Bovine Meat and Milk Factor-like Sequences Are Frequently Detected in Renal Cell Carcinoma Tissues
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissues
2.2. DNA Extraction
2.3. Polymerase Chain Reaction (PCR)
2.4. Sequence Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- zur Hausen, H. Red meat consumption and cancer: Reasons to suspect involvement of bovine infectious factors in colorectal cancer. Int. J. Cancer 2012, 130, 2475–2483. [Google Scholar] [CrossRef] [PubMed]
- zur Hausen, H.; Bund, T.; de Villiers, E.M. Specific nutritional infections early in life as risk factors for human colon and breast cancers several decades later. Int. J. Cancer 2019, 144, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
- de Villiers, E.-M.; Gunst, K.; Chakraborty, D.; Ernst, C.; Bund, T.; Hausen, H.Z. A specific class of infectious agents isolated from bovine serum and dairy products and peritumoral colon cancer tissue. Emerg. Microbes Infect. 2019, 8, 1205–1218. [Google Scholar] [CrossRef] [PubMed]
- zur Hausen, H.; Bund, T.; de Villiers, E.M. Infectious Agents in Bovine Red Meat and Milk and Their Potential Role in Cancer and Other Chronic Diseases. Curr. Top. Microbiol. Immunol. 2017, 407, 83–116. [Google Scholar] [PubMed]
- zur Hausen, H. Proliferation-inducing viruses in non-permissive systems as possible causes of human cancers. Lancet 2001, 357, 381–384. [Google Scholar] [CrossRef] [PubMed]
- König, M.-T.; Fux, R.; Link, E.; Sutter, G.; Märtlbauer, E.; Didier, A. Circular Rep-Encoding Single-Stranded DNA Sequences in Milk from Water Buffaloes (Bubalus arnee f. bubalis). Viruses 2021, 13, 1088. [Google Scholar] [CrossRef]
- König, M.-T.; Fux, R.; Link, E.; Sutter, G.; Märtlbauer, E.; Didier, A. Identification and Characterization of Circular Single-Stranded DNA Genomes in Sheep and Goat Milk. Viruses 2021, 13, 2176. [Google Scholar] [CrossRef] [PubMed]
- Pohl, S.; Habermann, D.; Link, E.K.; Fux, R.; Boldt, C.L.; Franz, C.M.A.P.; Hölzel, C.; Klempt, M. Detection of DNA sequences attributed to bovine meat and milk factors (BMMF/SPHINX) in food-related samples. Food Control 2022, 135, 108779. [Google Scholar] [CrossRef]
- Habermann, D.; Klempt, M.; Franz, C.M.A.P. Identification and Characterization of Novel SPHINX/BMMF-like DNA Sequences Isolated from Non-Bovine Foods. Genes 2023, 14, 1307. [Google Scholar] [CrossRef]
- Manuelidis, L. Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD. J. Neurovirol. 2011, 17, 131–145. [Google Scholar] [CrossRef]
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- zur Hausen, H.; de Villiers, E.M. Dairy cattle serum and milk factors contributing to the risk of colon and breast cancers. Int. J. Cancer 2015, 137, 959–967. [Google Scholar] [CrossRef]
- Bund, T.; Nikitina, E.; Chakraborty, D.; Ernst, C.; Gunst, K.; Boneva, B.; Tessmer, C.; Volk, N.; Brobeil, A.; Weber, A.; et al. Analysis of chronic inflammatory lesions of the colon for BMMF Rep antigen expression and CD68 macrophage interactions. Proc. Natl. Acad. Sci. USA 2021, 118, e2025830118. [Google Scholar] [CrossRef]
