Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Outcomes, Search Strategy and Selection Process
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection
2.4. Quality Assessment
Author, Year, Journal | Type of Biomarker | Risk of Bias | Concerns of Applicability | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | ||||||||||||||||
P1 | P2 | P3 | P4 | P | T1 | T2 | T3 | T | R1 | R2 | R3 | R | F1 | F2 | F3 | F4 | F | |||||
Souza et al., 2020, Carcin [42] | mRNA | Y | N | N | N | High | Y | Y | N | Low | Y | N | Y | Low | U | Y | Y | N | Possible | High | Low | Possible |
Connel et al., 2019, BJU Int [43] | mRNA | Y | Y | U | Y | Low | U | U | U | High | Y | Y | Y | Low | Y | N | Y | N | Possible | Low | High | Low |
Van Neste et al., 2016, Eur. Urol. [44] | mRNA | Y | Y | Y | Y | Low | Y | Y | Y | Low | Y | N | Y | Low | Y | Y | N | Y | Low | Low | Low | Possible |
Alvarez-Cubero et al., 2023, Int. J. Mol. Sci. [45] | mRNA | Y | N | N | U | High | Y | Y | U | Low | Y | N | Y | Low | U | N | Y | N | Possible | High | Low | Possible |
Connel et al., 2021, Cancers [46] | mRNA | Y | Y | Y | Y | Low | Y | N | Y | Low | Y | N | Y | Low | Y | Y | Y | Y | Low | Low | Possible | Possible |
Johnson et al., 2020, BMC Medicine [47] | mRNA | Y | Y | Y | Y | Low | Y | Y | Y | Low | Y | Y | U | Low | Y | N | U | N | High | Low | Low | Low |
Rahnama’i et al., 2020, Cancer Reports [48] | mRNA | Y | Y | Y | Y | Low | Y | N | U | Possible | Y | N | Y | Low | Y | Y | Y | Y | Low | Low | Possible | Possible |
Ruiz-Plazas et al., 2021, Cancers [49] | miRNA | Y | Y | Y | N | Possible | Y | N | Y | Low | Y | N | Y | Low | U | Y | Y | Y | Low | Possible | Possible | Possible |
Martínez-González et al., 2021, Biomedicines [50] | miRNA | Y | U | N | U | High | Y | N | U | Possible | N | N | Y | High | U | Y | Y | U | Possible | High | Possible | High |
Ramirez-Garrastacho et al., 2021, Brit. J. Can. [51] | miRNA | Y | U | U | U | High | Y | N | U | Possible | Y | N | Y | Low | U | Y | Y | Y | Low | High | Possible | Possible |
Kim et al., 2021, Sci. Rep. [52] | miRNA | Y | N | N | N | High | Y | N | U | Possible | Y | Y | Y | Low | Y | Y | Y | Y | Low | High | Possible | Low |
Koo et al., 2018, Small [53] | mRNA, miRNA, lncRNA | N | U | Y | U | High | Y | N | U | Possible | Y | N | Y | Low | U | Y | Y | Y | Low | High | Possible | Possible |
Miyoshi et al., 2022, BMC Cancer [54] | Protein | Y | Y | Y | Y | Low | Y | Y | Y | Low | Y | N | Y | Low | U | Y | Y | Y | Low | Low | Low | Possible |
Bhakdi et al., 2019, Cancers [55] | Protein | Y | Y | Y | Y | Low | Y | Y | U | Low | Y | N | Y | Low | Y | N | Y | N | Possible | Low | Low | Possible |
Delkov et al., 2022, Turk J Med Sci [56] | Protein | Y | N | N | Y | Possible | Y | U | U | Possible | Y | Y | N | Low | U | Y | Y | Y | Low | Possible | Possible | Low |
Mahmud et al., 2021, Anal. Chem. [57] | Protein | N | N | N | U | High | Y | N | U | Possible | Y | N | Y | Low | U | Y | Y | Y | Low | High | Possible | Possible |
Ankerst at al., 2015, BMC Urology [58] | Protein | Y | N | N | Y | Possible | Y | Y | U | Low | Y | N | Y | Low | Y | N | Y | Y | Low | Possible | Low | Possible |
Outzen et al., 2016, Brit. J. Nut. [59] | Protein | Y | N | N | U | High | Y | Y | Y | Low | Y | N | Y | Low | Y | Y | Y | U | Low | High | Low | Possible |
Goetze et al., 2022, Clin. Prot. [60] | Protein | Y | Y | Y | Y | Low | Y | U | U | Possible | Y | N | Y | Low | Y | Y | Y | Y | Low | Low | Possible | Possible |
Chiu et al., 2021, Prost. Can. Prost. Dis. [61] | Protein | N | Y | Y | U | High | Y | Y | N | Low | Y | N | Y | Low | Y | N | Y | N | Possible | High | Possible | Possible |
Biggs et al., 2016, Oncotarget [62] | Protein | N | U | N | U | High | Y | U | U | Possible | Y | N | U | Possible | Y | U | U | U | High | High | Possible | Possible |
Chen et al., 2022, Front. Immunol. [63] | Protein | Y | U | N | Y | Possible | Y | Y | N | Low | Y | N | Y | Low | Y | Y | Y | Y | Low | Possible | Possible | Possible |
Brikun et al., 2019, Exp Hematol Oncol [64] | DNA methylation | Y | N | N | U | High | Y | U | U | Possible | Y | Y | Y | Low | U | U | U | N | High | High | Possible | Low |
Connell et al., 2020, The Prostate [65] | DNA methylation | Y | Y | Y | Y | Low | Y | N | Y | Low | Y | N | Y | Low | Y | Y | Y | Y | Low | Low | Possible | Possible |
3. Results
3.1. Literature Overview
3.2. Quality Assessment
3.3. Biomarkers Accuracy for PCa Pre-Treatment Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bento, M.J.; Rodrigues, J.; Leite Silva, P.; Calisto, R. Registo Oncológico Nacional de Todos os Tumores na População Residente em Portugal, em 2019. 2022. Available online: https://diariodarepublica.pt/dr/detalhe/despacho/13227-2023-835712442 (accessed on 1 April 2023).
- Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025. [Google Scholar] [CrossRef]
- Grönberg, H.; Adolfsson, J.; Aly, M.; Nordström, T.; Wiklund, P.; Brandberg, Y.; Thompson, J.; Wiklund, F.; Lindberg, J.; Clements, M.; et al. Prostate cancer screening in men aged 50–69 years (STHLM3): A prospective population-based diagnostic study. Lancet Oncol. 2015, 16, 1667–1676. [Google Scholar] [CrossRef]
- Matoso, A.; Epstein, J.I. Defining clinically significant prostate cancer on the basis of pathological findings. Histopathology 2019, 74, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Ström, P.; Nordström, T.; Aly, M.; Egevad, L.; Grönberg, H.; Eklund, M. The Stockholm-3 Model for Prostate Cancer Detection: Algorithm Update, Biomarker Contribution, and Reflex Test Potential. Eur. Urol. 2018, 74, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; He, S.; Zhang, H.; He, S.; Qi, H.; Wei, A. Clinical and Biological Significance of DNA Methylation-Driven Differentially Expressed Genes in Biochemical Recurrence after Radical Prostatectomy. Front. Genet. 2022, 13, 727307. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Y.; Wang, P.-Y.; Liu, M.-Z.; Lyu, F.; Ma, M.-W.; Ren, X.-Y.; Gao, X.-S. Biomarkers for Prostate Cancer: From Diagnosis to Treatment. Diagnostics 2023, 13, 3350. [Google Scholar] [CrossRef] [PubMed]
- Loeb, S.; Catalona, W.J. The Prostate Health Index: A new test for the detection of prostate cancer. Ther. Adv. Urol. 2014, 6, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Popiolek, M.; Rider, J.R.; Andrén, O.; Andersson, S.-O.; Holmberg, L.; Adami, H.-O.; Johansson, J.-E. Natural History of Early, Localized Prostate Cancer: A Final Report from Three Decades of Follow-up. Eur. Urol. 2013, 63, 428–435. [Google Scholar] [CrossRef]
- Zelic, R.; Garmo, H.; Zugna, D.; Stattin, P.; Richiardi, L.; Akre, O.; Pettersson, A. Predicting Prostate Cancer Death with Different Pretreatment Risk Stratification Tools: A Head-to-head Comparison in a Nationwide Cohort Study. Eur. Urol. 2020, 77, 180–188. [Google Scholar] [CrossRef]
- Cooperberg, M.R.; Pasta, D.J.; Elkin, E.P.; Litwin, M.S.; Latini, D.M.; Du Chane, J.; Carroll, P.R. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: A straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J. Urol. 2005, 173, 1938–1942. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998, 280, 969–974. [Google Scholar] [CrossRef]
- Gnanapragasam, V.J.; Lophatananon, A.; Wright, K.A.; Muir, K.R.; Gavin, A.; Greenberg, D.C. Improving Clinical Risk Stratification at Diagnosis in Primary Prostate Cancer: A Prognostic Modelling Study. PLoS Med. 2016, 13, e1002063. [Google Scholar] [CrossRef]
- Graham, J.; Kirkbride, P.; Cann, K.; Hasler, E.; Prettyjohns, M. Prostate cancer: Summary of updated NICE guidance. BMJ 2014, 348, f7524. [Google Scholar] [CrossRef] [PubMed]
- Lukka, H.; Warde, P.; Pickles, T.; Morton, G.; Brundage, M.; Souhami, L. Controversies in prostate cancer radiotherapy: Consensus development. Can. J. Urol. 2001, 8, 1314–1322. [Google Scholar] [PubMed]
- Mohler, J.L.; Armstrong, A.J.; Bahnson, R.R.; D’Amico, A.V.; Davis, B.J.; Eastham, J.A.; Enke, C.A.; Farrington, T.A.; Higano, C.S.; Horwitz, E.M.; et al. Prostate Cancer, Version 1.2016. J. Natl. Compr. Cancer Netw. 2016, 14, 19–30. [Google Scholar] [CrossRef]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Sanda, M.G.; Cadeddu, J.A.; Kirkby, E.; Chen, R.C.; Crispino, T.; Fontanarosa, J.; Freedland, S.J.; Greene, K.; Klotz, L.H.; Makarov, D.V.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. Part I: Risk Stratification, Shared Decision Making, and Care Options. J. Urol. 2018, 199, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Institute for Quality and Efficiency in Health Care (IQWiG), Localized Prostate Cancer: Low-Risk Prostate Cancer: Active Surveillance or Treatment? Available online: https://www.ncbi.nlm.nih.gov/books/NBK487255/ (accessed on 14 March 2023).
