Robot-Assisted Radical Prostatectomy Performed with the Novel Surgical Robotic Platform Hugo™ RAS: Monocentric First Series of 132 Cases Reporting Surgical, and Early Functional and Oncological Outcomes at a Tertiary Referral Robotic Center
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- -
- Red system errors: at least one of the robotic arms not responding to the console, requiring shutdown and restart.
- -
- Yellow errors: blocked robotic arms that required removal and replacement of the arm with or without the trocar.
- -
- Significant conflicts between the robotic arms: when their positions interfere with each other’s movement.
- -
- Broken instruments: the laparoscopic robotic instrument was damaged and had to be replaced.
- -
- Social continence rate: defined as the use of no more than one pad per day [8].
- -
- Unfavorable positive surgical margins: a single positive margin greater than or equal to 3 mm or a multifocal positive margin [9].
- -
- Erectile function: using the International Index of Erectile Function Questionnaire (IIEF-5).
3. Results
3.1. Pre-Operative Data
3.2. Intra-Operative Data
3.3. Post-Operative Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yaxley, J.W.; Coughlin, G.D.; Chambers, S.K.; Occhipinti, S.; Samaratunga, H.; Zajdlewicz, L.; Dunglison, N.; Carter, R.; Williams, S.; Payton, D.J.; et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: Early outcomes from a randomised controlled phase 3 study. Lancet 2016, 10, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Trinh, Q.D.; Sammon, J.; Sun, M.; Ravi, P.; Ghani, K.R.; Bianchi, M.; Jeong, W.; Shariat, S.F.; Hansen, J.; Schmitges, J.; et al. Perioperative outcomes of robot-assisted radical prostatectomy compared with open radical prostatectomy: Results from the nationwide inpatient sample. Eur. Urol. 2012, 61, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Alip, S.L.; Kim, J.; Rha, K.H.; Han, W.K. Future Platforms of Robotic Surgery. Urol. Clin. 2022, 49, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Almujalhem, A.; Rha, K.H. Surgical robotic systems: What we have now? A urological perspective. BJUI Compass 2020, 19, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Medtronic. Medtronic HugoTM Robotic-Assisted Surgery System Receives European CE Mark Approval. 11 October 2021. Available online: https://news.medtronic.com/2021-10-11-Medtronic-Hugo-TM-Robotic-Assisted-Surgery-System-Receives-European-CE-Mark-Approval (accessed on 9 August 2023).
- Guillonneau, B.; Vallancien, G. Laparoscopic radical prostatectomy: The Montsouris technique. J. Urol. 2000, 163, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Gandaglia, G.; Fossati, N.; Zaffuto, E.; Bandini, M.; Dell’Oglio, P.; Bravi, C.A.; Fallara, G.; Pellegrino, F.; Nocera, L.; Karakiewicz, P.I.; et al. Development and Internal Validation of a Novel Model to Identify the Candidates for Extended Pelvic Lymph Node Dissection in Prostate Cancer. Eur. Urol. 2017, 72, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Sacco, E.; Marino, F.; Gandi, C.; Bientinesi, R.; Totaro, A.; Moretto, S.; Gavi, F.; Campetella, M.; Racioppi, M. Transalbugineal Artificial Urinary Sphincter: A Refined Implantation Technique to Improve Surgical Outcomes. J. Clin. Med. 2023, 12, 3021. