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Simple Summary: Cancer stands as the leading cause of death among children and adolescents in the
United States. Some of these pediatric cancers are highly aggressive and complex in nature. Current
in vitro models often fail to accurately replicate the tumor microenvironment, while in vivo models
face time and cost constraints. This review article emphasizes the unique advantages of zebrafish
models in pediatric cancer research due to their genetic similarity to humans, short experimental
timeline, ease of genetic manipulations, rapid in vivo tumor development, and transparent bodies
that facilitate precise tumor cell tracking at single-cell resolution. Through a comprehensive analysis
of existing literature and experimental findings, the article highlights the potential of zebrafish as
a valuable preclinical model for studying tumor biology, expediting drug discovery and screening
processes, and implementing personalized medicine strategies for treating pediatric cancers.

Abstract: Pediatric cancers are the leading cause of disease-related deaths in children and adolescents.
Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been
raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we
discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their
importance in targeted drug discovery and toxicity assays. We have also placed a special focus on
zebrafish models of pediatric brain cancers—the most common and difficult solid tumor to treat.
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1. Introduction

Cancer is the leading cause of death by disease in children and adolescents in the
United States, with an incidence rate of approximately 175 per 1 million [1]. Leukemia
constitutes 28% of all childhood cancers, while all solid tumors make up approximately
40% of childhood cancers [2]. Among solid tumors, tumors involving the central nervous
system (CNS), including the brain and/or spine, are the most common solid tumors in
this population [1]. Although many patients with solid tumors are successfully treated
with multimodal therapy (chemotherapy, radiation therapy, and surgery), other tumors
including relapsed/recurrent sarcomas, malignant melanomas, stage four neuroblastoma,
and malignant brain tumors have poor overall survival [3,4]. In addition, treatment often
results in long-term side effects and impacts quality of life. The recent understanding
of tumor etiology has provided an opportunity to establish biology-informed clinical
interventions. Through advanced sequencing techniques and large cooperative studies,
new therapeutic approaches that target molecular alterations specific to the tumor and
the tumor environment are being developed. These therapies will likely be critical for
successful management and long-term survival for many solid tumors in the future.
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Preclinical efficacy assays and safety studies are an essential component of novel
therapy development, as this allows researchers to study both on-target and off-target
effects of novel agents and provides information about potential toxicity and dose require-
ments for clinical trial development [5]. Pre-clinical models that are easy to use, relatively
inexpensive, timely, and representative of the tumor and tumor micro-environment are
most informative. In recent times, zebrafish have acquired huge popularity as a reliable
model for cancer research due to their genetic similarities with humans, ease of genetic
manipulation, in-vivo monitoring of tumor progression due to their transparent body
structure in early developmental stages, high fecundity, low maintenance cost, and the
ability to conduct drug and chemical screening in large numbers of animals. In this article,
we review the potential and the unique attributes of zebrafish as pediatric cancer research
models, as well as their comparative advantages over other preclinical models.

2. In Vitro Models for Pediatric Cancers

Cancer cell lines are the most applicable and cost-effective models for studying a
tumor’s molecular characteristics as well as high throughput screening for the identification
of potential drug targets. Cancer cells that are predominantly used for investigating tumor
biology and in vitro drug testing fall into two categories: (i) cell lines developed from
human samples and (ii) cell lines derived from animal models. These two categories are
further subdivided into (i) primary tumor cells, which are derived directly from the tumor
samples; (ii) genetically altered healthy cells to convert them into converted to tumor cells;
and (iii) iPSC-derived tumor cells [6–10]. These cell lines normally retain their tumorigenic
characteristics and are often immortalized to obtain an indefinite life span. Most of the
cancer cell lines are simple to create, can be stored for decades, and are useful in studying
the molecular mechanisms of tumor development and metastasis [11,12].

The major drawbacks of the in vitro cell culture models are their inability to pro-
vide a proper tumor microenvironment and failure to address the cause of cancer re-
currence [13,14]. The tumor microenvironment is made up of tumor cells; stromal cells
such as endothelial cells, immune cells, and fibroblasts; and extra-cellular matrix (ECM)
components, like collagen, laminin, fibronectin, etc. [15–17]. These tumor–stromal–ECM
interactions cannot be captured in traditional monolayer cell culture. Recent advancements
in molecular cell biology and tissue engineering have resulted in the development of more
robust ‘3D cell culture’ and ‘organoid’ models to address these shortcomings. In 3D cell
culture, cells are allowed to grow and interact with the surrounding ECM framework in
three dimensions. Organoids, which are also developed in a 3D cultural framework, are
miniature versions of organs derived from stem cells that replicate the morphology, cell
types, and functions of their in vivo counterparts [18–20]. Organoids can provide tumor
microenvironment and cellular interactions to a certain extent, which makes them more
efficient for drug screening than conventional cell culture models [21]. In 2020, Krieger
et al. developed a cerebral organoid model that served as a scaffold for glioblastoma (GBM)
cell invasion. Transcriptional analysis of GBM organoids revealed possible ligand–receptor
interactions between tumor and organoid cells [22]. Huang et al. developed an organoid
model for meningioma, and immunohistochemistry analysis revealed striking similarities
in cellular heterogeneity between meningioma patient samples and meningioma organoids,
which include tumor cells, T-lymphocytes, macrophages, and vascular endothelial cells [23].
However, high-cost, complex model development protocols, lack of proper vasculature,
and poor controllability limit the applications and clinical implications of these models [24].

