snRNAs from Radical Prostatectomy Specimens Have the Potential to Serve as Prognostic Factors for Clinical Recurrence after Biochemical Recurrence in Patients with High-Risk Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Study Design
2.2. Formalin-Fixed Paraffin-Embedded (FFPE) Radical Prostatectomy (RP) Specimens
2.3. RNA Extraction
2.4. RNA-sequencing (RNA-seq)
2.5. Quantitative Polymerase Chain Reaction (qPCR) Analysis
2.6. Statistical Analyses
3. Results
3.1. RNA-seq of FFPE RP Samples from Patients with HRPC Who Developed CR after Post-RP BCR
3.2. Comparison of the Expression Levels of snRNAs between CR and Non-CR Groups Using qPCR
3.3. Correlations of RNU1-1/1-2 and RNU4-1 Expression with Clinicopathological Features of Patients with HRPC Who Experienced Post-RP BCR
3.4. Evaluation of the Prognostic Utilities of snRNA RNU1-1/1-2 and RNU4-1 for CR in Patients with HRPC Who Experienced Post-RP BCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergengren, O.; Pekala, K.R.; Matsoukas, K.; Fainberg, J.; Mungovan, S.F.; Bratt, O.; Bray, F.; Brawley, O.; Luckenbaugh, A.N.; Mucci, L.; et al. 2022 Update on Prostate Cancer Epidemiology and Risk Factors-A Systematic Review. Eur. Urol. 2023, 84, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Mo, M.; Wei, Y.; Wu, J.; Pan, J.; Freedland, S.J.; Zheng, Y.; Ye, D. Epidemiology and genomics of prostate cancer in Asian men. Nat. Rev. Urol. 2021, 18, 282–301. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, G.; Wu, F.; Wang, Y.; Liu, Z.; Hu, H.; Xu, K. Global Burden of Prostate Cancer and Association with Socioeconomic Status, 1990-2019: A Systematic Analysis from the Global Burden of Disease Study. J. Epidemiol. Glob. Health 2023, 13, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Graefen, M.; Schlomm, T. Is radical prostatectomy a useful therapeutic option for high-risk prostate cancer in older men? Oncologist 2012, 17 (Suppl. S1), 4–8. [Google Scholar] [CrossRef]
- Costello, A.J. Considering the role of radical prostatectomy in 21st century prostate cancer care. Nat. Rev. Urol. 2020, 17, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Cooperberg, M.R.; Elkin, E.P.; Lubeck, D.P.; Mehta, S.S.; Kane, C.J.; Carroll, P.R. Ability of 2 pretreatment risk assessment methods to predict prostate cancer recurrence after radical prostatectomy: Data from CaPSURE. J. Urol. 2005, 173, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Cooperberg, M.R.; Cowan, J.; Broering, J.M.; Carroll, P.R. High-risk prostate cancer in the United States, 1990–2007. World J. Urol. 2008, 26, 211–218. [Google Scholar] [CrossRef]