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.; Gandaglia, G.; Fossati, N.; Scuderi, S.; Bravi, C.A.; Mazzone, E.; Stabile, A.; Scarcella, S.; Robesti, D.; Barletta, F.; et al. Defining Clinically Meaningful Positive Surgical Margins in Patients Undergoing Radical Prostatectomy for Localised Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Gandi, C.; Totaro, A.; Bientinesi, R.; Marino, F.; Pierconti, F.; Martini, M.; Russo, A.; Racioppi, M.; Bassi, P.; Sacco, E. A multi-surgeon learning curve analysis of overall and site-specific positive surgical margins after RARP and implications for training. J. Robot. Surg. 2022, 16, 1451–1461. [Google Scholar] [CrossRef]
- Totaro, A.; Campetella, M.; Bientinesi, R.; Gandi, C.; Palermo, G.; Russo, A.; Aceto, P.; Bassi, P.; Sacco, E. The new surgical robotic platform HUGOTM RAS: System description and docking settings for robot-assisted radical prostatectomy. Urologia 2022, 89, 603–609. [Google Scholar] [CrossRef]
- Sarchi, L.; Mottaran, A.; Bravi, C.A.; Paciotti, M.; Farinha, R.; Piazza, P.; Puliatti, S.; De Groote, R.; De Naeyer, G.; Gallagher, A.; et al. Robot-assisted radical prostatectomy feasibility and setting with the Hugo™ robot-assisted surgery system. BJU Int. 2022, 130, 671–675. [Google Scholar] [CrossRef]
- Bravi, C.A.; Paciotti, M.; Sarchi, L.; Mottaran, A.; Nocera, L.; Farinha, R.; De Backer, P.; Vinckier, M.H.; De Naeyer, G.; D’Hondt, F.; et al. Robot-assisted Radical Prostatectomy with the Novel Hugo Robotic System: Initial Experience and Optimal Surgical Set-up at a Tertiary Referral Robotic Center. Eur. Urol. 2022, 82, 233–237. [Google Scholar] [CrossRef]
- Alfano, C.G.; Moschovas, M.C.; Montagne, V.; Soto, I.; Porter, J.; Patel, V.; Ureña, R.; Bodden, E. Implementation and outcomes of Hugo(TM) RAS System in robotic-assisted radical prostatectomy. Int. Braz. J. Urol. 2023, 49, 211–220. [Google Scholar] [CrossRef]
- Ragavan, N.; Bharathkumar, S.; Chirravur, P.; Sankaran, S. Robot-Assisted Laparoscopic Radical Prostatectomy Utilizing Hugo RAS Platform: Initial Experience. J. Endourol. 2023, 37, 147–150. [Google Scholar] [CrossRef]
- Ou, Y.C.; Ou, H.C.; Juan, Y.S.; Narasimhan, R.; Mottrie, A.; Weng, W.C.; Huang, L.H.; Lin, Y.S.; Hsu, C.Y.; Yang, C.H.; et al. Robot-assisted radical prostatectomy using hugo RAS system: The pioneer experience in Taiwan and Northeast Asia. Int. J. Med. Robot. 2023, 20, e2577. [Google Scholar] [CrossRef] [PubMed]
- Territo, A.; Uleri, A.; Gallioli, A.; Gaya, J.M.; Verri, P.; Basile, G.; Farré, A.; Bravo, A.; Tedde, A.; Faba, Ó.R.; et al. Robot-assisted oncologic pelvic surgery with Hugo™ robot-assisted surgery system: A single-center experience. Asian J. Urol. 2023, 10, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Marques-Monteiro, M.; Teixeira, B.; Mendes, G.; Rocha, A.; Madanelo, M.; Mesquita, S.; Vital, J.; Vinagre, N.; Magalhães, M.; Oliveira, B.; et al. Extraperitoneal robot-assisted radical prostatectomy with the Hugo™ RAS system: Initial experience of a tertiary center with a high background in extraperitoneal laparoscopy surgery. World J. Urol. 2023, 41, 2671–2677. [Google Scholar] [CrossRef]