- McKay, R.R.; Feng, F.Y.; Wang, A.Y.; Wallis, C.J.D.; Moses, K.A. Recent Advances in the Management of High-Risk Localized Prostate Cancer: Local Therapy, Systemic Therapy, and Biomarkers to Guide Treatment Decisions. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, e241–e252. [Google Scholar] [CrossRef]
- Farha, M.W.; Salami, S.S. Biomarkers for prostate cancer detection and risk stratification. Ther. Adv. Urol. 2022, 14, 17562872221103988. [Google Scholar] [CrossRef]
- Health Quality Ontario. Prolaris Cell Cycle Progression Test for Localized Prostate Cancer: A Health Technology Assessment. Ont. Health Technol. Assess Ser. 2017, 17, 1–75. [Google Scholar]
- Knezevic, D.; Goddard, A.D.; Natraj, N.; Cherbavaz, D.B.; Clark-Langone, K.M.; Snable, J.; Watson, D.; Falzarano, S.M.; Magi-Galluzzi, C.; Klein, E.A.; et al. Analytical validation of the Oncotype DX prostate cancer assay—A clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genom. 2013, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Eklund, M.; Nordström, T.; Aly, M.; Adolfsson, J.; Wiklund, P.; Brandberg, Y.; Thompson, J.; Wiklund, F.; Lindberg, J.; Presti, J.C.; et al. The Stockholm-3 (STHLM3) Model can Improve Prostate Cancer Diagnostics in Men Aged 50–69 yr Compared with Current Prostate Cancer Testing. Eur. Urol. Focus 2018, 4, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Nordström, T.; Eklund, M.; Grönberg, H. Future directions in prostate cancer testing: A comment upon results from the prospective population-based diagnostic study. Lancet Oncol. 2015, 16, 1667–1676. [Google Scholar] [CrossRef]
- Risør, B.W.; Tayyari Dehbarez, N.; Fredsøe, J.; Sørensen, K.D.; Pedersen, B.G. Cost-Effectiveness Analysis of Stockholm 3 Testing Compared to PSA as the Primary Blood Test in the Prostate Cancer Diagnostic Pathway: A Decision Tree Approach. Appl. Health Econ. Health Policy 2022, 20, 867–880. [Google Scholar] [CrossRef] [PubMed]
- Eggener, S.E.; Rumble, R.B.; Armstrong, A.J.; Morgan, T.M.; Crispino, T.; Cornford, P.; van der Kwast, T.; Grignon, D.J.; Rai, A.J.; Agarwal, N.; et al. Molecular Biomarkers in Localized Prostate Cancer: ASCO Guideline. J. Clin. Oncol. 2020, 38, 1474–1494. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.C.; Yildirim, O.; Woo, S.; Vargas, H.A.; Hricak, H. The role of MRI in prostate cancer: Current and future directions. Magn. Reson. Mater. Phys. Biol. Med. 2022, 35, 503–521. [Google Scholar] [CrossRef] [PubMed]
- Hirahata, T.; Ul Quraish, R.; Quraish, A.U.; Ul Quraish, S.; Naz, M.; Razzaq, M.A. Liquid Biopsy: A Distinctive Approach to the Diagnosis and Prognosis of Cancer. Cancer Inform. 2022, 21, 11769351221076062. [Google Scholar] [CrossRef]
- Sosnowski, R.; Zagrodzka, M.; Borkowski, T. The limitations of multiparametric magnetic resonance imaging also must be borne in mind. Cent. European J. Urol. 2016, 69, 22–23. [Google Scholar] [CrossRef]
- Lianidou, E. Detection and relevance of epigenetic markers on ctDNA: Recent advances and future outlook. Mol. Oncol. 2021, 15, 1683–1700. [Google Scholar] [CrossRef] [PubMed]
- Palanca-Ballester, C.; Rodriguez-Casanova, A.; Torres, S.; Calabuig-Fariñas, S.; Exposito, F.; Serrano, D.; Redin, E.; Valencia, K.; Jantus-Lewintre, E.; Diaz-Lagares, A.; et al. Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers 2021, 13, 3016. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Moran, B.; Russell, N.M.; Fahey, C.; Vlajnic, T.; Manecksha, R.P.; Finn, S.P.; Brennan, D.J.; Gallagher, W.M.; Perry, A.S. Evaluating liquid biopsies for methylomic profiling of prostate cancer. Epigenetics 2020, 15, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Constâncio, V.; Nunes, S.P.; Henrique, R.; Jerónimo, C. DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types. Cells 2020, 9, 624. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, J.P.; Barros-Silva, D.; Ferreira-Torre, P.; Salta, S.; Braga, I.; Carvalho, J.; Freitas, R.; Henrique, R.; Jerónimo, C. OncoUroMiR: Circulating miRNAs for Detection and Discrimination of the Main Urological Cancers Using a ddPCR-Based Approach. Int. J. Mol. Sci. 2023, 24, 13890. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; Group, Q. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Salta, S.; Lobo, J.; Magalhães, B.; Henrique, R.; Jerónimo, C. DNA methylation as a triage marker for colposcopy referral in HPV-based cervical cancer screening: A systematic review and meta-analysis. Clin. Epigenetics 2023, 15, 125. [Google Scholar] [CrossRef] [PubMed]