3. In Vivo Models for Pediatric Cancers

A number of animal models have been established for studying pediatric tumors
over the past six decades. Invertebrates, including C. elegans and Drosophila, to vertebrates,
such as rodents, felines, canines, and non-human primates [25–29], have been utilized to
evaluate potential therapeutic strategies and cures for this deadly disease. Rodent models,
particularly mice and rats, are the most used animal models in pediatric cancer research.
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Having more than 80% genetic similarity to humans as well as comparable anatomical,
molecular, and biological characteristics make them the most popular models for human
disease research [30,31]. Mouse tumor models, the most popular model among cancer biol-
ogists, can be broadly divided into two categories: (i) xenograft models, and (ii) transgenic
or genetically engineered mouse models (GEMMs). Traditional patient-derived xenograft
(PDX) models are created by implanting or injecting human malignant cells into immun-
odeficient mice, as wild-type mice with functional immune systems reject foreign tumor
cells or tissues. By contrast, patient-derived orthotopic xenografts (PDOXs) are created by
implanting tumor tissue or cells from a patient into a mouse in the same anatomic location
in order to further emulate the tumor microenvironment. The major disadvantages of
rodent models are the differences in physiological parameters compared with humans,
the lower complexity of the tumor microenvironment, and the rapid clearance of drugs
from the body due to fast liver metabolism [32–36]. In addition to that, they are also
time-consuming and expensive to develop and cannot be shared among scientists, and
perhaps most significantly, they require immunocompromised animals for developing
patient-derived xenograft models [37,38]. Although scientists have created immunocom-
petent syngeneic mouse models (SMMs) and engrafted tumor cell lines from the same
genetic background to avoid immune rejection, they lack inter- and intra-patient tumor
microenvironment heterogeneity and differ in tumor growth kinetics [39,40]. GEMMs, on
the other hand, are developed to study the role of specific genes by deleting, overexpressing,
or mutating, which results in spontaneous tumor formation. Although they are the most
accurate histological and genetic models of pediatric cancers, they have several drawbacks,
including the variable and unpredictable nature of tumor development, a lack of complex
genomic landscapes found in human tumors, and a longer tumor development time [41,42].
Zebrafish pediatric cancer models bridge this gap. In the following sections, we will detail
the benefits of zebrafish models and highlight shortcomings that need to be addressed in
future studies. A comparison between different in vitro and in vivo models is summarized
in Table 1.

Table 1. Comparison between zebrafish and other childhood cancer models.

Model Cost Advantages Disadvantages Drug Screening
Throughput

Cell culture Low
Immortality, rapid growth, robustness,
ease of genetic modifications,
maintenance, and storage

Long-term culture can result in the
development of cells that are
genetically distinct from primary
tumor cells. There are no tumor
microenvironments.

Very High

Organoids High
Similar tumor heterogeneity,
characteristics, and microenvironments
to human systems.

Technically difficult to develop,
costly, and variable in growth. High

Rodents Very High

Replicate tumor microenvironment,
genetic alterations, and
pharmacodynamics as closely as
possible to humans.

Time-consuming; lack immune
interactions. PDX models
primarily depend on tissue
integrity; highly variable in nature.

Low

Zebrafish Intermediate

External fertilization, large number of
offspring, ease of transplantation, high
efficiency in genetic manipulation,
rapid tumor engraftment, and the
development of tumors with
histopathology similar to that of
humans. Cell tracking in embryos and
larvae is very easy due to their
transparent bodies.

Difficulties in accurately
measuring drug concentration in
larval plasma, hindering drug
absorption, distribution,
metabolism, and excretion
(ADME) studies, along with a lack
of adaptive immune system in
larvae, restrict the direct
prediction of clinical dosage from
zebrafish to humans.

High
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Table 1. Cont.

Model Cost Advantages Disadvantages Drug Screening
Throughput

Drosophila Low

Short lifespan, large number of
progenies, ease of genetic
manipulation, drug screening,
dissection of complex tissues.

Tumors can grow for a limited
time and thus are not suitable for
long-term studies. Angiogenesis
and adaptive immunity cannot be
studied. A few organ-specific
tumors, such as pancreas, liver,
and lung tumors, cannot be
studied due to a lack of
homologous organs.

High

C. elegans Low
Conserve signaling pathways, genetic
similarities, ease of genetic
manipulation, transparent body.

They do not develop cancers in a
similar way to humans. They lack
adaptive immunity, angiogenesis,
and organ systems comparable to
those of humans.

