen, A.; Steltz, J.P.; Solomon, S.L.; Yu, D.; Maldonado, F.; Cardenas-Garcia, J.; Molena, D.; et al. A Prospective Randomized Comparative Study of Three Guided Bronchoscopic Approaches for Investigating Pulmonary Nodules: The PRECISION-1 Study. Chest 2020, 157, 694–701. [Google Scholar] [CrossRef]
- Hammad Altaq, H.; Parmar, M.; Syed Hussain, T.; Salim, D.J.; Chaudry, F.A. The Use of Robotic-Assisted Bronchoscopy in the Diagnostic Evaluation of Peripheral Pulmonary Lesions: A Paradigm Shift. Diagnostics 2023, 13, 1049. [Google Scholar] [CrossRef]
- Kalchiem-Dekel, O.; Connolly, J.G.; Lin, I.H.; Husta, B.C.; Adusumilli, P.S.; Beattie, J.A.; Buonocore, D.J.; Dycoco, J.; Fuentes, P.; Jones, D.R.; et al. Shape-Sensing Robotic-Assisted Bronchoscopy in the Diagnosis of Pulmonary Parenchymal Lesions. Chest 2022, 161, 572–582. [Google Scholar] [CrossRef]
- Low, S.W.; Lentz, R.J.; Chen, H.; Katsis, J.; Aboudara, M.C.; Whatley, S.; Paez, R.; Rickman, O.B.; Maldonado, F. Shape-Sensing Robotic-Assisted Bronchoscopy vs Digital Tomosynthesis-Corrected Electromagnetic Navigation Bronchoscopy: A Comparative Cohort Study of Diagnostic Performance. Chest 2023, 163, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Yu Lee-Mateus, A.; Reisenauer, J.; Garcia-Saucedo, J.C.; Abia-Trujillo, D.; Buckarma, E.H.; Edell, E.S.; Grage, R.A.; Bowman, A.W.; Labarca, G.; Johnson, M.M.; et al. Robotic-assisted bronchoscopy versus CT-guided transthoracic biopsy for diagnosis of pulmonary nodules. Respirology 2023, 28, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Saghaie, T.; Williamson, J.; Philips, M.; Kafili, D.; Sundar, S.; Hogarth, K.; Ing, A. Preliminary results of the FRONTIER STUDY: First Human Use of a New Robotic Electromagnetic Navigation Bronchoscopy with Integrated Tool-in-Lesion Tomosynthesis (TiLT) technology (Galaxy System) for Small Peripheral Pulmonary Nodules. In Proceedings of the 2023 Annual Conference, American Association for Bronchology and Interventional Pulmonology, Chicago, IL, USA, 24–26 August 2023. [Google Scholar]
- Pyarali, F.F.; Hakami-Majd, N.; Sabbahi, W.; Chaux, G. Robotic-assisted Navigation Bronchoscopy: A Meta-Analysis of Diagnostic Yield and Complications. J. Bronchol. Interv. Pulmonol. 2024, 31, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Solano, J.R.; Ugalde-Gamboa, L.; Machuzak, M. Robotic Bronchoscopy for Diagnosis of Suspected Lung Cancer: A Feasibility Study. J Bronchology Interv Pulmonol 2018, 25, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Reisenauer, J.; Duke, J.D.; Kern, R.; Fernandez-Bussy, S.; Edell, E. Combining Shape-Sensing Robotic Bronchoscopy with Mobile Three-Dimensional Imaging to Verify Tool-in-Lesion and Overcome Divergence: A Pilot Study. Mayo Clin. Proc. Innov. Qual. Outcomes 2022, 6, 177–185. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Monarch | Ion Endoluminal | Galaxy |
---|---|---|---|
Navigation technology | Electromagnetic navigation | Shape-sensing | Electromagnetic navigation |
Bronchoscope OD | 6.0 mm outer sheath, 4.2 mm inner catheter | 3.5 mm | 4.0 mm |
Working channel diameter | 2.1 mm | 2.0 mm | 2.1 mm |
Bronchoscope flexion | outer sheath 130°, inner catheter 180° | 180° | |
Bronchoscope re-using | Yes | Yes | No (single-use bronchoscope) |
Vision during navigation | Yes | Yes (using a 1.7 mm OD vision probe through the working channel) | Yes |
Vision during sampling | Yes | No | Yes |
Controller | Video game-like handheld controller | Trackball and scroll-wheel controller | Video game-like handheld controller |
Integrated imaging modalities | CBCT, fluoroscopy | CBCT, fluoroscopy | Digital tomosynthesis, tool-in-lesion technology (TiLT) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skouras, V.S.; Gkiozos, I.; Charpidou, A.G.; Syrigos, K.N. Robotic Bronchoscopy in Lung Cancer Diagnosis. Cancers 2024, 16, 1179. https://doi.org/10.3390/cancers16061179
Skouras VS, Gkiozos I, Charpidou AG, Syrigos KN. Robotic Bronchoscopy in Lung Cancer Diagnosis. Cancers. 2024; 16(6):1179. https://doi.org/10.3390/cancers16061179
Chicago/Turabian StyleSkouras, Vasileios S., Ioannis Gkiozos, Andriani G. Charpidou, and Konstantinos N. Syrigos. 2024. "Robotic Bronchoscopy in Lung Cancer Diagnosis" Cancers 16, no. 6: 1179. https://doi.org/10.3390/cancers16061179
APA StyleSkouras, V. S., Gkiozos, I., Charpidou, A. G., & Syrigos, K. N. (2024). Robotic Bronchoscopy in Lung Cancer Diagnosis. Cancers, 16(6), 1179. https://doi.org/10.3390/cancers16061179