- McInnes, M.D.F.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; Hooft, L.; et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA 2018, 319, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Salameh, J.P.; Bossuyt, P.M.; McGrath, T.A.; Thombs, B.D.; Hyde, C.J.; Macaskill, P.; Deeks, J.J.; Leeflang, M.; Korevaar, D.A.; Whiting, P.; et al. Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): Explanation, elaboration, and checklist. BMJ 2020, 370, m2632. [Google Scholar] [CrossRef]
- De Souza, M.F.; Kuasne, H.; Barros-Filho, M.D.C.; Cilião, H.L.; Marchi, F.A.; Fuganti, P.E.; Rogatto, S.R.; Cólus, I.M.D.S. Circulating mRNA signature as a marker for high-risk prostate cancer. Carcinogenesis 2020, 41, 139–145. [Google Scholar] [CrossRef]
- Connell, S.P.; Yazbek-Hanna, M.; McCarthy, F.; Hurst, R.; Webb, M.; Curley, H.; Walker, H.; Mills, R.; Ball, R.Y.; Sanda, M.G.; et al. A four-group urine risk classifier for predicting outcomes in patients with prostate cancer. BJU Int. 2019, 124, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Van Neste, L.; Hendriks, R.J.; Dijkstra, S.; Trooskens, G.; Cornel, E.B.; Jannink, S.A.; de Jong, H.; Hessels, D.; Smit, F.P.; Melchers, W.J.G.; et al. Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker–Based Risk Score. Eur. Urol. 2016, 70, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Cubero, M.J.; Arance, E.; de Santiago, E.; Sanchez, P.; Sepúlveda, M.R.; Marrero, R.; Lorente, J.A.; Gonzalez-Cabezuelo, J.M.; Cuenca-Lopez, S.; Cozar, J.M.; et al. Follow-Up Biomarkers in the Evolution of Prostate Cancer, Levels of S100A4 as a Detector in Plasma. Int. J. Mol. Sci. 2022, 24, 547. [Google Scholar] [CrossRef]
- Connell, S.P.; Mills, R.; Pandha, H.; Morgan, R.; Cooper, C.S.; Clark, J.; Brewer, D.S.; The Movember GAP1 Urine Biomarker Consortium. Integration of Urinary EN2 Protein & Cell-Free RNA Data in the Development of a Multivariable Risk Model for the Detection of Prostate Cancer Prior to Biopsy. Cancers 2021, 13, 2102. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.; Guo, J.; Zhang, X.; Zhang, H.; Simoulis, A.; Wu, A.H.B.; Xia, T.; Li, F.; Tan, W.; Johnson, A.; et al. Development and validation of a 25-Gene Panel urine test for prostate cancer diagnosis and potential treatment follow-up. BMC Med. 2020, 18, 376. [Google Scholar] [CrossRef]
- Rahnama’i, M.S.; Bach, C.; Schulze-Hagen, M.; Kuhl, C.K.; Vögeli, T.A. Can the predictive value of multiparametric MRI for prostate cancer be improved by a liquid biopsy with SelectMDx? Cancer Rep. 2021, 4, e1396. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Plazas, X.; Altuna-Coy, A.; Alves-Santiago, M.; Vila-Barja, J.; García-Fontgivell, J.F.; Martínez-González, S.; Segarra-Tomás, J.; Chacón, M.R. Liquid Biopsy-Based Exo-oncomiRNAs Can Predict Prostate Cancer Aggressiveness. Cancers 2021, 13, 250. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, L.J.; Sánchez-Conde, V.; González-Cabezuelo, J.M.; Antunez-Rodríguez, A.; Andrés-León, E.; Robles-Fernandez, I.; Lorente, J.A.; Vázquez-Alonso, F.; Alvarez-Cubero, M.J. Identification of MicroRNAs as Viable Aggressiveness Biomarkers for Prostate Cancer. Biomedicines 2021, 9, 646. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Garrastacho, M.; Berge, V.; Linē, A.; Llorente, A. Potential of miRNAs in urinary extracellular vesicles for management of active surveillance in prostate cancer patients. Br. J. Cancer 2022, 126, 492–501. [Google Scholar] [CrossRef]