- Nikitina, E.; Burk-Körner, A.; Wiesenfarth, M.; Alwers, E.; Heide, D.; Tessmer, C.; Ernst, C.; Krunic, D.; Schrotz-King, P.; Chang-Claude, J.; et al. Bovine Meat and Milk Factor Protein Expression in Tumor-Free Mucosa of Colorectal Cancer Patients Coincides with Macrophages and Might Interfere with Patient Survival. Mol. Oncol. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Eilebrecht, S.; Hotz-Wagenblatt, A.; Sarachaga, V.; Burk, A.; Falida, K.; Chakraborty, D.; Nikitina, E.; Tessmer, C.; Whitley, C.; Sauerland, C.; et al. Expression and replication of virus-like circular DNA in human cells. Sci. Rep. 2018, 8, 2851. [Google Scholar] [CrossRef]
- de Villiers, E.M.; Zur Hausen, H. Bovine Meat and Milk Factors (BMMFs): Their Proposed Role in Common Human Cancers and Type 2 Diabetes Mellitus. Cancers 2021, 13, 5407. [Google Scholar] [CrossRef]
- Wolk, A.; Gridley, G.; Niwa, S.; Lindblad, P.; McCredie, M.; Mellemgaard, A.; Mandel, J.S.; Wahrendorf, J.; McLaughlin, J.K.; Adami, H.O. International renal cell cancer study. VII. Role of diet. Int. J. Cancer 1996, 65, 167–173. [Google Scholar] [CrossRef]
- Hsu, C.C.; Chow, W.-H.; Boffetta, P.; Moore, L.; Zaridze, D.; Moukeria, A.; Janout, V.; Kollarova, H.; Bencko, V.; Navratilova, M.; et al. Dietary Risk Factors for Kidney Cancer in Eastern and Central Europe. Am. J. Epidemiol. 2007, 166, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Knuppel, A.; Papier, K.; Fensom, G.K.; Appleby, P.N.; Schmidt, J.A.; Tong, T.Y.N.; Travis, R.C.; Key, T.J.; Perez-Cornago, A. Meat intake and cancer risk: Prospective analyses in UK Biobank. Int. J. Epidemiol. 2020, 49, 1540–1552. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Angua, K.M.; Rosner, B.A.; Barnett, J.B. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Gansler, T.; Fedewa, S.; Amin, M.B.; Lin, C.C.; Jemal, A. Trends in reporting histological subtyping of renal cell carcinoma: Association with cancer center type. Hum. Pathol. 2018, 74, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Kathuria-Prakash, N.; Drolen, C.; Hannigan, C.A.; Drakaki, A. Immunotherapy and Metastatic Renal Cell Carcinoma: A Review of New Treatment Approaches. Life 2021, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Patard, J.J.; Leray, E.; Rioux-Leclercq, N.; Cindolo, L.; Ficarra, V.; Zisman, A.; De La Taille, A.; Tostain, J.; Artibani, W.; Abbou, C.C.; et al. Prognostic value of histologic subtypes in renal cell carcinoma: A multicenter experience. J. Clin. Oncol. 2005, 23, 2763–2771. [Google Scholar] [CrossRef] [PubMed]
- Engels, E.A.; Pfeiffer, R.M.; Fraumeni, J.F., Jr.; Kasiske, B.L.; Israni, A.K.; Snyder, J.J.; Wolfe, R.A.; Goodrich, N.P.; Bayakly, A.R.; Clarke, C.A.; et al. Spectrum of Cancer Risk Among US Solid Organ Transplant Recipients. JAMA 2011, 306, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Macleod, L.C.; Hotaling, J.M.; Wright, J.L.; Davenport, M.T.; Gore, J.L.; Harper, J.; White, E. Risk Factors for Renal Cell Carcinoma in the VITAL Study. J. Urol. 2013, 190, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.M.; Hofmann, J.N.; Cho, E.; Pollak, M.N.; Chow, W.-H.; Purdue, M.P. Circulating levels of obesity-related markers and risk of renal cell carcinoma in the PLCO cancer screening trial. Cancer Causes Control 2017, 28, 801–807. [Google Scholar] [CrossRef]
- Gild, P.; Ehdaie, B.; Kluth, L.A. Effect of obesity on bladder cancer and renal cell carcinoma incidence and survival. Curr. Opin. Urol. 2017, 27, 409–414. [Google Scholar] [CrossRef]
- Milella, M.; Felici, A. Biology of Metastatic Renal Cell Carcinoma. J. Cancer 2011, 2, 369–373. [Google Scholar] [CrossRef]
