Phenotype Transformation of PitNETs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Definition
3. Literature Review
4. Clinical Characteristic
Case Number | Authors and Reference | Age/Sex | Events before Transformation | Time up to Transformation (Years) | IHC Staining before the Transformation | IHC after the Transformation | Clinical Diagnosis before Transformation | Clinical Diagnosis after Transformation | Treatment after Transformation | Follow-Up after Transformation (Years) | Outcome and Adverse Events |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Demarchi, 2022 [19] | 65/F | Surgery, apoplexy | 6 | ACTH (+) | ACTH (−) OR (strongly +) | NFP | CD | Surgery, RT, TMZ, ketoconazole, cabergolin | 7 | RR, BR |
2 | Brown, 2020 [16] | 56/M | Multiple surgeries, apoplexies | 11 | 1st: FSH/LH (weakly +), 2nd: all hormones (±) | 3rd, 4th: ACTH (+) | NFP | NFP | Multiple surgeries, RT | 2 | Multiple recurrences, lost to follow-up apoplexies, hypopituitarism |
3 | Guerrero-Pérez, 2020 [9] | 24/F | Surgery | 1.5 | ACTH (strongly +) | NA | CD | NFP | RT | 4 | PR |
4 | 77/F | Surgery | 5 | GH strongly (+), PRL focally (+) | NA | Acromegaly | NFP | RT | 3 | PR, TSH deficiency | |
5 | Rotman, 2019 [22] | 51/M | Surgery, radiotherapy | 14 | NA | ACTH (strongly +) | CD | Silent corticotroph pituitary carcinoma | Surgery, RT, TMZ, Bevacizumab | 8 | Transformation to pituitary carcinoma, SD |
6 | Jahan, 2019 [21] | 18/M | Surgery | 3 | NA | ACTH/FSH (+) | NFP | CD | Surgery, RT | NR | NR |
7 | Andino-Ríos, 2018 [20] | 41/F | Surgery | 3 | FSH/ LH /SF-1 (+) | FSH (strongly +) LH (+) | NFP | Excess of FSH Hypergonadism | Surgery | NR | NR |
8 | Zoli, 2015 [15] | 47/F | Multiple surgeries | 7 | ACTH (10% +) | ACTH (80% +) | NFP | CD | Surgery, multiple RT, bilateral adrenalectomy | 7 | RR, BR |
9 | 51/M | Multiple surgeries | 1 | ACTH (90% +) | ACTH (80% +) | CD | NFP | Multiple surgeries | 11 | Recurrence, SD hypoadrenalism | |
10 | Zoli, 2015 [15] | 18/F | Surgery | 6 | ACTH (20% +) | ACTH (70% +) | NFP | CD | Surgery | 2 | RR, BR hypocorticism |
11 | 37/F | Surgery | 2 | ACTH (90% +) | ACTH (75% +) | Excess ACTH but normal serum cortisol | CD with an extremely high ACTH concentration | Multiple surgeries | 6 | Multiple recurrences, hypoadrenalism, excess of ACTH | |
12 | 48/F | Clinical surveillance | 2 | NA | ACTH (80% +) | NFP | CD | Surgery | 5 | RR, transient hypocorticism | |
13 | Lee, 2014 [23] | 53/F | Multiple surgeries, radiotherapy | 6 | ACTH (+) | NA | NFP | CD | RT, mitotane and cabergoline | 0.25 | SD, BR |