High

4. Zebrafish—A Tiny Human

Zebrafish (Danio rerio) were first discovered by F. Hamilton in the Ganges River in
northeastern India in the 1820s and were described as “beautiful fish” with “several blue
and silver stripes on each side” [43,44]. Zebrafish are tropical, freshwater fish belonging
to the minnow family (Cyprinidae) of the order Cypriniformes. It is an ideal organism
to maintain under laboratory conditions due to its small size, high fecundity rate, and
ability to reach sexual maturity by 3 months of age [45]. Zebrafish breed throughout
the year and produce a large number of embryos per cross. Furthermore, fertilization is
external, and developing embryos are transparent, allowing the visualization of almost
all organs using a simple dissection microscope [46]. The embryo develops into a
free-swimming larva 3–4 days post fertilization (dpf). By observing these advantages,
Dr. George Streisinger at the University of Oregon realized the potential of zebrafish as a
suitable model organism and introduced them as a model system in biological research
in 1972. Sanger’s Institute initiated the Zebrafish Reference Genome Sequencing project
in 2001, which was completed in 2013 [47]. The sequencing data revealed 71.4% of
the human genome to be conserved in zebrafish, with 82% of human disease-related
genes having at least one ortholog in zebrafish [47]. In 2020, Yang et al. developed
a detailed map of zebrafish transcriptomes, cis-regulatory elements, heterochromatin
regions, methylomes, and 3D genome organization using a combination of advanced
techniques, including RNA sequencing, assay for transposase-accessible chromatin using
sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-Seq), whole-
genome bisulfite sequencing (WGBS), and chromosome conformation capture (Hi-C)
experiments. When comparing zebrafish regulatory elements with those of humans
and mice, they found both evolutionarily conserved and species-specific regulatory
sequences and networks [48].

Zebrafish and humans share conserved organ systems, including the mouth, eyes,
brain and spinal cord, intestine, pancreas, liver with bile ducts, kidney, esophagus, heart,
ear, nose, muscle, blood, bone, cartilage, and teeth (Figure 1). Most of the important bio-
logical and metabolic pathways are also similar in zebrafish (KEGG pathway: zebrafish)
providing the opportunity to study an array of human diseases using zebrafish models.
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5. Zebrafish Models for Human Disorders

Since the 1980s, zebrafish have been employed in biomedical research to model a
broad spectrum of human diseases. Zebrafish models have been successfully developed to
study disorders ranging from neurodevelopmental disorders to those that are metabolic in
nature [49,50].

Zebrafish models demonstrated comparable and quantitative changes in their social
and cognitive behavior, altered locomotion, and even increased head size, all of which are
typical of autism spectrum disorders (ASDs) [49,51–53]. Similarly, another neurodevelop-
mental disorder, Rett syndrome, was effectively modeled in zebrafish, which had observable
behavioral alterations throughout their early infancy, including spontaneous and sensory-
evoked motor abnormalities as well as thigmotaxis deficits [54,55]. Zebrafish have also been
effectively utilized to model neurodegenerative diseases [56], behavioral disorders [57,58],
neuromuscular disorders [59–63], aging-related disorders [64–66], hematopoietic disor-
ders [67–70], renal diseases [71–74], liver diseases [74–77], and eye diseases [78–81], to
mention a few. In recent years, zebrafish have also been used to study infectious viral
diseases, such as Zika [82] and COVID-19 [83].

6. Zebrafish Models for Cancer Research

The utilization of zebrafish in cancer research has a long history. It was first reported
in 1965 when Dr. Stantion induced irreversible liver damage and hepatic neoplasms in ze-
brafish by using the water-soluble carcinogen diethylnitrosamine [84]. Cancer modeling in
zebrafish is mostly achieved in three ways: (i) the forward genetics method, (ii) the reverse
genetics approach, and (iii) xenotransplantation. In 1996, Haffter et al. published their
landmark study of a large-scale mutagenesis screen, generating numerous mutant zebrafish
lines that are still useful in present-day cancer research [85]. Utilizing a similar forward
genetics approach, Lee G. Beckwith and Dr. Jan M. Spitsbergen developed many neoplasms,
such as papilloma, hemangiomas, hepatocellular adenoma, and rhabdomyosarcoma, by
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using common mutagens, like ethylnitrosourea (ENU) and N-methyl-nitrosoguanidine
(MNNG) [86,87]. Several innovative strategies for gene knockdown, gene editing, and
transgene insertion into the zebrafish genome have emerged in recent years. These re-
verse genetic techniques attempt to create a loss-of-function phenotype or transfer genes
identified to be altered in human patients with cancer into fish.

Mutations in cancer predisposition genes (CPGs) are often associated with an in-
creased susceptibility to cancer. Inherited mutations in CPGs cause approximately 10%
of cancers in humans. More than 100 CPGs with diverse cellular and molecular functions
have been identified, which might provide insight into the prevention, diagnosis, and
optimization of cancer management [88,89]. Mutation CPGs linked to DNA repair, genome
stability, signaling pathways, transcriptional regulation, epigenetic modifications, telomere
maintenance, and metabolism often increase the susceptibility to tumor development. The
utilization of zebrafish models to investigate the roles of CPGs in cancer was extensively
discussed in a review by Kobar et al. [90].

7. Pediatric Cancer Models in Zebrafish

Compared with adult tumors, pediatric tumors often exhibit low mutational burdens
and are frequently driven by singular driver genes, oncoproteins, or copy number vari-
ations [91]. The most common types of cancers diagnosed in children and adolescents
(ages 0–19 years) are leukemias, CNS tumors, and sarcomas [92]. In the subsequent sec-
tions, we elaborate on non-central nervous system (CNS) and CNS pediatric cancer models
in zebrafish.