- Webster, B.R.; Gopal, N.; Ball, M.W. Tumorigenesis Mechanisms Found in Hereditary Renal Cell Carcinoma: A Review. Genes 2022, 13, 2122. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Q.; He, J. Intake of red and processed meat and risk of renal cell carcinoma: A meta-analysis of observational studies. Oncotarget 2017, 8, 77942–77956. [Google Scholar] [CrossRef] [PubMed]
- Brock, K.E.; Gridley, G.; Chiu, B.C.; Ershow, A.G.; Lynch, C.F.; Cantor, K.P. Dietary fat and risk of renal cell carcinoma in the USA: A case–control study. Br. J. Nutr. 2009, 101, 1228–1238. [Google Scholar] [CrossRef]
- van Vlodrop, I.J.; Baldewijns, M.M.; Smits, K.M.; Schouten, L.J.; van Neste, L.; van Criekinge, W.; van Poppel, H.; Lerut, E.; Schuebel, K.E.; Ahuja, N.; et al. Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. Am. J. Pathol. 2010, 176, 575–584. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, J.J.M.; Langerak, A.W.; Brüggemann, M.; Evans, P.A.S.; Hummel, M.; Lavender, F.L.; Delabesse, E.; Davi, F.; Schuuring, E.; García-Sanz, R.; et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003, 17, 2257–2317. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-Y.; Liu, P.-H.; Hsu, C.-Y.; Hsia, C.-Y.; Huang, Y.-H.; Lei, H.-J.; Su, C.-W.; Lee, R.-C.; Hou, M.-C. Evolution of etiology, presentation, management and prognostic tool in hepatocellular carcinoma. Sci. Rep. 2020, 10, 3925. [Google Scholar] [CrossRef]
- Nikitina, E.; Alikhanyan, K.; Neßling, M.; Richter, K.; Kaden, S.; Ernst, C.; Seitz, S.; Chuprikova, L.; Häfele, L.; Gunst, K.; et al. Structural expression of bovine milk and meat factors in tissues of colorectal, lung and pancreatic cancer patients. Int. J. Cancer 2022, 153, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Snijders, P.J.; van den Brule, A.J.; Schrijnemakers, H.F.; Snow, G.; Meijer, C.J.; Walboomers, J.M. The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. J. Gen. Virol. 1990, 71 Pt 1, 173–181. [Google Scholar] [CrossRef]
Oligonucleotide | Primer ID | Sequence (5′-3′) | Genome Location | Target | GenBank |
---|---|---|---|---|---|
Consensus Primers | BMMF1 | FW: GAKGRCATWWRACRMSRYACCYAYCAATA RV: GATCCAAGTTGTAACTAGCGTTCATTAGG | 158–363 | BMMF1 | LR215499.1 |
BMMF2 | FW: GGCAGATCAACACAGGGATAGAATWWCACG RV: CKWAHRSCWGCRCAVAWDGGRCANARYAAATGYYG | 3–281 | BMMF2 | LR215600.1 | |
BMMF2-Specific Primers | BMMF2-FA1 | FW: CAGCATTTGCTATGTCCAATGTG RV: CCTGGTCAATCCGGTCAGT | 180–531 | BMMF2/Sphinx | HQ444405.1 |
BMMF2-FA4 | FW: ACTGACCGGATTGACCAGG RV: CCAAAAACGAAACGATAGAGCAG | 513–833 | BMMF2/Sphinx | HQ444405.1 | |
BMMF2-FA5 | FW: TCGTTTTTGGTGAAAGGTC RV: TTCTCCAGTGGGAACAATTA | 824–1147 | BMMF2/Sphinx | HQ444405.1 | |
BMMF2-FA6 | FW: CCCACTGGAGAACATTCTAT RV: TGCAAGAAATTAAGAATTGGTTAAAT | 1136–1460 | BMMF2/Sphinx | HQ444405.1 | |
BMMF2-FA7 | FW: TGCAAACGGTTCAAAAAAGC RV: ATTGTTTCGTCGTCCAAAGA | 1457–1781 | BMMF2/Sphinx | HQ444405.1 | |
BMMF2-FA8 | FW: GGACGACGAAACAATTAAAACTCT RV: ACAACATTTCGACCGATAGCC | 1767–2103 | BMMF2/Sphinx | HQ444405.1 | |
BMMF2-FA3 | FW: GCTATCGGTCGAAATGTTGT RV: CCCTGTGTTGATCTGCATTA | 2084–2333 | BMMF2/Sphinx | HQ444405.1 | |
BMMF1-Specific Primers | BMMF1-GM1 | FW: CTAATGAACGCTAGTTACAACT RV: TGACCCAACGACTTGTAATAT | 336–600 | BMMF1/Sphinx | LR215499.1 |
BMMF1-GM2 | FW: TCGTTGGGTCAGCCAAATTGCTT RV: ATCCATTCGCTGATATTCAGTAT | 590–857 | BMMF1/Sphinx | LR215499.1 | |
BMMF1-GM3 | FW: CAGCGAATGGATGTATTTAAACGT RV: AATACTGCCTAGTTTGCACAGAA | 869–1115 | BMMF1/Sphinx | LR215499.1 | |