14 | Batisse, 2013 [33] | 47/M | surgery, radiotherapy | 9 | GH (5% +) | GH (40% +) | NFP | Acromegaly | Surgery, cisplatin, adriblastin, TMZ | 3 | Recurrence of a giant adenoma, SD, active acromegaly, bilateral blindness |
15 | Dessimoz, 2011 [17] | 32/F | Dopamine agonist | 10 | NA | GH, PRL (strongly +) | Hyperprolactinemia | Hyperprolactinemia Acromegaly | Surgery | 1 | RR, BR |
16 | Lania, 2010 [24] | 31/F | Dopamine agonist, multiple surgeries, multiple radio | 13 | PRL (+) | PRL (+) GH (10% +) | Hyperprolactinemia | Hyperprolactinemia Acromegaly | Surgeries, RT, lanreotide | 3.5 | Recurrence, hyperprolactinemia, bilateral blindness, death due to complications |
17 | Daems, 2009 [7] | 41/M | surgery | 7 | GH (strongly +), PRL/TSH/α-subunit (diffused +) | NA | NFP | Acromegaly | Octreotide, pegvisomant | 11 | PR, BR |
18 | Daems, 2009 [7] | 40/M | surgery | 14 | α-subunit (10% +), TSH (2–3% +) | α-subunit (25% +), TSH (20% +) | NFP | Hyperthyroid | surgery | NR | hypothyroid |
19 | Brown, 2007 [25] | 32/F | Multiple surgeries, multiple radio | 10 | All hormones (−) | ACTH (− or strongly +) | NFP | Corticotroph pituitary carcinoma | Multiple surgeries | 7 | Recurrence, transformation to pituitary carcinoma, death |
20 | Salgado, 2006 [26] | 49/F | Surgery, radiotherapy, bromocriptine | 2 | All hormones (−) | ACTH (>50% +) PRL/GH (slightly +) | NFP | CD | RT, ketoconazole | NR | NR |
21 | Sano, 2002 [28] | 49/F | Multiple surgeries | 1 | ACTH (focally +) | ACTH (strongly +) | NFP | CD | Surgery, RT | NR | CD was not controlled |
22 | Kho, 2002 [27] | 48/F | Multiple surgeries, radiotherapy | 2 | 1st: LH/FSH (+) 2nd: all hormones (−) | NA | NFP | CD | Bilateral adrenalectomy | 5 | SD, CD was not controlled until adrenalectomy |
23 | Tan, 2000 [11] | 39/F | Multiple surgeries | 6 | 1,2: all hormones (−) | ACTH/PRL/FSH/GH (+) | NFP | CD | Surgery, RT, ketoconazole, bilateral adrenalectomy | 4 | CD was not controlled until adrenalectomy |
24 | Gheri, 1997 [12] | 47/F | Clinical surveillance | 3 | NA | ACTH (+) | NFP with mild hyperprolactinemia | CD | Surgery, RT, ketoconazole, octreotide | NR | NR |
25 | Felix, 1991 [31] | 19/M | Multiple surgeries | NA | ACTH (+) | 2nd, 3rd, 4th: ACTH/FSH/LH/α-subunit (+) | NFP | Not reported | multiple surgeries | 7 | Multiple recurrence |
26 | Cooper, 1987 [30] | 60/F | Surgery | 5 | NA | ACTH (+) | NFP | CD | RT, aminoglutethimide and metapyrone | 3 | BR, hypocorticism |
27 | Vaughan,1985 [10] | 55/F | Multiple surgeries | 13 | all cell ACTH (+) | ACTH (partly +) | NFP | CD | surgery, chemotherapy, bilateral adrenalectomy | 1 | SD, CD was controlled until adrenalectomy |