8. Non-CNS Pediatric Cancer Models in Zebrafish

The most commonly diagnosed cancer in children is acute lymphoblastic leukemia
(ALL). Although the survival rate for this type of cancer is high, many long-term detri-
mental side effects are seen in these patients due to the current treatment procedures [93].
Given these considerations, ongoing studies aim to minimize treatment-related toxicity
and develop targeted therapies for recurrence and high-risk patients. ALL can be broadly
classified into B-cell acute lymphoblastic leukemia (B-ALL), and T-cell acute lymphoblastic
leukemia (T-ALL). Mariotto et al. developed a xenograft model for B-ALL in zebrafish.
They identified BCL2-associated athanogene-1 (BAG1) as a potential target due to its in-
creased expression during cancer relapse. They conducted transient knockdown of BAG1
protein expression in RS4;11 leukemia cells and xenografted them into zebrafish embryos
two days post fertilization (dpf). Their study revealed that anti-cancer drugs such as dex-
amethasone, daunorubicin, and the BCL2 inhibitor ABT-737 exhibited greater sensitivity in
BAG1-depleted cells without any toxicity, whereas pan-BCL inhibitors caused cytotoxic
effects in zebrafish [94]. T-ALLs are biologically different from B-ALLs, and they can be sub-
grouped according to targetable pathways, such as Notch, Jak/Stat, PI3K/Akt/mTOR, and
MAPK [95]. Hedgehog pathway mutations, particularly those affecting PTCH1 expressions,
are quite common (16%) in patients with T-cell acute lymphoblastic leukemia (T-ALL).
Burns et al. developed a ptch1 CRISPR knockout zebrafish model for T-ALL. Their findings
indicated that ptch1 mutations expedited the onset of notch1-induced T-ALL. Additionally,
the study suggested that the inhibition of the Hedgehog pathway could serve as a targeted
therapy for high-risk T-ALL [96].

Rhabdomyosarcoma, which is the most common soft-tissue sarcoma diagnosed in
children, constitutes approximately 3–4% of all pediatric cancers [97,98]. Alterations in the
RAS/MAPK signaling pathway are reported in many patients with rhabdomyosarcoma [99]
Kahsay et al. demonstrated a significant downregulation of the RAS/MAPK pathway
in pax3 double mutant zebrafish (pax3a−/−; pax3b−/−), which resulted in a delayed
progression of kRAS-induced rhabdomyosarcoma [100].

While dysregulation of HES3 was observed in children with fusion-positive rhab-
domyosarcoma, the precise mechanism of HES3 involvement in this pediatric cancer
remained unclear. To elucidate this, Kent et al. developed a her3 (ortholog of human HES3)
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knockout zebrafish model of rhabdomyosarcoma. Transcriptomic analysis of the her3
mutant zebrafish unveiled the impact on several cancer-related gene pathways, along with
the downregulation of genes involved in organ development, such as pctp and grinab [101].

We have listed examples of non-CNS pediatric cancer models in zebrafish in Table 2.

Table 2. Pediatric non-CNS cancer models in zebrafish.

Cancer Studied Gene/Cell
Line/Drug Method Zebrafish Line Used/Developed Reference

Acute lymphoid
leukemia

BAG1 RS4;11 cell xenograft Tg(fli1:GFP) [94]

Ext1 and Ext 2 Morpholino-based
knockdown Tg(Tp1bglob:eGFP) [102]

MYC Transgenic Tg(rag2:hMYC), Tg(lck:eGFP),
Tg(hMYC;GFP) [103]

Adenoid Cystic
Carcinoma MYB Transgenic

Zebrafish blastomeres, Tg(c-myb-GFP),
Tg(c-myb:GFP; lyz:dsRed), Tg(c-myb:GFP;
mpeg1:mCherry)

[104]

Chronic Myeloid
Leukemia

BCR/ABL1 Transgenic WT (AB), Tg(lyz:DsRed),
Tg(hsp70:p210BCR/ABL1) [105]

ABL inhibitor imatinib,
MEK inhibitor U0126,
cytarabine, azacitidine,
and arsenic trioxide

K562, CD34+ HPSC,
MV4-11 and MOLM-13
cell xenograft

prkdc−/− in casper background (SCID
zebrafish)

[106]

Intestine
YES1, YAP1

Morpholino-based
knockdown, dasatinib
treatment

WT, Tg(fabp2:RFP)as200, axin1tm213 [107]

CATSPERE Transgenic
WT (AB),
Tg(ifabp:DsRed-P2A-CATSPERE;
CATSPERE), Tg(ifabp:EGFP;WT), p53−/−

[108]

HCT116, anandamide Xenograft WT (Tübingen), Tg(fli1:EGFP),
Tg(mpeg1:EGFP) [109]

Renal cell
carcinoma VHL Transgenic Tg(ATPase1.a1A4:GFP), Tg(vhlhu2117+/−),

Tg(ATPase1.a1A4:GFP:vhl−/−)
[110]

Liver

Tulp3 CRISPR knockout WT (AB, TL), Tg(wt1b:EGFP),
homozygous mutant-tulpm/m [74]

Pten and Tp53 CRISPR knockout

WT (AB),
Tg(fabp10:Cas9-mCherry);ptena−/−,
Tg(fabp10:Cas9-mCherry); ptenb−/−,
Tg(fabp10:Cas9-mCherry); tp53−/−,
Tg(fabp10:Cas9-mCherry)

[111]

Melanoma

BRAF Transgenic

WT (AB),
Tg(crestin:CreERt2;crystallin:YFP),
Tg(−3.5ubi:loxP-GFP-loxP-mCherry),
Tg(p53/BRAF/Na/MiniCoopR/crestin:EGFP)

[112]

92.1 and Mel270
cell line Xenograft Tg(fli1:eGFP) [113]

MITF, BRAF Transgenic mitfavc7, tp53M214K, Tg(mitfa-BRAFV600E),
Tg(mitfa:BRAFV600E); mitfavc7; p53M214K)

[114]

kita promoter, HRAS Transgenic

WT (AB), tg(UAS:GFP),
tg(5XUAS:eGFP-HRASV12)io6,
mitfaw2/w2, p53zdf1/zdf1,
tg(mitfa:Gal4VP16;UAS:mCherry);
Et(kita:GalTA4,UAS:mCherry)hzm1

[115]
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Table 2. Cont.