BMMF1-GM4 | FW: ACTAGGCAGTATTTCAGACTTGA RV: TTGCTTTTGGGGTTGAGGGGTTT | 1103–1380 | BMMF1/Sphinx | LR215499.1 | |
BMMF1-GM5 | FW: CCCCAAAAGCAAAAACACTGTA RV: AAAACAAGCAAAAGCAACTATG | 1369–1641 | BMMF1/Sphinx | LR215499.1 | |
BMMF1-GM6 | FW: TGCTTGTTTTCGGGTCTTAGGG RV: AAATGCCATCTGTATGCCTTGC | 1632–1765 | BMMF1/Sphinx | LR215499.1 |
(A) | |||||||
Resection Sample | RCC Tissue | Peritumoral Kidney Tissue | |||||
Patient# | Diagnosis | Clinical Stage | TC | T1 (1 cm) | T2 (2 cm) | T3 (3 cm) | |
1 | CCRCC | 1A | - | BMMF1 | BMMF1 | BMMF1 | |
2 | CCRCC | 3A | - | BMMF2 | - | BMMF1 | |
3 | PRCC | 3A | BMMF1 | BMMF1 | BMMF1 | - | |
4 | CCRCC | 3A | BMMF2 | - | - | - | |
5 | CCRCC | 1A | - | - | BMMF1 | - | |
6 | PRCC | 3A | BMMF1 | - | BMMF1 | - | |
7 | PRCC | 1B | - | - | - | - | |
8 | CCRCC | 1B | - | BMMF2 | - | - | |
9 | CCRCC | 3A | BMMF2 | - | - | - | |
10 | CCRCC | 1A | - | - | - | - | |
11 | CCRCC | 3A | - | BMMF1 | - | - | |
(B) | |||||||
BMMFs and Tissue | # | Sequence Results | Identity | GenBank | |||
BMMF1 RCC (d) | 1 | BMMF1 DNA sequence, isolate C1MI.3M.1 | 99% | LR215499.1 | |||
2 | Uncultured bacterium plasmid clone HD4bpcirc putative replication protein gene | 98% | KX838913.1 | ||||
BMMF2 RCC (c) | 1 | BMMF2 DNA sequence, isolate C2MI.9As.2 | 98% | LR215600.1 | |||
2 | BMMF2 DNA sequence, isolate C2MI.10As.1 | 98% | LR215597.1 | ||||
BMMF1 peritumoral (b) | 1 | Sphinx1.76-related DNA, HCBI3.108 | 98% | LK931495.1 | |||
2 | Uncultured bacterium plasmid clone HD4bpcirc putative replication protein gene | 99% | KX838913.1 | ||||
3 | Uncultured bacterium plasmid clone HD4bpcirc putative replication protein gene | 98% | KX838913.1 | ||||
4 | Uncultured bacterium plasmid clone HD4bpcirc putative replication protein gene | 99% | KX838913.1 | ||||
5 | Uncultured bacterium plasmid clone HD4bpcirc putative replication protein gene | 99% | KX838913.1 | ||||
6 | Uncultured bacterium plasmid clone HD4bpcirc putative replication protein gene | 96% | KX838913.1 | ||||
7 | Uncultured bacterium plasmid clone HD4bpcirc putative replication protein gene | 95% | KX838913.1 | ||||
8 | Uncultured bacterium plasmid clone HD4bpcirc putative replication protein gene | 95% | KX838913.1 | ||||
BMMF2 peritumoral (a) | 1 | BMMF2 DNA sequence, isolate C2MI.9As.2 | 97% | LR215600.1 | |||
2 | BMMF2 DNA sequence, isolate C2MI.16B.11 | 95% | LR215580.1 |
BMMFs and Tissue# | Sequence Results | Identity | GenBank | |
---|---|---|---|---|
BMMF1 RCC | 1 | Sphinx1.76-related DNA, replication-competent episomal DNA MSBI2.176 | 96% | LK931492.1 |
2 | Sphinx1.76-related DNA, replication-competent episomal DNA HCBI3.108 | 97% | LK931495.1 | |
3 | BMMF1 DNA sequence, isolate C1MI.9M.1 | 94% | LR215496.1 | |
4 | Sphinx1.76-related DNA, replication-competent episomal DNA HCBI3.108 | 100% | LK931495.1 | |
5 | BMMF1 DNA sequence, isolate C1MI.15M.2 | 95% | LR215495.1 | |
6 | Sphinx1.76-related DNA, replication-competent episomal DNA HCBI6.159 | 95% | LK931494.1 | |
BMMF2 RCC | 1 | BMMF2 DNA sequence, isolate C2MI.15B.17 | 83% | LR215569.1 |
2 | TSE-associated circular DNA isolate Sphinx 2.36 | 98% | HQ444405.1 | |
3 | BMMF2 DNA sequence isolate C2MI.9B.5 | 97% | LR215542.1 | |
4 | BMMF2 DNA sequence, isolate C2MI.15B.1 | 92% | LR215553.1 | |
5 | BMMF2 DNA sequence, isolate C2MI.8A.3 | 75% | LR215533.1 | |
BMMF1 peritumoral | 1 | Sphinx1.76-related DNA, replication-competent episomal DNA HCBI3.108 | 98% | LK931495.1 |