5. Is It Really Phenotype Transformation?
6. Potential Mechanisms of Transformation
6.1. The Transformation from SCA to Cushing’s Disease
6.1.1. PC1/3
6.1.2. High-Molecular-Weight ACTH
6.1.3. Multiple Hormone Tumors?
6.2. The Plasticity of Multiple Hormone Tumors
6.3. Gene Mutation
7. Conclusions and Prospect
Author Contributions
Funding
Conflicts of Interest
References
- Day, P.F.; Loto, M.G.; Glerean, M.; Picasso, M.F.; Lovazzano, S.; Giunta, D.H. Incidence and prevalence of clinically relevant pituitary adenomas: Retrospective cohort study in a Health Management Organization in Buenos Aires, Argentina. Arch. Endocrinol. Metab. 2016, 60, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, P. Aggressive and Metastatic Pituitary Neuroendocrine Tumors: Therapeutic Management and Off-Label Drug Use. J. Clin. Med. 2023, 13, 116. [Google Scholar] [CrossRef]
- Whyte, E.; Nezu, M.; Chik, C.; Tateno, T. Update on Current Evidence for the Diagnosis and Management of Nonfunctioning Pituitary Neuroendocrine Tumors. Endocrinol. Metab. 2023, 38, 631–654. [Google Scholar] [CrossRef] [PubMed]
- Ghalawinji, A.; Drezet, L.; Chaffanjon, P.; Muller, M.; Sturm, N.; Simiand, A.; Lazard, A.; Gay, E.; Chabre, O.; Cristante, J. Discontinuation of Drug Treatment in Cushing’s Disease Not Cured by Pituitary Surgery. J. Clin. Endocrinol. Metab. 2024, 109, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, A.; Fang, C.; Yuan, L.; Shao, A.; Xu, Y.; Zhou, D. Oxidative stress in pituitary neuroendocrine tumors: Affecting the tumor microenvironment and becoming a new target for pituitary neuroendocrine tumor therapy. CNS Neurosci. Ther. 2023, 29, 2744–2759. [Google Scholar] [CrossRef] [PubMed]
- Asa, S.L.; Mete, O.; Perry, A.; Osamura, R.Y. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2022, 33, 6–26. [Google Scholar] [CrossRef]
- Daems, T.; Verhelst, J.; Michotte, A.; Abrams, P.; De Ridder, D.; Abs, R. Modification of hormonal secretion in clinically silent pituitary adenomas. Pituitary 2009, 12, 80–86. [Google Scholar] [CrossRef]
- Melmed, S. Mechanisms for pituitary tumorigenesis: The plastic pituitary. J. Clin. Investig. 2003, 112, 1603–1618. [Google Scholar] [CrossRef]
- Guerrero-Pérez, F.; Marengo, A.P.; Vidal, N.; Villabona, C. Pituitary Adenomas with Changing Phenotype: A Systematic Review. Exp. Clin. Endocrinol. Diabetes 2020, 128, 835–844. [Google Scholar] [CrossRef]
- Vaughan, N.J.; Laroche, C.M.; Goodman, I.; Davies, M.J.; Jenkins, J.S. Pituitary Cushing’s disease arising from a previously non-functional corticotrophic chromophobe adenoma. Clin. Endocrinol. 1985, 22, 147–153. [Google Scholar] [CrossRef]
- Tan, E.U.; Ho, M.S.; Rajasoorya, C.R. Metamorphosis of a non-functioning pituitary adenoma to Cushing’s disease. Pituitary 2000, 3, 117–122. [Google Scholar] [CrossRef]
- Gheri, R.G.; Boddi, W.; Ammannati, F.; Olivotto, J.; Nozzoli, C.; Franchi, A.; Bordi, L.; Luisi, M.L.; Mennonna, P. Two-step development of a pituitary adenoma: From hyperprolactinemic syndrome to Cushing’s disease. J. Endocrinol. Investig. 1997, 20, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Mindermann, T.; Kovacs, K.; Wilson, C.B. Changes in the immunophenotype of recurrent pituitary adenomas. Neurosurgery 1994, 35, 39–44. [Google Scholar] [CrossRef]
- Melcescu, E.; Gannon, A.W.; Parent, A.D.; Fratkin, J.F.; Nicholas, W.C.; Koch, C.A.; Galhom, A. Silent or Subclinical Corticotroph Pituitary Macroadenoma Transforming Into Cushing Disease: 11-Year Follow-up. Neurosurgery 2013, 72, E144–E146. [Google Scholar] [CrossRef]