Cancer Studied Gene/Cell
Line/Drug Method Zebrafish Line Used/Developed Reference

Myelodysplastic
syndrome

TET2 Transgenic WT (AB), tet2m/m, Tg(c-myb-GFP),
Tg(cd41-GFP)

[116]

c-myb Transgenic WT (AB), Tg(c-myb:gfp), Tg(c-mybhkz3),
Tg(rag2:dsRed), Tg(lyz:dsRed)

[117]

Pancreatic cancer

Rabl3, KRAS CRISPR transgenic WT, tp53−/−, Tg(tp53−/−;rabl3-TR52),
Tg(rabl3-TR41/+), Tg(rabl3-TR41/41)

[118]

KRAS Transgenic

Tg(ubb:Lox-NucmCherry-stop-Lox-
GFP::KRASG12D),
Tg(elastase3I:CRE;cryaa:Venus),
Tg(ela3I-CRE; LSL-KRASG12D)

[119]

Panc-1 cells Xenograft Tg(fli1:eGFP), Nacre (mitfa−/−) [120]

Peripheral nerve
sheath tumor
(PNST)

lats1 and lats2 CRISPR knockout WT (AB)
lats2mw87/mw87 [121]

Suz12 Morpholino-based
knockdown nf1a+/−:nf1b−/−:p53e7/e7 [122]

Retinoblastoma ACVR1C, SMAD Y79-GFP cell xenograft WT (AB) [123]

Rhabdomyosarcoma

Pax3 Transgenic Tg(pax3a:EGFP), pax3a−/− and pax3b−/− [100]

HES3, her3 CRISPR knockout her3 null mutants (her3nch1, her3nc2,
her3nch3)

[101]

kRAS Transgenic

WT (AB), Tg(myf5:GFP;mylz2:mCherry),
Tg(cdh15:GFP), Tg(mylz2:mCherry),
Tg(cdh15:KRASG12D),
Tg(mylz2:KRASG12D)

[124]

PAX3-FOXO1, HES3 Transgenic

WT (AB), WIK, TL, AB/TL, tp53M214K,
Tg(BetaActin:GFP2A:PAX3FOXO1),
Tg(CMV:GFP2A:PAX3FOXO1),
Tg(ubi:GFP2A:PAX3FOXO1)

[125]

Systemic
mastocytosis KIT Transgenic Tg(actb2:KITD816V:2AeGFP) [126]

T-cell acute
lymphoid leukemia

ptch1 CRISPR knockout Tg(ptch1mutant)
Tg (rag2-notch1aICD) [96]

IL7R Transgenic CG1, Tg(rag2:RFP), Tg(rag2:IL7Rmut2),
Tg(rag2:IL7Rmut2-tdTomato) [127]

AURKB and Myc Transgenic

WT, Tg(rag2:AURKB;rag2:mCherry),
Tg(rag2:Loxp-dsRED2-Loxp-EGFP-
Myc;hsp70:Cre), Tg(rag2:EGFP;rag2:Myc),
Tg(rag2:EGFP;rag2:MycS67A),
Tg(rag2:EGFP;rag2:Myc;rag2:AURKB)

[128]

prl3 and Myc Transgenic CG1, Tg(rag2:GFP;rag2:Myc),
Tg(rag2:prl3;rag2:mCherry) [129]

NUP88/Nup214 Morpholino-based
knockdown WT (AB, Tübingen) [130]

Lrrc50
ENU mutagenesis,
Morpholino-based
knockdown

WT, lrrc50hu255h (+/−) [131]

Thyroid cancer
BRAF Transgenic Tg(TdTomato-pA),Tg(BRAFV600E-

pA:TdTomato-pA)
[132]

CREB3L1 8505C cell xenograft WT [133]
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9. Pediatric CNS Cancer Models in Zebrafish

CNS tumors are the second-most common tumors and the most common solid tumors
in children and the leading cause of pediatric cancer-related death [1,134,135]. Alongside
various in-vitro and in vivo models, many zebrafish models have also been developed to
study these deadly pediatric cancers. Before discussing different zebrafish brain cancer
models, we believe it is important to emphasize the remarkable similarities between
zebrafish and human brain anatomy and functions.