- Loeb, S.; Schaeffer, E.M.; Trock, B.J.; Epstein, J.I.; Humphreys, E.B.; Walsh, P.C. What are the outcomes of radical prostatectomy for high-risk prostate cancer? Urology 2010, 76, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Pierorazio, P.M.; Ross, A.E.; Han, M.; Epstein, J.I.; Partin, A.W.; Schaeffer, E.M. Evolution of the clinical presentation of men undergoing radical prostatectomy for high-risk prostate cancer. BJU Int. 2012, 109, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Klotz, L.; Vesprini, D.; Sethukavalan, P.; Jethava, V.; Zhang, L.; Jain, S.; Yamamoto, T.; Mamedov, A.; Loblaw, A. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J. Clin. Oncol. 2015, 33, 272–277. [Google Scholar] [CrossRef]
- Sundi, D.; Tosoian, J.J.; Nyame, Y.A.; Alam, R.; Achim, M.; Reichard, C.A.; Li, J.; Wilkins, L.; Schwen, Z.; Han, M.; et al. Outcomes of very high-risk prostate cancer after radical prostatectomy: Validation study from 3 centers. Cancer 2019, 125, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Akatsuka, J.; Yuki, E.; Matsuzawa, I.; Suzuki, Y.; Hamasaki, T.; Kimura, G.; Kondo, Y. Long-Term Oncological Outcomes for Histologically Confirmed High-Risk Prostate Cancer. J. Nippon. Med. Sch. 2023, 90, 202–209. [Google Scholar] [CrossRef]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
- Ham, W.S.; Chalfin, H.J.; Feng, Z.; Trock, B.J.; Epstein, J.I.; Cheung, C.; Humphreys, E.; Partin, A.W.; Han, M. New Prostate Cancer Grading System Predicts Long-term Survival Following Surgery for Gleason Score 8-10 Prostate Cancer. Eur. Urol. 2017, 71, 907–912. [Google Scholar] [CrossRef]
- Falagario, U.G.; Abbadi, A.; Remmers, S.; Björnebo, L.; Bogdanovic, D.; Martini, A.; Valdman, A.; Carrieri, G.; Menon, M.; Akre, O.; et al. Biochemical Recurrence and Risk of Mortality Following Radiotherapy or Radical Prostatectomy. JAMA Netw. Open 2023, 6, e2332900. [Google Scholar] [CrossRef] [PubMed]
- Brockman, J.A.; Alanee, S.; Vickers, A.J.; Scardino, P.T.; Wood, D.P.; Kibel, A.S.; Lin, D.W.; Bianco, F.J., Jr.; Rabah, D.M.; Klein, E.A.; et al. Nomogram Predicting Prostate Cancer-specific Mortality for Men with Biochemical Recurrence After Radical Prostatectomy. Eur. Urol. 2015, 67, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, T.; van den Bergh, R.C.N.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef]
- Virgo, K.S.; Rumble, R.B.; de Wit, R.; Mendelson, D.S.; Smith, T.J.; Taplin, M.E.; Wade, J.L., 3rd; Bennett, C.L.; Scher, H.I.; Nguyen, P.L.; et al. Initial Management of Noncastrate Advanced, Recurrent, or Metastatic Prostate Cancer: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 1274–1305. [Google Scholar] [CrossRef]
- McKay, R.R.; Feng, F.Y.; Wang, A.Y.; Wallis, C.J.D.; Moses, K.A. Recent Advances in the Management of High-Risk Localized Prostate Cancer: Local Therapy, Systemic Therapy, and Biomarkers to Guide Treatment Decisions. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 1–12. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur. Urol. 2021, 79, 263–282. [Google Scholar] [CrossRef]