- Zoli, M.; Faustini-Fustini, M.; Mazzatenta, D.; Marucci, G.; De Carlo, E.; Bacci, A.; Pasquini, E.; Lanzino, G.; Frank, G. ACTH adenomas transforming their clinical expression: Report of 5 cases. Neurosurg. Focus 2015, 38, E15. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.V.; Cheesman, K.C.; Post, K.D. Recurrent Pituitary Apoplexy in an Adenoma with Switching Phenotypes. AACE Clin. Case Rep. 2020, 6, e221–e224. [Google Scholar] [CrossRef] [PubMed]
- Dessimoz, C.; Browaeys, P.; Maeder, P.; Lhermitte, B.; Pitteloud, N.; Momjian, S.; Pralong, F.P. Transformation of a microprolactinoma into a mixed growth hormone and prolactin-secreting pituitary adenoma. Front. Endocrinol. 2011, 2, 116. [Google Scholar] [CrossRef]
- Drummond, J.; Roncaroli, F.; Grossman, A.B.; Korbonits, M. Clinical and Pathological Aspects of Silent Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2019, 104, 2473–2489. [Google Scholar] [CrossRef] [PubMed]
- Demarchi, G.; Perrone, S.; Esper Romero, G.; De Bonis, C.; Casasco, J.P.; Sevlever, G.; Berner, S.I.; Cristina, C. Case Report: Progression of a Silent Corticotroph Tumor to an Aggressive Secreting Corticotroph Tumor, Treated by Temozolomide. Changes in the Clinic, the Pathology, and the β-Catenin and α-SMA Expression. Front. Endocrinol. 2022, 13, 870172. [Google Scholar] [CrossRef]
- Andino-Ríos, G.G.; Portocarrero-Ortiz, L.; Rojas-Guerrero, C.; Terrones-Lozano, A.; Ortiz-Plata, A.; Reza-Albarrán, A.A. Nonfunctioning Pituitary Adenoma That Changed to a Functional Gonadotropinoma. Case Rep. Endocrinol. 2018, 2018, 5027859. [Google Scholar] [CrossRef]
- Jahan, S.; Hasanat, M.A.; Mahmood, T.; Morshed, S.; Haq, R.; Fariduddin, M. Postoperative expression of Cushing disease in a young male: Metamorphosis of silent corticotroph adenoma? Endocrinol. Diabetes Metab. Case Rep. 2019, 2019. [Google Scholar] [CrossRef] [PubMed]
- Rotman, L.E.; Vaughan, T.B.; Hackney, J.R.; Riley, K.O. Long-Term Survival after Transformation of an Adrenocorticotropic Hormone-Secreting Pituitary Macroadenoma to a Silent Corticotroph Pituitary Carcinoma. World Neurosurg. 2019, 122, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.K.; Kim, J.H.; Yu, H.G. Candida albicans endophthalmitis in a patient with a non-functioning pituitary adenoma evolving into Cushing׳s disease: A case report. Med. Mycol. Case Rep. 2014, 6, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Lania, A.G.; Ferrero, S.; Pivonello, R.; Mantovani, G.; Peverelli, E.; Di Sarno, A.; Beck-Peccoz, P.; Spada, A.; Colao, A. Evolution of an aggressive prolactinoma into a growth hormone secreting pituitary tumor coincident with GNAS gene mutation. J. Clin. Endocrinol. Metab. 2010, 95, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.L.; Wollman, R.; Weiss, R.E. Transformation of a pituitary macroadenoma into to a corticotropin-secreting carcinoma over 16 years. Endocr. Pract. 2007, 13, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Salgado, L.R.; Machado, M.C.; Cukiert, A.; Liberman, B.; Kanamura, C.T.; Alves, V.A. Cushing’s disease arising from a clinically nonfunctioning pituitary adenoma. Endocr. Pathol. 2006, 17, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Kho, S.A.; Nieman, L.K.; Gelato, M.C. Cushing’s disease after surgical resection and radiation therapy for nonfunctioning pituitary adenoma. Endocr. Pract. 2002, 8, 292–295. [Google Scholar] [CrossRef]