10. Zebrafish Brain

Although the zebrafish is a teleost, the general macro-organization of the brain and
cellular anatomy of zebrafish and humans are remarkably similar (Figure 2). The zebrafish
brain has all the key brain anatomical components seen in humans [136]. Adult zebrafish
have well-developed forebrain, midbrain, and hindbrain with prominent optic tectum, tha-
lamic, and hypothalamic regions [137]. The embryonic forebrain of zebrafish develops into
the telencephalon, diencephalon, hypothalamus, and retina [138,139]. The zebrafish telen-
cephalon comprises the pallium, sub-pallium, and olfactory bulb, and it is important for their
social behavior, memory, and emotions [140,141]. The thalamus, pineal body, and habenula
constitute the zebrafish diencephalon, which regulates their attention, alertness, and circadian
patterns [142]. The tectum and tegmentum are two key structures in the zebrafish midbrain
that are important for vision, hearing, motivation, and reward [143,144]. The zebrafish hind-
brain appears as a distinct structure posterior to the midbrain at embryonic developmental
stages. It is separated from the midbrain by a temporary structure called the midbrain–
hindbrain border (MHB), which is absent in adult zebrafish. The hindbrain regulates eye,
jaw, and head movement and gives rise to the cerebellum, which is responsible for motor
control, sensory input reception and response, cognition, emotion, and learning [145–149].
Human and zebrafish developmental gene expression shifting patterns are also remarkably
comparable, highlighting the significance of this model in studying childhood brain disor-
ders [150]. The neurochemical aspects of the zebrafish brain are also very similar to those of
humans. Zebrafish possess all major neuromediators, including receptors, neurotransmitters,
transporters, and enzymes [151–159]. Zebrafish have well-developed functional neuroen-
docrine systems like those present in mammals. The zebrafish stress response is driven by the
hypothalamic-pituitary hormonal cascade and is regulated by cortisol, which acts through the
glucocorticoid receptor, which is very similar in humans [160–163].
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11. Zebrafish Models of Childhood CNS Cancer

Gliomas are the most frequent pediatric tumors, accounting for around half of all brain
cancer cases recorded in children [134,135]. These CNS tumors can be classified as low-
or high-grade gliomas depending on their malignant nature. Zebrafish glioma models,
like other in vitro and in vivo models, have been effectively utilized for investigating these
lethal CNS tumors, drug toxicity, and novel therapeutic inventions. Among Glioblastomas,
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the NF1 gene was found to be mutated in 20% of these cases. Shin et al. developed a
glioblastoma model by developing a stable mutant nf1 zebrafish line using zinc finger
nuclease (ZFN) and targeting induced local lesions in genomes (TILLING) gene editing
techniques. They reported that the zebrafish carried at least one copy of the type nf1 allele
(nf1a or nf1b), were viable and fertile, and showed no tumor formation. However, when
both the alleles of nf1a and nf1b genes were absent, the nf1a–/–; nf1b–/– larvae displayed
melanophore defects 6 days post fertilization (dpf), and they did not survive beyond 10 dpf.
Although these nf1a–/–; nf1b–/– larvae did not develop tumors, they exhibited defects in
glial cells and pigment cells, which are often observed in NF1 human patients. Moreover,
in a p53 mutant background, nf1a+/–; nf1b–/–; p53e7/e7 zebrafish developed adult-onset high-
grade gliomas and malignant peripheral nerve sheath tumors, which resemble human NF1
HGGs [165].

The tumor microenvironment is critical for tumor cell survival and metastasis, and
microglia and infiltrating macrophages are two major cell types found in about 30% of HGG
tumor tissues [166]. Chia et al. reported in 2018 that the neuron-specific overexpression
of human AKT1 in zebrafish resulted in a large increase in macrophage and microglia
populations. They developed the transgenic zebrafish lines Tg(NBT:∆LexPR-lexOP-pA;
mpeg1:EGFP) and Tg(mpeg1:mCherry; p2ry12:p2ry12-GFP) and also utilized cxcr4b−/−

mutant zebrafish to study the macrophage and microglial cell behavior inside the develop-
ing zebrafish brain. They demonstrated that the peripheral macrophage infiltration into
the brain occurred through Sdf1b–Cxcr4b signaling [167].

CNS primitive neuro-ectodermal tumors (CNS-PNETs), presently classified as em-
bryonal tumors, belong to the embryonal family of malignant childhood brain tumors.
CNS primitive neuro-ectodermal tumors (CNS-PNETs) constitute a heterogeneous group
of brain embryonal tumors that includes all CNS embryonal malignancies not diagnosed as
medulloblastoma, atypical teratoid/rhabdoid tumors (AT/RT), or embryonal tumors with
multilayered rosettes (ETMRs). Histologically, CNS-PNETs are identified by the presence
of small, poorly differentiated cells and a mixed population of both glial and neuronal
lineages. The 5-year progression-free survival rate for CNS-PNETs is currently as low as
30% [168–171]. Schultz et al. created an embryonal brain tumor model with homozygous
rb1 loss of function via CRISPR mutagenesis that closely mirrored human CNS-PNETs [172].
Zebrafish rb1 tumors, like the human oligoneural OLIG2+/SOX10+ CNS-PNET subtype,
displayed an over-expression of neural progenitor transcription factors, such as sox8b,
sox10, and olig2, as well as the erbb3a oncogene [172]. Another zebrafish embryonal tumor
model was developed by Modzelewska et al. through NRAS activation in Olig2+/Sox10+
oligoneural precursor cells. Genomic analysis revealed a striking similarity with human NB-
FOXR2 CNS-PNET subgroup tumors. They also generated an orthotropic embryonic brain
tumor transplantation assay for drug screening by allografting tumors from Tg (mitfaw2;
p53M214K; Tg(sox10:mCherry-NRASWT) fish into 2dpf mitfw2 embryos and found that MEK
inhibitors could remove these tumors in 79% of the fish [173].