- Eggener, S.E.; Scardino, P.T.; Walsh, P.C.; Han, M.; Partin, A.W.; Trock, B.J.; Feng, Z.; Wood, D.P.; Eastham, J.A.; Yossepowitch, O.; et al. Predicting 15-year prostate cancer specific mortality after radical prostatectomy. J. Urol. 2011, 185, 869–875. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Tsuzuki, T.; Akatsuka, J.; Ueki, M.; Morikawa, H.; Numata, Y.; Takahara, T.; Tsuyuki, T.; Tsutsumi, K.; Nakazawa, R.; et al. Automated acquisition of explainable knowledge from unannotated histopathology images. Nat. Commun. 2019, 10, 5642. [Google Scholar] [CrossRef]
- Boorjian, S.A.; Karnes, R.J.; Crispen, P.L.; Rangel, L.J.; Bergstralh, E.J.; Sebo, T.J.; Blute, M.L. The impact of discordance between biopsy and pathological Gleason scores on survival after radical prostatectomy. J. Urol. 2009, 181, 95–104, discussion 104. [Google Scholar] [CrossRef]
- Lygirou, V.; Fasoulakis, K.; Stroggilos, R.; Makridakis, M.; Latosinska, A.; Frantzi, M.; Katafigiotis, I.; Alamanis, C.; Stravodimos, K.G.; Constantinides, C.A.; et al. Proteomic Analysis of Prostate Cancer FFPE Samples Reveals Markers of Disease Progression and Aggressiveness. Cancers 2022, 14, 3765. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Jamal, M.; Tan, S.H.; Song, Y.; Young, D.; Chen, Y.; Katta, S.; Ying, K.; Ravindranath, L.; Woodle, T.; et al. Molecular profiling of radical prostatectomy tissue from patients with no sign of progression identifies ERG as the strongest independent predictor of recurrence. Oncotarget 2019, 10, 6466–6483. [Google Scholar] [CrossRef] [PubMed]
- Strand, S.H.; Hoyer, S.; Lynnerup, A.S.; Haldrup, C.; Storebjerg, T.M.; Borre, M.; Orntoft, T.F.; Sorensen, K.D. High levels of 5-hydroxymethylcytosine (5hmC) is an adverse predictor of biochemical recurrence after prostatectomy in ERG-negative prostate cancer. Clin. Epigenet. 2015, 7, 111. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chevarie-Davis, M.; Chevalier, S.; Scarlata, E.; Zeizafoun, N.; Dragomir, A.; Tanguay, S.; Kassouf, W.; Aprikian, A.; Brimo, F. The prognostic role of ERG immunopositivity in prostatic acinar adenocarcinoma: A study including 454 cases and review of the literature. Hum. Pathol. 2014, 45, 488–497. [Google Scholar] [CrossRef]
- Guthrie, C.; Patterson, B. Spliceosomal snRNAs. Annu. Rev. Genet. 1988, 22, 387–419. [Google Scholar] [CrossRef] [PubMed]
- Wahl, M.C.; Will, C.L.; Lührmann, R. The spliceosome: Design principles of a dynamic RNP machine. Cell 2009, 136, 701–718. [Google Scholar] [CrossRef]
- Matera, A.G.; Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 2014, 15, 108–121. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Shui, Y.; Li, P.; Tian, Z.; Duan, S.; Wei, Q. Implications of m6A-associated snRNAs in the prognosis and immunotherapeutic responses of hepatocellular carcinoma. Front. Immunol. 2022, 13, 1001506. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, R.; Lai, Y. Expression signature of ten small nuclear RNAs serves as novel biomarker for prognosis prediction of acute myeloid leukemia. Sci. Rep. 2023, 13, 18489. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Z.; Zhang, S.; Han, X.; Li, Y.; Xu, Q.; Zhou, L.; Xu, H.; Bai, Y.; Xu, C.; et al. Down-regulation of small nuclear RNA (snRNA) RNU5E-1 in hepatocellular carcinoma presents with vital clinical significance. J. Gastrointest. Oncol. 2020, 11, 738–746. [Google Scholar] [CrossRef]