- Sano, T.; Kovacs, K.; Asa, S.L.; Yamada, S.; Sanno, N.; Yokoyama, S.; Takami, H. Pituitary adenoma with “honeycomb Golgi” appearance showing a phenotypic change at recurrence from clinically nonfunctioning to typical Cushing disease. Endocr. Pathol. 2002, 13, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, K.; Horvath, E.; Stefaneanu, L.; Bilbao, J.; Singer, W.; Muller, P.J.; Thapar, K.; Stone, E. Pituitary adenoma producing growth hormone and adrenocorticotropin: A histological, immunocytochemical, electron microscopic, and in situ hybridization study. Case report. J. Neurosurg. 1998, 88, 1111–1115. [Google Scholar] [CrossRef]
- Cooper, M.E.; Murray, R.M.; Kalnins, R.; Woodward, J.; Jerums, G. The development of Cushing’s syndrome from a previously silent pituitary tumour. Aust. N. Z. J. Med. 1987, 17, 249–251. [Google Scholar] [CrossRef]
- Felix, I.; Asa, S.L.; Kovacs, K.; Horvath, E. Changes in hormone production of a recurrent silent corticotroph adenoma of the pituitary: A histologic, immunohistochemical, ultrastructural, and tissue culture study. Hum. Pathol. 1991, 22, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, A.; Cooper, O. Silent corticotroph adenomas. Pituitary 2018, 21, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Batisse, M.; Raverot, G.; Maqdasy, S.; Durando, X.; Sturm, N.; Montoriol, P.F.; Kemeny, J.L.; Chazal, J.; Trouillas, J.; Tauveron, I. Aggressive silent GH pituitary tumor resistant to multiple treatments, including temozolomide. Cancer Investig. 2013, 31, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, A.; Kinoshita, Y.; Tominaga, A.; Amatya, V.J.; Takeshima, Y.; Yamasaki, F. Metachronous Double Pituitary Adenoma with Altered Transcriptional Factor Profile: A Case Report and Literature Review. NMC Case Rep. J. 2021, 8, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Budan, R.M.; Georgescu, C.E. Multiple Pituitary Adenomas: A Systematic Review. Front. Endocrinol. 2016, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Fraser, L.A.; Lee, D.; Cooper, P.; Van Uum, S. Remission of acromegaly after pituitary apoplexy: Case report and review of literature. Endocr. Pract. 2009, 15, 725–731. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Zhou, X.; Yao, Y.; Deng, K.; You, H.; Duan, L.; Zhu, H.J. Acromegaly complicated with fulminant pituitary apoplexy: Clinical characteristic analysis and review of literature. Endocrine 2023, 81, 160–167. [Google Scholar] [CrossRef]
- Ruiz, A.E.; Mazzaferri, E.L.; Skillman, T.G. Silent reversal of acromegaly: Pituitary apoplexy resulting in panhypopituitarism. Ohio State Med. J. 1969, 65, 1017–1020. [Google Scholar] [PubMed]
- Fonseca, L.; Borges Duarte, D.; Freitas, J.; Oliveira, M.J.; Ribeiro, I.; Amaral, C.; Borges, T. Asymptomatic pituitary apoplexy induced by corticotropin-releasing hormone in a 14 year-old girl with Cushing’s disease. J. Pediatr. Endocrinol. Metab. JPEM 2021, 34, 799–803. [Google Scholar] [CrossRef]
- Roerink, S.H.; van Lindert, E.J.; van de Ven, A.C. Spontaneous remission of acromegaly and Cushing’s disease following pituitary apoplexy: Two case reports. Neth. J. Med. 2015, 73, 242–246. [Google Scholar]