- Bertolo, R.; Garisto, J.; Bove, P.; Mottrie, A.; Rocco, B.; EAU Robotic Urology Section (ERUS) Working Group on Science. Perioperative Outcomes Between Single-Port and “Multi-Port” Robotic Assisted Radical Prostatecomy: Where do we stand? Urology 2021, 155, 138–143. [Google Scholar] [CrossRef]
- Sighinolfi, M.C.; Eissa, A.; Spandri, V.; Puliatti, S.; Micali, S.; Reggiani Bonetti, L.; Bertoni, L.; Bianchi, G.; Rocco, B. Positive surgical margin during radical prostatectomy: Overview of sampling methods for frozen sections and techniques for the secondary resection of the neurovascular bundles. BJU Int. 2020, 125, 656–663. [Google Scholar] [CrossRef]
- Pettenati, C.; Neuzillet, Y.; Radulescu, C.; Hervé, J.M.; Molinié, V.; Lebret, T. Positive surgical margins after radical prostatectomy: What should we care about? World J. Urol. 2015, 33, 1973–1978. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, D.; Pyo, J.; Cho, W. Clinicopathological Significances of Positive Surgical Resection Margin after Radical Prostatectomy for Prostatic Cancers: A Meta-Analysis. Medicina 2022, 58, 1251. [Google Scholar] [CrossRef] [PubMed]
- Ficarra, V.; Novara, G.; Rosen, R.C.; Artibani, W.; Carroll, P.R.; Costello, A.; Menon, M.; Montorsi, F.; Patel, V.R.; Stolzenburg, J.U.; et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur. Urol. 2012, 62, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Assem, A.; Hamdy, S.M.; Beltagy, A.M.; Serdar Gözen, A.; Abou Youssif, T. Prospective evaluation of urinary continence after laparoscopic radical prostatectomy using a validated questionnaire and daily pad use assessment: Which definition is more relevant to the patient’s perception of recovery? Cent. Eur. J. Urol. 2021, 74, 196–200. [Google Scholar]
- Wang, J.; Hu, K.; Wang, Y.; Wu, Y.; Bao, E.; Wang, J.; Tan, C.; Tang, T. Robot-assisted versus open radical prostatectomy: A systematic review and meta-analysis of prospective studies. J. Robot. Surg. 2023, 17, 2617–2631. [Google Scholar] [CrossRef]
- Capogrosso, P.; Salonia, A.; Briganti, A.; Montorsi, F. Postprostatectomy Erectile Dysfunction: A Review. World J. Mens. Health 2016, 34, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Mottaran, A.; Bravi, C.A.; Sarchi, L.; Paciotti, M.; Nocera, L.; Piro, A.; Piazza, P.; De Backer, P.; Farinha, R.; De Groote, R.; et al. Robot-Assisted Sacropexy with the Novel HUGO Robot-Assisted Surgery System: Initial Experience and Surgical Setup at a Tertiary Referral Robotic Center. J. Endourol. 2023, 37, 35–41. [Google Scholar] [CrossRef]
- Mottaran, A.; Paciotti, M.; Bravi, C.A.; Sarchi, L.; Nocera, L.; Piro, A.; Farinha, R.; DE Backer, P.; Piazza, P.; Pauwaert, K.; et al. Robot-assisted simple prostatectomy with the novel HUGO™ RAS System: Feasibility, setting, and perioperative outcomes. Minerva Urol. Nephrol. 2023, 75, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Prata, F.; Ragusa, A.; Civitella, A.; Tuzzolo, P.; Tedesco, F.; Cacciatore, L.; Iannuzzi, A.; Callè, P.; Raso, G.; Fantozzi, M.; et al. Robot-assisted partial nephrectomy using the novel Hugo™ RAS system: Feasibility, setting and perioperative outcomes of the first off-clamp series. Urologia 2024, 4, 3915603231220109. [Google Scholar] [CrossRef]