- Costa, V.; Aprile, M.; Esposito, R.; Ciccodicola, A. RNA-Seq and human complex diseases: Recent accomplishments and future perspectives. Eur. J. Hum. Genet. 2013, 21, 134–142. [Google Scholar] [CrossRef]
- Srinivasan, M.; Sedmak, D.; Jewell, S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 2002, 161, 1961–1971. [Google Scholar] [CrossRef]
- Newton, Y.; Sedgewick, A.J.; Cisneros, L.; Golovato, J.; Johnson, M.; Szeto, C.W.; Rabizadeh, S.; Sanborn, J.Z.; Benz, S.C.; Vaske, C. Large scale, robust, and accurate whole transcriptome profiling from clinical formalin-fixed paraffin-embedded samples. Sci. Rep. 2020, 10, 17597. [Google Scholar] [CrossRef]
- Esteve-Codina, A.; Arpi, O.; Martinez-García, M.; Pineda, E.; Mallo, M.; Gut, M.; Carrato, C.; Rovira, A.; Lopez, R.; Tortosa, A.; et al. A Comparison of RNA-Seq Results from Paired Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Glioblastoma Tissue Samples. PLoS ONE 2017, 12, e0170632. [Google Scholar] [CrossRef] [PubMed]
- Bussemakers, M.J.; van Bokhoven, A.; Verhaegh, G.W.; Smit, F.P.; Karthaus, H.F.; Schalken, J.A.; Debruyne, F.M.; Ru, N.; Isaacs, W.B. DD3: A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999, 59, 5975–5979. [Google Scholar]
- Lemos, A.E.G.; Matos, A.D.R.; Ferreira, L.B.; Gimba, E.R.P. The long non-coding RNA PCA3: An update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget 2019, 10, 6589–6603. [Google Scholar] [CrossRef]
- Cui, Y.; Cao, W.; Li, Q.; Shen, H.; Liu, C.; Deng, J.; Xu, J.; Shao, Q. Evaluation of prostate cancer antigen 3 for detecting prostate cancer: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 25776. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S.; Feng, Z.; Trock, B.J.; Humphreys, E.B.; Carducci, M.A.; Partin, A.W.; Walsh, P.C.; Eisenberger, M.A. The natural history of metastatic progression in men with prostate-specific antigen recurrence after radical prostatectomy: Long-term follow-up. BJU Int. 2012, 109, 32–39. [Google Scholar] [CrossRef]
- Baraniskin, A.; Nöpel-Dünnebacke, S.; Ahrens, M.; Jensen, S.G.; Zöllner, H.; Maghnouj, A.; Wos, A.; Mayerle, J.; Munding, J.; Kost, D.; et al. Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for pancreatic and colorectal adenocarcinoma. Int. J. Cancer 2013, 132, E48–E57. [Google Scholar] [CrossRef]
- Kuhlmann, J.D.; Baraniskin, A.; Hahn, S.A.; Mosel, F.; Bredemeier, M.; Wimberger, P.; Kimmig, R.; Kasimir-Bauer, S. Circulating U2 small nuclear RNA fragments as a novel diagnostic tool for patients with epithelial ovarian cancer. Clin. Chem. 2014, 60, 206–213. [Google Scholar] [CrossRef]