BMMF2 peritumoral | 1 | BMMF2 DNA sequence, isolate C2MI.9As.2 | 82% | LR215600.1 |
2 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 98% | HQ444405.1 | |
3 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | HQ444405.1 | |
4 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | HQ444405.1 | |
5 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 98% | HQ444405.1 | |
6 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 98% | HQ444405.1 | |
7 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 96% | HQ444405.1 | |
8 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 97% | HQ444405.1 | |
9 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 95% | HQ444405.1 |
Specific Primer | # | Sequence Results | Identity |
---|---|---|---|
BMMF2-FA1 | 1 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% |
2 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | |
3 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | |
4 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | |
5 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | |
BMMF2-FA4 | 1 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 98% |
2 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 98% | |
3 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 98% | |
4 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | |
5 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 98% | |
BMMF2-FA7 | 1 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% |
2 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 98% | |
3 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | |
4 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 98% | |
5 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 98% | |
BMMF2-FA8 | 1 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% |
2 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | |
3 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | |
4 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% | |
5 | TSE-associated circular DNA isolate Sphinx 2.36, complete sequence | 99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobaraki, G.; Shi, S.; Smits, K.M.; Severens, K.; Lommen, K.; Rennspiess, D.; Chteinberg, E.; Winnepenninckx, V.; Samarska, I.; Klufah, F.; et al. Bovine Meat and Milk Factor-like Sequences Are Frequently Detected in Renal Cell Carcinoma Tissues. Cancers 2024, 16, 1746. https://doi.org/10.3390/cancers16091746
Mobaraki G, Shi S, Smits KM, Severens K, Lommen K, Rennspiess D, Chteinberg E, Winnepenninckx V, Samarska I, Klufah F, et al. Bovine Meat and Milk Factor-like Sequences Are Frequently Detected in Renal Cell Carcinoma Tissues. Cancers. 2024; 16(9):1746. https://doi.org/10.3390/cancers16091746
Chicago/Turabian StyleMobaraki, Ghalib, Shuai Shi, Kim M. Smits, Kim Severens, Kim Lommen, Dorit Rennspiess, Emil Chteinberg, Véronique Winnepenninckx, Iryna Samarska, Faisal Klufah, and et al. 2024. "Bovine Meat and Milk Factor-like Sequences Are Frequently Detected in Renal Cell Carcinoma Tissues" Cancers 16, no. 9: 1746. https://doi.org/10.3390/cancers16091746
APA StyleMobaraki, G., Shi, S., Smits, K. M., Severens, K., Lommen, K., Rennspiess, D., Chteinberg, E., Winnepenninckx, V., Samarska, I., Klufah, F., & Hausen, A. z. (2024). Bovine Meat and Milk Factor-like Sequences Are Frequently Detected in Renal Cell Carcinoma Tissues. Cancers, 16(9), 1746. https://doi.org/10.3390/cancers16091746