- Kim, M.Y.; Shin, H.; Moon, H.W.; Park, Y.H.; Park, J.; Lee, J.Y. Urinary exosomal microRNA profiling in intermediate-risk prostate cancer. Sci. Rep. 2021, 11, 7355. [Google Scholar] [CrossRef]
- Koo, K.M.; Dey, S.; Trau, M. Amplification-Free Multi-RNA-Type Profiling for Cancer Risk Stratification via Alternating Current Electrohydrodynamic Nanomixing. Small 2018, 14, e1704025. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, Y.; Kawahara, T.; Uemura, H. A high serum dehydroepiandrosterone concentration is a predictor of candidates for active surveillance in men with serum prostate-specific antigen < 10 ng/mL. BMC Cancer 2022, 22, 1169. [Google Scholar] [CrossRef]
- Bhakdi, S.C.; Suriyaphol, P.; Thaicharoen, P.; Grote, S.T.K.; Komoltri, C.; Chaiyaprasithi, B.; Charnkaew, K. Accuracy of Tumour-Associated Circulating Endothelial Cells as a Screening Biomarker for Clinically Significant Prostate Cancer. Cancers 2019, 11, 1064. [Google Scholar] [CrossRef] [PubMed]
- Delkov, D.; Yoanıdu, L.; Tomov, D.; Stoyanova, R.; Dechev, I.; Uzunova, Y. Oncometabolites in urine—A new opportunity for detection and prognosis of the clinical progress of verified prostate cancer-a pilot study. Turk. J. Med. Sci. 2022, 52, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, I.; Pinto, F.G.; Rubio, V.Y.; Lee, B.; Pavlovich, C.P.; Perera, R.J.; Garrett, T.J. Rapid Diagnosis of Prostate Cancer Disease Progression Using Paper Spray Ionization Mass Spectrometry. Anal. Chem. 2021, 93, 7774–7780. [Google Scholar] [CrossRef] [PubMed]
- Ankerst, D.P.; Liss, M.; Zapata, D.; Hoefler, J.; Thompson, I.M.; Leach, R.J. A case control study of sarcosine as an early prostate cancer detection biomarker. BMC Urol. 2015, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Outzen, M.; Tjønneland, A.; Larsen, E.H.; Friis, S.; Larsen, S.B.; Christensen, J.; Overvad, K.; Olsen, A. Selenium status and risk of prostate cancer in a Danish population. Br. J. Nutr. 2016, 115, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Goetze, S.; Schüffler, P.; Athanasiou, A.; Koetemann, A.; Poyet, C.; Fankhauser, C.D.; Wild, P.J.; Schiess, R.; Wollscheid, B. Use of MS-GUIDE for identification of protein biomarkers for risk stratification of patients with prostate cancer. Clin. Proteom. 2022, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.K.; Fung, Y.H.; Teoh, J.Y.; Chan, C.H.; Lo, K.L.; Li, K.M.; Tse, R.T.; Leung, C.H.; Wong, Y.P.; Roobol, M.J.; et al. Urine spermine and multivariable Spermine Risk Score predict high-grade prostate cancer. Prostate Cancer Prostatic Dis. 2021, 24, 542–548. [Google Scholar] [CrossRef]
- Biggs, C.N.; Siddiqui, K.M.; Al-Zahrani, A.A.; Pardhan, S.; Brett, S.I.; Guo, Q.Q.; Yang, J.; Wolf, P.; Power, N.E.; Durfee, P.N.; et al. Prostate extracellular vesicles in patient plasma as a liquid biopsy platform for prostate cancer using nanoscale flow cytometry. Oncotarget 2016, 7, 8839–8849. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, J.; Luo, J.; Wu, Y.; Qian, Y.; Shi, Y.; Qu, F.; Shi, B.; Ding, J.; Cui, X. Serum multi-cytokines screening identifies TRAIL and IL-10 as probable new biomarkers for prostate health index diagnostic utility adjustment in grey zone aggressive prostate cancer detection: A single-center data in China. Front. Immunol. 2022, 13, 901176. [Google Scholar] [CrossRef] [PubMed]
- Brikun, I.; Nusskern, D.; Freije, D. An expanded biomarker panel for the detection of prostate cancer from urine DNA. Exp. Hematol. Oncol. 2019, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Connell, S.P.; O’Reilly, E.; Tuzova, A.; Webb, M.; Hurst, R.; Mills, R.; Zhao, F.; Bapat, B.; Cooper, C.S.; Perry, A.S.; et al. Development of a multivariable risk model integrating urinary cell DNA methylation and cell-free RNA data for the detection of significant prostate cancer. Prostate 2020, 80, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Mello-Grand, M.; Bruno, A.; Sacchetto, L.; Cristoni, S.; Gregnanin, I.; Dematteis, A.; Zitella, A.; Gontero, P.; Peraldo-Neia, C.; Ricotta, R. Two novel ceramide-like molecules and miR-5100 levels as biomarkers improve prediction of prostate cancer in gray-zone PSA. Front. Oncol. 2021, 11, 769158. [Google Scholar] [CrossRef] [PubMed]