- Köhler, J.; Schuler, M.; Gauler, T.C.; Nöpel-Dünnebacke, S.; Ahrens, M.; Hoffmann, A.C.; Kasper, S.; Nensa, F.; Gomez, B.; Hahnemann, M.; et al. Circulating U2 small nuclear RNA fragments as a diagnostic and prognostic biomarker in lung cancer patients. J. Cancer Res. Clin. Oncol. 2016, 142, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Baraniskin, A.; Zaslavska, E.; Nöpel-Dünnebacke, S.; Ahle, G.; Seidel, S.; Schlegel, U.; Schmiegel, W.; Hahn, S.; Schroers, R. Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for primary central nervous system lymphoma. Neuro Oncol. 2016, 18, 361–367. [Google Scholar] [CrossRef]
- Dvinge, H.; Guenthoer, J.; Porter, P.L.; Bradley, R.K. RNA components of the spliceosome regulate tissue- and cancer-specific alternative splicing. Genome Res. 2019, 29, 1591–1604. [Google Scholar] [CrossRef]
- Shuai, S.; Suzuki, H.; Diaz-Navarro, A.; Nadeu, F.; Kumar, S.A.; Gutierrez-Fernandez, A.; Delgado, J.; Pinyol, M.; López-Otín, C.; Puente, X.S.; et al. The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature 2019, 574, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Kumar, S.A.; Shuai, S.; Diaz-Navarro, A.; Gutierrez-Fernandez, A.; De Antonellis, P.; Cavalli, F.M.G.; Juraschka, K.; Farooq, H.; Shibahara, I.; et al. Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature 2019, 574, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.M.; Venters, C.C.; Di, C.; Pinto, A.M.; Wan, L.; Younis, I.; Cai, Z.; Arai, C.; So, B.R.; Duan, J.; et al. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat. Commun. 2020, 11, 1. [Google Scholar] [CrossRef]
- Merola, R.; Tomao, L.; Antenucci, A.; Sperduti, I.; Sentinelli, S.; Masi, S.; Mandoj, C.; Orlandi, G.; Papalia, R.; Guaglianone, S.; et al. PCA3 in prostate cancer and tumor aggressiveness detection on 407 high-risk patients: A National Cancer Institute experience. J. Exp. Clin. Cancer Res. 2015, 34, 15. [Google Scholar] [CrossRef]
- Alshalalfa, M.; Verhaegh, G.W.; Gibb, E.A.; Santiago-Jiménez, M.; Erho, N.; Jordan, J.; Yousefi, K.; Lam, L.L.C.; Kolisnik, T.; Chelissery, J.; et al. Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: Exploratory analysis from 12,076 patients. Oncotarget 2017, 8, 50804–50813. [Google Scholar] [CrossRef]
- Huang, Z.H.; Du, Y.P.; Wen, J.T.; Lu, B.F.; Zhao, Y. snoRNAs: Functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov. 2022, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, J.; Diao, L.; Han, L. Small non-coding RNAs in human cancer: Function, clinical utility, and characterization. Oncogene 2021, 40, 1570–1577. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, J.; Ju, S.; Cui, M.; Jing, R. Disorders and roles of tsRNA, snoRNA, snRNA and piRNA in cancer. J. Med. Genet. 2022, 59, 623–631. [Google Scholar] [CrossRef]