- Gaya, J.M.; Uleri, A.; Gallioli, A.; Basile, G.; Territo, A.; Farré, A.; Suquilanda, E.; Verri, P.; Palou, J.; Breda, A. Retroperitoneal Robotic Partial Nephrectomy with the Hugo RAS System. Eur. Urol. 2023. [Google Scholar] [CrossRef]
Age, years, mean (±SD) | 66.1 (±6.8) |
BMI, kg/mq, mean (±SD) | 26.4 (±3.5) |
CCI, median (IQR) | 5 (1) |
ASA score, median (IQR) | 2 (0) |
Previous abdominal surgery, n (%) | 61 (46) |
| 36 (59.1) |
| 21 (34.4) |
| 4 (6.5) |
IPSS, median (IQR) | 7 (9) |
QoL, median (IQR) | 2 (2) |
IIEF-5, median (IQR) | 18 (9) |
PI-RADS index, median (IQR) | 4 (1) |
Lesion diameter, mm, mean (±SD) | 12.8 (±6.1) |
Preoperative PSA level, ng/mL, mean (±SD) | 10.72 (±10.81) |
Positive digital rectal examination, n (%) | 27 (20.4) |
Prostate volume, mL, mean (±SD) | 50.85 (±22.1) |
ISUP 1-2 at biopsy, n (%) | 91 (68.9) |
ISUP 3-5 at biopsy, n (%) | 41 (31.1) |
cN+, n (%) | 5 (3.8) |
Pelvic lymphadenectomy, n. (%) | 25 (18.9) |
Nerve-sparing procedure, total, n. (%) | 66 (50) |
| 33 (50) |
| 33 (50) |
Blood loss, mL, median (IQR) | 100 (100) |
Intra-operative complications, n. (%) | 0 (0) |
Red errors, n. (%) | 5 (4) |
Yellow errors, n. (%) | 12 (9) |
Significant robotic arms-conflicts, n. (%) | 8 (6) |
Broken robotic instruments, n. (%) | 9 (6.8) |
Bladder neck reconstruction, n. (%) | 18 (13.6) |
Total surgery time (in–out), min, mean (±SD) | 242 (±57) |
| 255 (±56) |
| 239 (±57) |
Operative time (incision to last stich), min, mean (±SD) | 189.3 (±57.3) |
| 200 (±68) |
| 186 (±53) |
Console time, min, mean (±SD) | 124 (±48) |
Docking time, min, mean (±SD) | 10 (±2) |
Patience entrance to skin incision, min, mean (±SD) | 37.8 (±13.2) |
Last stitch to patience exit, min, mean (±SD) | 18.8 (±8.1) |
Total | Console Time, Min, Median (IQR) | 117 (79) | ||
---|---|---|---|---|
Total Surgery Time (in–out), Min, Median (IQR) | 232 (77) | |||
Type of Adverse Event | Absence | Presence | p-Value | |
Errors cumulative (yellow or red) | Console time, min, median (IQR) | 112 (80) | 135 (87) | 0.119 |
Total surgery time (in–out), min, median (IQR) | 235 (74) | 214 (128) | 0.603 | |
Yellow error | Console time, min, median (IQR) | 115 (79) | 120 (76) | 0.559 |
Total surgery time (in–out), min, median (IQR) | 238 (75) | 210 (93) | 0.243 | |
Red error | Console time, min, median (IQR) | 113 (80) | 138 (93) | 0.068 |
Total surgery time (in–out), min, median (IQR) | 230 (76) | 250 (115) | 0.362 | |
Conflicts | Console time, min, median (IQR) | 117 (80) | 116 (106) | 0.715 |
Total surgery time (in–out), min, median (IQR) | 230 (74) | 248 (121) | 0.274 | |
Broken instruments | Console time, min, median (IQR) | 120 (81) | 88 (35) | 0.167 |
Total surgery time (in–out), min, median (IQR) | 215 (83) | 219 (46) | 0.381 | |
Technical robotic issues | Console time, min, median (IQR) | 118 (81) | 112 (52) | 1.000 |