- Langlois, F.; Lim, D.S.T.; Yedinak, C.G.; Cetas, I.; McCartney, S.; Cetas, J.; Dogan, A.; Fleseriu, M. Predictors of silent corticotroph adenoma recurrence; a large retrospective single center study and systematic literature review. Pituitary 2018, 21, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Tateno, T.; Izumiyama, H.; Doi, M.; Akashi, T.; Ohno, K.; Hirata, Y. Defective expression of prohormone convertase 1/3 in silent corticotroph adenoma. Endocr. J. 2007, 54, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Tateno, T.; Izumiyama, H.; Doi, M.; Yoshimoto, T.; Shichiri, M.; Inoshita, N.; Oyama, K.; Yamada, S.; Hirata, Y. Differential gene expression in ACTH -secreting and non-functioning pituitary tumors. Eur. J. Endocrinol. 2007, 157, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Raverot, G.; Wierinckx, A.; Jouanneau, E.; Auger, C.; Borson-Chazot, F.; Lachuer, J.; Pugeat, M.; Trouillas, J. Clinical, hormonal and molecular characterization of pituitary ACTH adenomas without (silent corticotroph adenomas) and with Cushing’s disease. Eur. J. Endocrinol. 2010, 163, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Righi, A.; Faustini-Fustini, M.; Morandi, L.; Monti, V.; Asioli, S.; Mazzatenta, D.; Bacci, A.; Foschini, M.P. The changing faces of corticotroph cell adenomas: The role of prohormone convertase 1/3. Endocrine 2017, 56, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Holck, S.; Wewer, U.M.; Albrechtsen, R. Heterogeneity of secretory granules of silent pituitary adenomas. Mod. Pathol. 1988, 1, 212–215. [Google Scholar] [PubMed]
- Yamakita, N.; Murai, T.; Oki, Y.; Matsuhisa, T.; Hirata, T.; Ikeda, T.; Kuwayama, A.; Yasuda, K. Adrenal insufficiency after incomplete resection of pituitary macrocorticotropinoma of Cushing’s disease: Role of high molecular weight ACTH. Endocr. J. 2001, 48, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, A.; Okazaki, R.; Oki, Y.; Nagashima, T. Secretion of high-molecular-weight adrenocorticotropic hormone from a pituitary adenoma in a patient without Cushing stigmata. Case report. J. Neurosurg. 2004, 101, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Reincke, M.; Allolio, B.; Saeger, W.; Kaulen, D.; Winkelmann, W. A pituitary adenoma secreting high molecular weight adrenocorticotropin without evidence of Cushing’s disease. J. Clin. Endocrinol. Metab. 1987, 65, 1296–1300. [Google Scholar] [CrossRef]
- Tateno, T.; Kato, M.; Tani, Y.; Yoshimoto, T.; Oki, Y.; Hirata, Y. Processing of high-molecular-weight form adrenocorticotropin in human adrenocorticotropin-secreting tumor cell line (DMS-79) after transfection of prohormone convertase 1/3 gene. J. Endocrinol. Investig. 2010, 33, 113–117. [Google Scholar] [CrossRef]
- Zheng, G.; Lu, L.; Zhu, H.; You, H.; Feng, M.; Liu, X.; Dai, C.; Yao, Y.; Wang, R.; Zhang, H.; et al. Clinical, Laboratory, and Treatment Profiles of Silent Corticotroph Adenomas That Have Transformed to the Functional Type: A Case Series With a Literature Review. Front. Endocrinol. 2020, 11, 558593. [Google Scholar] [CrossRef]
- Jacoby, L.B.; Hedley-Whyte, E.T.; Pulaski, K.; Seizinger, B.R.; Martuza, R.L. Clonal origin of pituitary adenomas. J. Neurosurg. 1990, 73, 731–735. [Google Scholar] [CrossRef]
- Caron, P. Acromegaly and pregnancy. Ann. D’endocrinologie 2011, 72, 282–286. [Google Scholar] [CrossRef]
- Scheithauer, B.W.; Sano, T.; Kovacs, K.T.; Young, W.F., Jr.; Ryan, N.; Randall, R.V. The pituitary gland in pregnancy: A clinicopathologic and immunohistochemical study of 69 cases. Mayo Clin. Proc. 1990, 65, 461–474. [Google Scholar] [CrossRef]