- Greytak, S.R.; Engel, K.B.; Bass, B.P.; Moore, H.M. Accuracy of Molecular Data Generated with FFPE Biospecimens: Lessons from the Literature. Cancer Res. 2015, 75, 1541–1547. [Google Scholar] [CrossRef]
- Zhao, W.; He, X.; Hoadley, K.A.; Parker, J.S.; Hayes, D.N.; Perou, C.M. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genom. 2014, 15, 419. [Google Scholar] [CrossRef] [PubMed]
- von Ahlfen, S.; Missel, A.; Bendrat, K.; Schlumpberger, M. Determinants of RNA quality from FFPE samples. PLoS ONE 2007, 2, e1261. [Google Scholar] [CrossRef]
- Krishnan, P.; Ghosh, S.; Wang, B.; Heyns, M.; Graham, K.; Mackey, J.R.; Kovalchuk, O.; Damaraju, S. Profiling of Small Nucleolar RNAs by Next Generation Sequencing: Potential New Players for Breast Cancer Prognosis. PLoS ONE 2016, 11, e0162622. [Google Scholar] [CrossRef]
Feature | CR (n = 21) | Non-CR (Control) (n = 46) | Total (n = 67) | p-Value | |
---|---|---|---|---|---|
Age at RP, no. (%) | 0.36 | ||||
<70 | 16 (76.2%) | 30 (65.2%) | 46 (68.7%) | ||
≥70 | 5 (23.8%) | 16 (34.8%) | 21 (31.3%) | ||
Preoperative PSA, no. (%) | 0.80 | ||||
<20 | 13 (61.9%) | 27 (58.7%) | 40 (59.7%) | ||
≥20 | 8 (38.1%) | 19 (41.3%) | 27 (40.3%) | ||
ISUP Grade Groups, no. (%) | 0.24 | ||||
ISUP 3-4 | 9 (42.9%) | 13 (28.2%) | 22 (32.8%) | ||
ISUP 5 | 12 (57.1%) | 33 (71.7%) | 45 (67.2%) | ||
pT, no. (%) | 0.36 | ||||
<3a | 1 (4.8%) | 7 (15.2%) | 7 (15.2%) | ||
≥3a | 20 (95.2%) | 39 (84.8%) | 39 (84.8%) | ||
pN, no. (%) | 0.58 | ||||
negative | 20 (95.2%) | 45 (97.8%) | 45 (97.8%) | ||
positive | 1 (4.8%) | 1 (2.2%) | 1 (2.2%) | ||
Surgical margin, no. (%) | 0.65 | ||||
negative | 4 (19.0%) | 11 (23.9%) | 11 (23.9%) | ||
positive | 17 (81.0%) | 35 (76.1%) | 35 (76.1%) |
Gene Type | The Number of Genes, No. (%) | TPM, No. (%) † |
---|---|---|
Protein coding | 19,460 (34.1%) | 503,797.7 (50.4%) |
lncRNA | 17,323 (30.3%) | 223,407.3 (22.3%) |
Processed pseudogene | 9503 (16.6%) | 72,746.4 (7.3%) |
Unprocessed pseudogene | 2303 (4.0%) | 13,639.7 (1.4%) |
miscRNA | 1788 (3.1%) | 52,583.2 (5.3%) |
snRNA | 1436 (2.5%) | 48,532.3 (4.9%) |
miRNA | 1077 (1.9%) | 23,432.7 (2.3%) |
snoRNA | 586 (1.0%) | 19,780.2 (2.0%) |
IG gene | 178 (0.3%) | 1858.7 (0.2%) |
IG pseudogene | 161 (0.3%) | 690.1 (0.07%) |
rRNA | 25 (0.04%) | 343.2 (0.03%) |
Others | 3276 (5.7%) | 39,188.3 (3.9%) |
Total | 57,116 | 1,000,000 |
No. | Gene ID | Gene Symbol | Gene Type | TPM, No. (%) † |
---|---|---|---|---|
1 | ENSG00000251562 | MALAT1 | lncRNA | 35,265.9 (3.5%) |
2 | ENSG00000276168 | RN7SL1 | miscRNA | 9968.7 (1.0%) |
3 | ENSG00000202538 | RNU4-2 | snRNA | 9476.2 (0.9%) |
4 | ENSG00000142515 | KLK3 | protein coding | 6448.2 (0.6%) |
5 | ENSG00000198695 | MT-ND6 | protein coding | 6274.2 (0.6%) |
6 | ENSG00000200488 | RN7SKP203 | miscRNA | 6039.1 (0.6%) |
7 | ENSG00000198886 | MT-ND4 | protein coding | 5699.7 (0.6%) |
8 | ENSG00000198727 | MT-CYB | protein coding | 4566.4 (0.5%) |
9 | ENSG00000198899 | MT-ATP6 | protein coding | 4407.9 (0.4%) |