- Drago, D.; Andolfo, A.; Mosca, E.; Orro, A.; Nocera, L.; Cucchiara, V.; Bellone, M.; Montorsi, F.; Briganti, A. A novel expressed prostatic secretion (EPS)-urine metabolomic signature for the diagnosis of clinically significant prostate cancer. Cancer Biol. Med. 2021, 18, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Park, Y.H.; Jung, S.-H.; Jang, S.-H.; Kim, M.Y.; Lee, J.Y.; Chung, Y.J. Urinary exosome microRNA signatures as a noninvasive prognostic biomarker for prostate cancer. Npj Genom. Med. 2021, 6, 45. [Google Scholar] [CrossRef]
- Constâncio, V.; Barros-Silva, D.; Jerónimo, C.; Henrique, R. Known epigenetic biomarkers for prostate cancer detection and management: Exploring the potential of blood-based liquid biopsies. Expert Rev. Mol. Diagn. 2019, 19, 367–375. [Google Scholar] [CrossRef]
- Sequeira, J.P.; Constâncio, V.; Lobo, J.; Henrique, R.; Jerónimo, C. Unveiling the World of Circulating and Exosomal microRNAs in Renal Cell Carcinoma. Cancers 2021, 13, 5252. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, A.; Bartlett, J.; Cheng, Y.; Pasic, M.D.; Yousef, G.M. Liquid biopsy: A step forward towards precision medicine in urologic malignancies. Mol. Cancer 2017, 16, 80. [Google Scholar] [CrossRef]
- Hou, J.; Li, X.; Xie, K.P. Coupled liquid biopsy and bioinformatics for pancreatic cancer early detection and precision prognostication. Mol. Cancer 2021, 20, 34. [Google Scholar] [CrossRef]
- Alharbi, R.A. Proteomics approach and techniques in identification of reliable biomarkers for diseases. Saudi J. Biol. Sci. 2020, 27, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Čelešnik, H.; Potočnik, U. Blood-Based mRNA Tests as Emerging Diagnostic Tools for Personalised Medicine in Breast Cancer. Cancers 2023, 15, 1087. [Google Scholar] [CrossRef] [PubMed]
- Hanash, S.M. Why have protein biomarkers not reached the clinic? Genome Med. 2011, 3, 66. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef]
- Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin. Epigenetics 2018, 10, 59. [Google Scholar] [CrossRef]
- Rázga, F.; Némethová, V. Gene expression patterns as predictive biomarkers in hematology-oncology: Principal hurdles on the road to the clinic. Haematologica 2017, 102, e31–e32. [Google Scholar] [CrossRef] [PubMed]
- Ellinger, J.; Haan, K.; Heukamp, L.C.; Kahl, P.; Büttner, R.; Müller, S.C.; von Ruecker, A.; Bastian, P.J. CpG Island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate 2008, 68, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Payne, S.R.; Serth, J.; Schostak, M.; Kamradt, J.; Strauss, A.; Thelen, P.; Model, F.; Day, J.K.; Liebenberg, V.; Morotti, A.; et al. DNA methylation biomarkers of prostate cancer: Confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate 2009, 69, 1257–1269. [Google Scholar] [CrossRef]
- Sunami, E.; Shinozaki, M.; Higano, C.S.; Wollman, R.; Dorff, T.B.; Tucker, S.J.; Martinez, S.R.; Singer, F.R.; Hoon, D.S.B. Multimarker Circulating DNA Assay for Assessing Blood of Prostate Cancer Patients. Clin. Chem. 2009, 55, 559–567. [Google Scholar] [CrossRef]
- Wu, T.; Giovannucci, E.; Welge, J.; Mallick, P.; Tang, W.Y.; Ho, S.M. Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: A meta-analysis. Br. J. Cancer 2011, 105, 65–73. [Google Scholar] [CrossRef]
- Dumache, R.; Puiu, M.; Motoc, M.; Vernic, C.; Dumitrascu, V. Prostate cancer molecular detection in plasma samples by glutathione S-transferase P1 (GSTP1) methylation analysis. Clin. Lab. 2014, 60, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Reibenwein, J.; Pils, D.; Horak, P.; Tomicek, B.; Goldner, G.; Worel, N.; Elandt, K.; Krainer, M. Promoter hypermethylation of GSTP1, AR, and 14-3-3σ in serum of prostate cancer patients and its clinical relevance. Prostate 2007, 67, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Laperriere, G.; Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci. Rep. 2017, 7, 2409. [Google Scholar] [CrossRef]