Apart from transgenic tumor models, there are many excellent studies in which the
investigators used zebrafish xenograft models (both tumor cell lines and patient-derived
tumor cells) to study tumor biology, drug screening, and future immunotherapeutics.
Zebrafish have a delayed adaptive immune system, as T and NK cells develop at 5 dpf
and B cells by 21 dpf, which provides researchers with a short but valuable window to
perform xenograft experiments [174]. These xenograft models are fast and can be developed
only in 5 days, and most importantly, they match mouse xenograft models in terms of
tumor growth and initiation [175]. Zebrafish xenograft models can be used for studying
tumor biology or for drug discovery purposes. Hamilton et al. developed a xenograft
model by injecting U87 and U251 glioblastoma cells to investigate the interaction between
microglia and glioma in vivo. Their findings revealed variations in the growth rates and
microglial interactions of different glioma cells. Notably, when U87 cells were xenografted
into irf8−/− zebrafish mutant embryos, which lack microglia, the injected tumor cells
exhibited a significant reduction in cell survival compared with wild-type embryos. This



Cancers 2024, 16, 1361 11 of 22

study underscores the crucial role of microglia in the dynamics of glioma growth [176].
Pudelko et al. orthotopically injected patient-derived tumor cells in zebrafish larvae to
study the effect of MTH1 inhibitors in glioblastoma in real-time. They found that their in-
house-developed MTH1 inhibitor, TH1579, was able to successfully irradicate glioblastoma
stem stems in zebrafish [177].

Most xenograft experiments in zebrafish are performed between 5–7 days to avoid
immune rejection. To address this issue, Prof. David Langenau’s group at Massachusetts
General Hospital and the Harvard Stem Cell Institute developed an immunodeficient
(prkdc−/−, il2rga−/−) casper-strain zebrafish that lacked T, B, and natural killer (NK) cells.
These immunodeficient zebrafish can survive at 37 ◦C, which is ideal for tumor cell growth,
and they can be engrafted with up to 1.5 × 106 tumor cells. The xenografted cells were
able to survive in adult zebrafish for 28 days [178,179]. These fish models can be utilized
in long-term xenograft studies and studies on accurate preclinical drug dosing in adult
zebrafish [180]. We have listed the most common childhood brain cancer models developed
in zebrafish in Table 3.

Table 3. Childhood CNS cancer models in zebrafish.

Cancer Studied Gene/Cell
Line/Drug Method Zebrafish Line

Used/Developed Reference

Glioblastoma

nf1 Transgenic Tg(nf1a+/–; nf1b–/–; p53e7/e7) [165]

MTH1, TH588 and TH1579
(MTH1 inhibitors)

GBM #18-CMV-LUC cell
xenograft Wild-type (TL) [177]

Microglial response toward
GBM cells

U87 and U251 cell
xenograft Tg(mpeg1:EGFP), irf8−/− [176]

Role of tert in telomere
stability Transgenic Tg(10xUAS:tert),

Tg(10xUAS:terc), [181]

Cxcr4-mediated infiltration
of pro-tumoral
macrophages

Transgenic

Tg(NBT:∆LexPR-lexOP-pA;
mpeg1:EGFP),
Tg(mpeg1:mCherry;
p2ry12:p2ry12-GFP),
cxcr4b−/−

[167]

Embryonal tumors
(previously classified as
CNS-PNETs)

rb1, rbbp4, and hdac1 Transgenic Tg(H2A.F/Z-GFP), rb1∆7/∆7 [172]

SOX10 and OLIG2

Transgenic, Tumor allograft
from Tg(mitfaw2; p53M214K;
Tg(sox10:mCherry-
NRASWT) fish into
mitfw2 fish

Tg(mitfaw2; p53M214K;
Tg(sox10:mCherry-
NRASWT), mitfw2

[173]

Medulloblastoma CD133 Daoy cell xenograft
Tg(flk:mCherry); Absolut+/+

(ednrbl−/−

mitfa−/−)
[182]

Pilocytic astrocytoma NF1 JHH-NF1-PA1 cell
xenograft Wild-type (AB) [183]

Rhabdoid tumor SMARCB, PRKCD, DDR2

INF_R_1288_r1,
INF_R_1467_r1, and
INF_R_359_r3 cell
xenograft

Wild-type (AB) [184]

12. Humanized Zebrafish

Although xenograft and transgenic models are excellent tools for studying human
illnesses because they provide a better microenvironment, none of them can mimic one
hundred percent of human conditions. To bridge this gap, scientists are continuously devel-
oping humanized model organisms. Zhu et.al. published an excellent review on humanized
mouse models and their benefits in studying human health and disease [185]. Similar to
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mice, humanized zebrafish models have been created to better understand human disor-
ders and bridge the gap between species differences. The first such humanized zebrafish
model was developed by Rajan et. al. in 2020, who created ‘GSS fish’ that expressed
human hematopoietic-specific cytokines, GM-CSF, SCF, and SDF1α. By stimulating the
self-renewal and multilineage differentiation of human hematopoietic stem and progenitor
cells, these GSS zebrafish could establish a better microenvironment for human leukemia
cells [186]. Similarly, another humanized zebrafish model was developed by Häberlein
et. al. to study multiple sclerosis. They first created a zebrafish gpr17 loss-of-function
transgenic animal and inserted the human GPR17 gene into their genome so that they could
only express human GPR17 protein. This humanized zebrafish model could be essential
in studying multiple sclerosis and identifying pro-remyelination compounds [187]. Many
more humanized zebrafish will be generated in the near future to identify the optimal
treatment for various human diseases at a personalized level.