- Florio, T. Adult pituitary stem cells: From pituitary plasticity to adenoma development. Neuroendocrinology 2011, 94, 265–277. [Google Scholar] [CrossRef]
- Chen, L.; Ye, H.; Wang, X.; Tang, X.; Mao, Y.; Zhao, Y.; Wu, Z.; Mao, X.O.; Xie, L.; Jin, K.; et al. Evidence of brain tumor stem progenitor-like cells with low proliferative capacity in human benign pituitary adenoma. Cancer Lett. 2014, 349, 61–66. [Google Scholar] [CrossRef]
- Xu, Q.; Yuan, X.; Tunici, P.; Liu, G.; Fan, X.; Xu, M.; Hu, J.; Hwang, J.Y.; Farkas, D.L.; Black, K.L.; et al. Isolation of tumour stem-like cells from benign tumours. Br. J. Cancer 2009, 101, 303–311. [Google Scholar] [CrossRef]
- Cho, H.Y.; Cho, S.W.; Kim, S.W.; Shin, C.S.; Park, K.S.; Kim, S.Y. Silent corticotroph adenomas have unique recurrence characteristics compared with other nonfunctioning pituitary adenomas. Clin. Endocrinol. 2010, 72, 648–653. [Google Scholar] [CrossRef]
- Mete, O.; Gomez-Hernandez, K.; Kucharczyk, W.; Ridout, R.; Zadeh, G.; Gentili, F.; Ezzat, S.; Asa, S.L. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas. Mod. Pathol. 2016, 29, 131–142. [Google Scholar] [CrossRef]
- Cooper, O.; Ben-Shlomo, A.; Bonert, V.; Bannykh, S.; Mirocha, J.; Melmed, S. Silent corticogonadotroph adenomas: Clinical and cellular characteristics and long-term outcomes. Horm. Cancer 2010, 1, 80–92. [Google Scholar] [CrossRef]
- Asa, S.L.; Mete, O.; Cusimano, M.D.; McCutcheon, I.E.; Perry, A.; Yamada, S.; Nishioka, H.; Casar-Borota, O.; Uccella, S.; La Rosa, S.; et al. Pituitary neuroendocrine tumors: A model for neuroendocrine tumor classification. Mod. Pathol. 2021, 34, 1634–1650. [Google Scholar] [CrossRef]
- Tordjman, K.M.; Greenman, Y.; Ram, Z.; Hershkovitz, D.; Aizenstein, O.; Ariel, O.; Asa, S.L. Plurihormonal Pituitary Tumor of Pit-1 and SF-1 Lineages, with Synchronous Collision Corticotroph Tumor: A Possible Stem Cell Phenomenon. Endocr Pathol. 2019, 30, 74–80. [Google Scholar] [CrossRef]
- Bogusławska, A.; Korbonits, M. Genetics of Acromegaly and Gigantism. J. Clin. Med. 2021, 10, 1377. [Google Scholar] [CrossRef]
- Rubinfeld, H.; Cohen, Z.R.; Bendavid, U.; Fichman-Horn, S.; Levy-Barda, A.; David, C.; Melamed, P.; Shimon, I. Erythropoietin-producing hepatocellular receptor B6 is highly expressed in non-functioning pituitary neuroendocrine tumors and its expression correlates with tumor size. Mol. Biol. Rep. 2024, 51, 297. [Google Scholar] [CrossRef]
- Rui, W.; Qiao, N.; Wu, Y.; Zhang, Y.; Aili, A.; Zhang, Z.; Ye, H.; Wang, Y.; Zhao, Y.; Yao, Z. Radiomics analysis allows for precise prediction of silent corticotroph adenoma among non-functioning pituitary adenomas. Eur. Radiol. 2022, 32, 1570–1578. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wu, Y.; He, G.; Wang, R.; Bao, X. Phenotype Transformation of PitNETs. Cancers 2024, 16, 1731. https://doi.org/10.3390/cancers16091731
Li Z, Wu Y, He G, Wang R, Bao X. Phenotype Transformation of PitNETs. Cancers. 2024; 16(9):1731. https://doi.org/10.3390/cancers16091731
Chicago/Turabian StyleLi, Zhenwei, Yinzi Wu, Guannan He, Renzhi Wang, and Xinjie Bao. 2024. "Phenotype Transformation of PitNETs" Cancers 16, no. 9: 1731. https://doi.org/10.3390/cancers16091731
APA StyleLi, Z., Wu, Y., He, G., Wang, R., & Bao, X. (2024). Phenotype Transformation of PitNETs. Cancers, 16(9), 1731. https://doi.org/10.3390/cancers16091731