- Sequeira, J.P.; Lobo, J.; Constâncio, V.; Brito-Rocha, T.; Carvalho-Maia, C.; Braga, I.; Maurício, J.; Henrique, R.; Jerónimo, C. DigiMir Test: Establishing a Novel Pipeline for MiR-371a Quantification Using Droplet Digital PCR in Liquid Biopsies From Testicular Germ Cell Tumor Patients. Front. Oncol. 2022, 12, 876732. [Google Scholar] [CrossRef] [PubMed]
Author, Year, Journal | Type of Biomarker | Biomarker | Type of Liquid Biopsies | Risk Stratification | Method | Sample | AUC | Se % | Sp % | PPV % | NPV % |
---|---|---|---|---|---|---|---|---|---|---|---|
Souza et al., 2020, Carcin [42] | mRNA | GOLM1 + NKX3-1 + TRPM8 | Plasma | ISUP < 4 and tumor stage < pT3a vs. ISUP ≥ 4 and/or tumor stage ≥ pT3a | qPCR | 60 patients who have undergone RP | 0.76 | 85.0 | 58.0 | 61.0 | 83.0 |
Connel et al., 2019, BJU Int [43] | mRNA | PUR (Prostate Urine Risk) panel—37 genes | Urine | Normal tissue vs. D’amico low-risk vs. D’Amico intermediate-risk vs. D’Amico High Risk | Nanostring | 535 first-catch post-DRE collected at diagnosis | 0.72 | NA | NA | NA | NA |
Van Neste et al., 2016, Eur. Urol. [44] | mRNA | HOXC6 + DLX1 | Urine | ISUP = 1 vs. ISUP ≥ 2 | qPCR | Discovery set: 519 patients; Validation set: 386 patients | DS: 0.76; VS: 0.73 | DS: 91.0 | DS: 36.0 | DS: 27.0 | DS:94.0 |
Alvarez-Cubero et al., 2023, Int. J. Mol. Sci. [45] | mRNA | MRC2 + S100A4 | Plasma | ISUP 1, 2 vs. ISUP 3, 4, 5 | dPCR | 20 patients with ISUP 1, 2 and 31 patients with ISUP 3, 4, 5 | 0.65 | 64.5 | 65.0 | 74.1 | 54.2 |
PSA < 20 ng/mL vs. PSA > 20 ng/mL | 26 patients with PSA < 20 ng/mL and 25 patients with PSA > 20 ng/mL | 0.60 | 20.0 | 100.0 | 100.0 | 56.5 | |||||
No metastasis vs. Metastasis | 12 patients without metastasis and 34 patients with metastasis | 0.67 | 58.8 | 75.0 | 87.0 | 39.1 | |||||
PCA3 + S100A4 | PSA < 20 vs. PSA > 20 | 27 patients with PSA < 20 ng/mL and 29 patients with PSA > 20 ng/mL | 0.60 | 27.6 | 92.6 | 80.0 | 54.3 | ||||
No metastasis vs. Metastasis | 16 patients without metastasis and 38 patients with metastasis | 0.68 | 73.7 | 62.5 | 82.4 | 50.0 | |||||
Connel et al., 2021, Cancers [46] | mRNA | 167 gene probes for cell-free RNA | Urine | ISUP = 0 vs. ISUP = 1 vs. ISUP ≥ 2 | NanoString and ELISA | 207 first-catch post-DRE (77 no cancer finding, 130 PCa) | 0.89 | NA | NA | NA | NA |
Johnson et al., 2020, BMC Medicine [47] | mRNA | 25-gene panel | Urine | ISUP > 2, staging ≥ T3, PSA > 20, biochemical recurrence after prostatectomy, metastasis at diagnosis/follow-up vs. other | qPCR | 163 ISUP = 1, 273 ISUP = 2 and 292 ISUP ≥ 3 | 0.93 | NA | NA | NA | NA |
Rahnama’i et al., 2020, Cancer Reports [48] | mRNA | DLX1 + HOXC6 | Urine | ISUP < 2 vs. ISUP ≥ 2 | qPCR | 39 PCa (1 with ISUP < 2 and 38 with ISUP ≥ 2) | NA | 36.8 | 100 | 100 | 4.0 |
Ruiz-Plazas et al., 2021, Cancers [49] | miRNA | miR-221-3p, miR-222-3p, sTWEAK | Semen | ISUP 1, 2 vs. ISUP 3, 4, 5 | qPCR | 97 patients who have undergone RP | 0.86 | 85.7 | 76.9 | NA | NA |
Martínez-González et al., 2021, Biomedicines [50] | miRNA | miR-23c | Plasma | ISUP ≤ 2 vs. ISUP > 2 | qPCR | 60 patients with PSA ≥ 4 ng/mL meeting the criteria for undergoing a prostate biopsy | NA | NA | NA | NA | NA |
Ramirez-Garrastacho et al., 2021, Brit. J. Can. [51] | miRNA | Hsa-miR-186-5p + PSA | Urine | ISUP 1 vs. 2 vs. 3 | qPCR | 60 PCa (20 from each ISUP group) | 0.78 | NA | NA | NA | NA |
Hsa-miR-30e + PSA | 0.74 | NA | NA | NA | NA | ||||||
Hsa-miR-320a-3p + PSA | 0.77 | NA | NA | NA | NA | ||||||
Kim et al., 2021, Sci. Rep. [52] | miRNA | ExomiR-26a-5p | Urine | ISUP = 2 BCR vs. ISUP = 2 non-BCR | qPCR | Discovery set: 21 non-BCR, 6 BCR; Validation set: 28 non-BCR, 26 BCR | 0.67 | NA | NA | NA | NA |
ExomiR-532-5p | 0.67 | ||||||||||
ExomiR-99b-3p | 0.67 | ||||||||||
Koo et al., 2018, Small [53] | mRNA, miRNA, lncRNA | TMPRSS2:ERG + miR-107 + SChLAP1 | Urine | ISUP ≤ 2 vs. ISUP > 2 | qPCR | 18 PCa samples (10 with ISUP ≤ 2 and 8 with ISUP > 2) and 2 HD | NA | NA | NA | NA | NA |