13. Zebrafish as a Tool for Cancer Drug Discovery

The zebrafish model serves as a link between in vitro and in vivo investigations in
mammals. This model is powerful in terms of its range of applicability and research
tractability. In past decades, numerous studies have used zebrafish models to understand
disease biology, drug efficacy, and toxicity. In cancer research, drug toxicity is a major
concern. When compared with in vitro and other in vivo models, drug screening and
toxicity studies in zebrafish can be performed in a comparatively short period of time and
with more physiological relevance. Patient-derived avatar models in early larval stages in
zebrafish are ideal for large-scale drug screening purposes. Xenografted embryos can be
maintained in 96-well plates, and they easily absorb water-soluble drugs from the culture
media, which is mostly E3 medium or fish water [188]. Drugs that are non-toxic and
effective against tumor cells are selected for future studies, which include target validations,
in vivo murine models, and, finally, translation to clinical trials (Figure 3). These drug
toxicity tests are often performed in accordance with OECD recommendations, which are
compilations of the most relevant internationally agreed-upon testing methodologies used
by governments, industry, and independent laboratories to assess the safety of chemicals
(https://www.oecd.org (accessed on 1 May 2023)).
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To measure toxicity in zebrafish embryos, specific endpoints, such as egg coagulation,
lack of somite development, non-detachment of the tail, and the absence of heartbeat, are
used. In addition to these endpoints, researchers frequently quantify the heartbeat, coiling
behavior, hatching percentage, yolk sack edema, pericardial edema, yolk sac necrosis, and
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tail curvature to measure the toxicity level of any compound (Figure 4). These additional
observations are important for assessing the maximum tolerated dose/concentration.
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14. Zebrafish: A Rapid and Cost-Effective Pediatric Cancer Model Organism

Time is essential in pediatric cancer treatment. The overall survival time of patients
with pediatric cancer varies depending on the cancer type. CNS tumors, particularly
aggressive ones like atypical teratoid tumors, exhibit a remarkably low overall survival
time of just 6 months, whereas in patients with diffuse intrinsic pontine gliomas (DIPGs),
the survival rate is less than one year [189,190]. Developing xenograft models in rodents
to study these cancers takes at least 3–6 months [191]. Moreover, conducting large-scale
drug screenings in rodent models is not only time-consuming but also presents ethical
concerns and substantial costs. On the other hand, zebrafish models offer a cost-effective
and rapid in vivo platform for studying brain cancers. The estimated cost for the in vivo
screening of a single drug in zebrafish is approximately USD 300, making it 500 times
more economical than comparable studies in rat models. In a parallel two-week in vivo
study comparing zebrafish and mice, zebrafish models were found to be five times more
cost-effective than their mouse counterparts [45]. Most of the xenograft studies in zebrafish
can be completed within a week and yield results comparable to those of their mouse
xenograft counterparts [175].

15. Concluding Remarks and Future Perspectives

Although high-grade childhood cancers are often termed as ‘rare’ diseases, they
are a major concern across the medical field because of their severity and social impact.
Aggressive pediatric cancers are also different from adult tumors in terms of age of onset,
occurrence, progression, and treatment. Most of the time, patients’ mean survival time is
far shorter, and it is difficult or impossible to develop rodent PDX models in that timeframe.
In recent decades, the zebrafish has become an important model organism in strengthening
our understanding of cancer etiologies, the involvement of the immune system in the
cancer microenvironment, and drug screening. Whereas transgenic zebrafish models can
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be used to study tumor biology, disease progression, and cellular interactions in detail,
xenograft models can be created rapidly and utilized to test hundreds of medicines, and
most importantly, they can be used to find new therapies on a personalized level. Recent
advances in zebrafish research include ‘humanized zebrafish’, which allows for a more
intimate tumor microenvironment, and ‘immunodeficient zebrafish’, which allows for
long-term xenograft trials, making this model more relevant and attractive.

There are some disadvantages of using zebrafish as a model for toxicity and drug
testing. In the embryo toxicity assay, commonly, drugs or compounds are directly added
to the water, and zebrafish embryos are exposed to these solutions. In the early stages
of development, the protective chorion of zebrafish embryos may prevent the entry of
compounds that have molecular weights of more than 4000 Da [192]. Additionally, the
zebrafish skin also acts as a barrier to many drugs. In both low-water-soluble and water-
insoluble drug testing, low sensitivity and inconsistent results are common outcomes.
Various factors, including different routes of drug exposure, inaccuracies in determining
the drug concentration within the embryos, temperature variations, lack of adaptive immu-
nity in larvae, and external environmental conditions, can collectively reduce the clinical
relevance of the obtained results. Consequently, alternative administration routes, such as
gavaging and microinjection, become necessary, leading to time-consuming and technically
challenging procedures. Addressing these challenges requires a deep understanding of the
drug/compound’s structure, size, and solubility as well as careful experimental design and
the implementation of various administration methods.

In the future, many unanswered questions need to be addressed. The refinement of
existing models, drug delivery methods, and the development of more immunodeficient
and humanized zebrafish models will help us solve many unresolved questions related to
childhood cancers. Zebrafish have already demonstrated their relevance in several human
disease studies, including studies on pediatric cancers, and we hope that they will soon be
acknowledged as a model animal for clinical trials.
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