Total surgery time (in–out), min, median (IQR) | 240 (78) | 210 (65) | 0.100 |
Post-operative pain (VAS in recovery), median (IQR) | 0 (1) |
Post-operative complication—Clavien–Dindo grade, median (IQR) | 1 (1) |
| 5 |
| 1 |
| 2 |
Catheter removal (POD), median (IQR) | 15 (6) |
POD of discharge, median (IQR) | 3 (1) |
Narcotic use, n. (%) | 1 (0.7) |
NSAIDs use, n. (%) | 4 (3) |
Paracetamol use, n. (%) | 65 (49.2) |
Prostate volume at final pathology, mL, mean (±SD) | 44.4 (±19.7) |
Tumor volume at final pathology, mL, mean (±SD) | 2.77 (±4.5) |
Primary Gleason at final pathology, median (IQR) | 3 (1) |
Secondary Gleason at final pathology, median (IQR) | 4 (1) |
ISUP at final pathology, median (IQR) | 2 (2) |
Perineural Invasion at final pathology, n. (%) | 113 (86.9) |
Global percentage of neoplasia, median (IQR) | 6 (10) |
Positive surgical margins, n. (%) | 54 (40.9) |
| 37 (28) |
pT stage | |
| 2 (1.5) |
| 96 (72.7) |
| 19 (14.4) |
| 15 (11.3) |
pN stage | |
| 21 (15.1) |
| 4 (3) |
| 107 (81) |
Follow-up data | |
| 125 (94.6) |
| 105 (92.1) |
| 100 (75.7) |
| 98 (86.0) |
| 9 (11) |
| 10 (12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Totaro, A.; Scarciglia, E.; Marino, F.; Campetella, M.; Gandi, C.; Ragonese, M.; Bientinesi, R.; Palermo, G.; Bizzarri, F.P.; Cretì, A.; et al. Robot-Assisted Radical Prostatectomy Performed with the Novel Surgical Robotic Platform Hugo™ RAS: Monocentric First Series of 132 Cases Reporting Surgical, and Early Functional and Oncological Outcomes at a Tertiary Referral Robotic Center. Cancers 2024, 16, 1602. https://doi.org/10.3390/cancers16081602
Totaro A, Scarciglia E, Marino F, Campetella M, Gandi C, Ragonese M, Bientinesi R, Palermo G, Bizzarri FP, Cretì A, et al. Robot-Assisted Radical Prostatectomy Performed with the Novel Surgical Robotic Platform Hugo™ RAS: Monocentric First Series of 132 Cases Reporting Surgical, and Early Functional and Oncological Outcomes at a Tertiary Referral Robotic Center. Cancers. 2024; 16(8):1602. https://doi.org/10.3390/cancers16081602
Chicago/Turabian StyleTotaro, Angelo, Eros Scarciglia, Filippo Marino, Marco Campetella, Carlo Gandi, Mauro Ragonese, Riccardo Bientinesi, Giuseppe Palermo, Francesco Pio Bizzarri, Antonio Cretì, and et al. 2024. "Robot-Assisted Radical Prostatectomy Performed with the Novel Surgical Robotic Platform Hugo™ RAS: Monocentric First Series of 132 Cases Reporting Surgical, and Early Functional and Oncological Outcomes at a Tertiary Referral Robotic Center" Cancers 16, no. 8: 1602. https://doi.org/10.3390/cancers16081602
APA StyleTotaro, A., Scarciglia, E., Marino, F., Campetella, M., Gandi, C., Ragonese, M., Bientinesi, R., Palermo, G., Bizzarri, F. P., Cretì, A., Presutti, S., Russo, A., Aceto, P., Bassi, P., Pierconti, F., Racioppi, M., & Sacco, E. (2024). Robot-Assisted Radical Prostatectomy Performed with the Novel Surgical Robotic Platform Hugo™ RAS: Monocentric First Series of 132 Cases Reporting Surgical, and Early Functional and Oncological Outcomes at a Tertiary Referral Robotic Center. Cancers, 16(8), 1602. https://doi.org/10.3390/cancers16081602