10 | ENSG00000198938 | MT-CO3 | protein coding | 4093.9 (0.4%) |
11 | ENSG00000198804 | MT-CO1 | protein coding | 4015.8 (0.4%) |
12 | ENSG00000245532 | NEAT1 | lncRNA | 3728.9 (0.4%) |
13 | ENSG00000206652 | RNU1-1 | snRNA | 3678.7 (0.4%) |
14 | ENSG00000200087 | SNORA73B | snoRNA | 3582.9 (0.4%) |
15 | ENSG00000198786 | MT-ND5 | protein coding | 3456.7 (0.3%) |
16 | ENSG00000167751 | KLK2 | protein coding | 3348.0 (0.3%) |
17 | ENSG00000198840 | MT-ND3 | protein coding | 3297.2 (0.3%) |
18 | ENSG00000198712 | MT-CO2 | protein coding | 2767.5 (0.3%) |
19 | ENSG00000198888 | MT-ND1 | protein coding | 2565.9 (0.3%) |
20 | ENSG00000198763 | MT-ND2 | protein coding | 2430.4 (0.2%) |
21 | ENSG00000278771 | RN7SL3 | miscRNA | 2237.6 (0.2%) |
22 | ENSG00000201098 | RNY1 | miscRNA | 2057.4 (0.2%) |
23 | ENSG00000200795 | RNU4-1 | snRNA | 1954.3 (0.2%) |
24 | ENSG00000212907 | MT-ND4L | protein coding | 1727.5 (0.2%) |
25 | ENSG00000228253 | MT-ATP8 | protein coding | 1707.9 (0.2%) |
26 | ENSG00000238741 | SCARNA7 | snoRNA | 1650.4 (0.2%) |
27 | ENSG00000265735 | RN7SL5P | miscRNA | 1612.6 (0.2%) |
28 | ENSG00000273149 | antisense to TPT1 | lncRNA | 1602.5 (0.2%) |
29 | ENSG00000207005 | RNU1-2 | snRNA | 1523.2 (0.2%) |
30 | ENSG00000277918 | RNVU1-28 | snRNA | 1519.4 (0.2%) |
31 | ENSG00000204389 | HSPA1A | protein coding | 1454.1 (0.1%) |
32 | ENSG00000110092 | CCND1 | protein coding | 1453.5 (0.1%) |
33 | ENSG00000272114 | antisense to VEGFA | lncRNA | 1400.1 (0.1%) |
34 | ENSG00000158715 | SLC45A3 | protein coding | 1308.6 (0.1%) |
35 | ENSG00000204388 | HSPA1B | protein coding | 1283.2 (0.1%) |
36 | ENSG00000221792 | MIR1282 | miRNA | 1277.8 (0.1%) |
37 | ENSG00000267458 | antisense to CALR | lncRNA | 1238.2 (0.1%) |
38 | ENSG00000266019 | MIR3609 | miRNA | 1232.5 (0.1%) |
39 | ENSG00000200156 | RNU5B-1 | snRNA | 1122.4 (0.1%) |
40 | ENSG00000263740 | RN7SL4P | miscRNA | 1083.8 (0.1%) |
41 | ENSG00000248527 | MTATP6P1 | unprocessed pseudogene | 1022.2 (0.1%) |
42 | ENSG00000080824 | HSP90AA1 | protein coding | 1017.9 (0.1%) |
43 | ENSG00000207389 | RNU1-4 | snRNA | 983.5 (0.1%) |
44 | ENSG00000202058 | RN7SKP80 | miscRNA | 951.9 (0.1%) |
45 | ENSG00000256364 | antisense to MLEC | lncRNA | 925.9 (0.1%) |
46 | ENSG00000112306 | RPS12 | protein coding | 909.4 (0.1%) |
47 | ENSG00000286037 | antisense to SPINT2 | lncRNA | 903.2 (0.1%) |
48 | ENSG00000200312 | RN7SKP255 | miscRNA | 878.9 (0.1%) |
49 | ENSG00000167034 | NKX3-1 | protein coding | 873.3 (0.1%) |
50 | ENSG00000096384 | HSP90AB1 | protein coding | 856.7 (0.1%) |
Variable | Group | RNU1-1/1-2 Expression | p-Value | RNU4-1 Expression | p-Value | ||
---|---|---|---|---|---|---|---|
Low | High | Low | High | ||||
Age at RP, no. (%) | 0.48 | 0.08 | |||||
<70 y/o | 22 (64.7%) | 24 (72.7%) | 20 (58.8%) | 26 (78.8%) | |||
≥70 y/o | 12 (35.3%) | 9 (27.3%) | 14 (41.2%) | 7 (21.2%) | |||
Preoperative PSA, no. (%) | 0.02 | 0.40 | |||||