Miyoshi et al., 2022, BMC Cancer [54] | Protein | DHEA | Serum | BPH + ISUP ≤ 2 vs. ISUP > 3 | LC-MS/MS | 203 patients with PSA levels < 10 ng/mL | NA | 33.7 | 96.0 | 98.4 | 16.9 |
Bhakdi et al., 2019, Cancers [55] | Protein | tCECs | Whole Blood | 1st definition: csPCa vs. ncsPCa (ISUP ≥ 2 vs. ISUP < 2). 2nd definition: csPCa vs. ncsPCa (ISUP ≥ 3 vs. ISUP <3 ) | Haemocytometer and fluorescence microscopy | 146 PCa patients | NA | 1st: 75.0 2nd: 71.0 | 1st:67.0 2nd:63.0 | 1st:32.0 2nd:18.0 | 1st:93.0 2nd:95.0 |
Delkov et al., 2022, Turk J Med Sci [56] | Protein | GABA | Urine | EAU stratification system: High-risk vs. Intermediate risk. High-Risk vs. Low-Risk | HPLC-MS/MS | 101 PCa patients and 52 controls | NA | NA | NA | NA | NA |
Mahmud et al., 2021, Anal. Chem. [57] | Protein | Thymidine glycol | Urine | ISUP = 1 vs. ISUP ≥ 2 | PSI-MS | 40 PCa patients (10 from each ISUP) and 10 HD | NA | NA | NA | NA | NA |
Ankerst at al., 2015, BMC Urology [58] | Protein | Sarcosine | Serum | ISUP = 1 vs. ISUP ≥ 2 | HPLC-electrospray ionization mass spectrometry | 246 cancer cases and 251 age-matched non-cancer cases | not significant. p-value > 0.05 | NA | NA | NA | NA |
Outzen et al., 2016, Brit. J. Nut. [59] | Protein | Selenium | Plasma | >T3 or ISUP > 2 or N1 or M1, or “regional/distant” extent of disease or PSA > 15 VS High-grade PCa—ISUP > 4 | chemical analyses | 784 cases (525 advanced PCa, 170 high-grade PCa, 89 low-grade PCa) | not significant. p-value > 0.05 | NA | NA | NA | NA |
Goetze et al., 2022, Clin. Prot. [60] | Protein | Fibronectin + vitronectin | Serum | total PSA = 4–10, tumor stage = pT2, and ISUP ≤ 1 vs. total PSA > 10, tumor stage = pT3, and ISUP ≥ 2 | Development phase: MS-GUIDE/Validation: ELISA | Discovery set: 78 patients; validation set: 263 patients | 0.66 | NA | NA | NA | NA |
Chiu et al., 2021, Prost. Can. Prost. Dis. [61] | Protein | Spermine | Urine | ISUP 1 vs. ISUP 2, 3, 4, 5 | UPLC-MS/MS | 600 Patients | 0.82 (Spermine + prostate volume + PSA + age + DRE). 0.66 (spermine) | NA | NA | NA | NA |
Biggs et al., 2016, Oncotarget [62] | Protein | Circulating Prostate Microparticles | Plasma | ISUP ≤ 2 vs. ISUP > 2 | Nanoscale flow cytometry | Healthy volunteers = 22, BPH = 156, localized PCa = 256, CRPC = 67 | NA | NA | NA | NA | NA |
Chen et al., 2022, Front. Immunol. [63] | Protein | PHI + tPSA + fPSA + TRAIL + IL-10 | serum | ISUP = 1 vs. ISUP ≥ 2 | Luminex cytokine immunoassays | 79 aggressive PCa and 209 indolent PCa or BPH | 0.92 | NA | NA | NA | NA |
Brikun et al., 2019, Exp Hematol Oncol [64] | DNA methylation | 32 markers | Urine | CAPRA risk | qPCR | 15 group 1 (low), 18 group 2 (high)—DRE samples | NA | NA | NA | NA | NA |
10 group 1 (low), 18 group 2 (high)—first void samples | NA | NA | NA | NA | NA | ||||||
Connell et al., 2020, The Prostate [65] | DNA methylation | GSTP1, SFRP2, IGFBP3, IGFBP7, APC, PTSG2 and 167 gene-probes of cell free RNA | Urine | ISUP = 1 vs. ISUP = 2 vs. ISUP ≥ 3 | NanoString | 297 first-catch post-DRE (77 no cancer finding, 120 PCa) | 0.89 | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sequeira, J.P.; Salta, S.; Freitas, R.; López-López, R.; Díaz-Lagares, Á.; Henrique, R.; Jerónimo, C. Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review. Cancers 2024, 16, 1363. https://doi.org/10.3390/cancers16071363
Sequeira JP, Salta S, Freitas R, López-López R, Díaz-Lagares Á, Henrique R, Jerónimo C. Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review. Cancers. 2024; 16(7):1363. https://doi.org/10.3390/cancers16071363
Chicago/Turabian StyleSequeira, José Pedro, Sofia Salta, Rui Freitas, Rafael López-López, Ángel Díaz-Lagares, Rui Henrique, and Carmen Jerónimo. 2024. "Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review" Cancers 16, no. 7: 1363. https://doi.org/10.3390/cancers16071363
APA StyleSequeira, J. P., Salta, S., Freitas, R., López-López, R., Díaz-Lagares, Á., Henrique, R., & Jerónimo, C. (2024). Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review. Cancers, 16(7), 1363. https://doi.org/10.3390/cancers16071363