<20 ng/mL | 25 (73.5%) | 15 (45.5%) | 22 (64.7%) | 18 (54.5%) | |||
≥20 mg/mL | 9 (26.5%) | 18 (54.5%) | 12 (35.3%) | 15 (45.5%) | |||
ISUP Grade Groups, no. (%) | 0.34 | 0.34 | |||||
3–4 | 13 (38.2%) | 9 (27.3%) | 13 (38.2%) | 9 (27.3%) | |||
5 | 21 (61.8%) | 24 (72.7%) | 21 (61.8%) | 24 (72.7%) | |||
pT, no. (%) | 0.48 | 0.13 | |||||
<3a | 5 (14.7%) | 3 (9.1%) | 6 (17.7%) | 2 (6.1%) | |||
≥3a | 29 (85.3%) | 30 (90.1%) | 28 (82.4%) | 31 (93.9%) | |||
pN, no. (%) | 0.98 | 0.09 | |||||
negative | 33 (97.1%) | 32 (97.0%) | 34 (100%) | 31 (93.9%) | |||
positive | 1 (2.9%) | 1 (3.0%) | 0 (0%) | 2 (6.1%) | |||
Surgical margin, no. (%) | 0.41 | 0.41 | |||||
negative | 9 (26.5%) | 6 (18.2%) | 9 (26.5%) | 6 (18.2%) | |||
positive | 25 (73.5%) | 27 (81.8%) | 25 (73.5%) | 27 (81.8%) |
Covariates | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|
Age ≥ 70 | 0.587 | 0.164–1.683 | 0.34 |
Preoperative PSA ≥ 20 ng/mL | 0.647 | 0.219–1.755 | 0.40 |
ISUP Grade Group 5 | 0.701 | 0.252–1.943 | 0.49 |
pT ≥ 3a | 2.709 | 0.522–49.839 | 0.28 |
pN positive | 8.806 | 0.374–91.963 | 0.15 |
Surgical margin positive | 1.070 | 0.322–4.199 | 0.92 |
RNU1-1/1-2 expression level | 4.101 | 1.177–16.587 | 0.03 |
RNU4-1 expression level | 0.972 | 0.282–3.460 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikami, H.; Noguchi, S.; Akatsuka, J.; Hasegawa, H.; Obayashi, K.; Takeda, H.; Endo, Y.; Toyama, Y.; Takei, H.; Kimura, G.; et al. snRNAs from Radical Prostatectomy Specimens Have the Potential to Serve as Prognostic Factors for Clinical Recurrence after Biochemical Recurrence in Patients with High-Risk Prostate Cancer. Cancers 2024, 16, 1757. https://doi.org/10.3390/cancers16091757
Mikami H, Noguchi S, Akatsuka J, Hasegawa H, Obayashi K, Takeda H, Endo Y, Toyama Y, Takei H, Kimura G, et al. snRNAs from Radical Prostatectomy Specimens Have the Potential to Serve as Prognostic Factors for Clinical Recurrence after Biochemical Recurrence in Patients with High-Risk Prostate Cancer. Cancers. 2024; 16(9):1757. https://doi.org/10.3390/cancers16091757
Chicago/Turabian StyleMikami, Hikaru, Syunya Noguchi, Jun Akatsuka, Hiroya Hasegawa, Kotaro Obayashi, Hayato Takeda, Yuki Endo, Yuka Toyama, Hiroyuki Takei, Go Kimura, and et al. 2024. "snRNAs from Radical Prostatectomy Specimens Have the Potential to Serve as Prognostic Factors for Clinical Recurrence after Biochemical Recurrence in Patients with High-Risk Prostate Cancer" Cancers 16, no. 9: 1757. https://doi.org/10.3390/cancers16091757
APA StyleMikami, H., Noguchi, S., Akatsuka, J., Hasegawa, H., Obayashi, K., Takeda, H., Endo, Y., Toyama, Y., Takei, H., Kimura, G., Kondo, Y., & Takizawa, T. (2024). snRNAs from Radical Prostatectomy Specimens Have the Potential to Serve as Prognostic Factors for Clinical Recurrence after Biochemical Recurrence in Patients with High-Risk Prostate Cancer. Cancers, 16(9), 1757. https://doi.org/10.3390/cancers16091757