Programmed Death Ligand 1 Expression in Circulating Tumor Cells as a Predictor and Monitor of Response to Atezolizumab plus Bevacizumab Treatment in Patients with Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Protocol and Participants
2.2. Etiology of Liver Diseases
2.3. Treatment Protocol
2.4. Evaluation of the Treatment Response
2.5. Enrichment of CTCs and RNA Extraction
2.6. Immunofluorescent Staining
2.7. Flow-Cytometric Analysis
2.8. RNA Extraction and Nested-PCR
2.9. Percutaneous Hepatic Tumor Needle Biopsy
2.10. Immunohistochemical Analysis
2.11. Automated Histological Image Analysis
2.12. Statistical Analyses
3. Results
3.1. Association of Pre-Treatment CTC Characteristics, Tumor Tissue, and Clinical Features with Response to Atezo/Bev
3.2. Pre-Treatment PD-L1 RNA Level in CTCs and Response to Atezo/Bev and Lenvatinib
3.3. PD-L1 Expression in CTCs and Matched Tumor Tissues
3.4. Association between Dynamic Changes in PD-L1 RNA Level in CTCs and Response during Atezo/Bev and Lenvatinib
3.5. Pre-Treatment Levels and Dynamic Changes of PD-L1 RNA in CTCs during Atezo/Bev
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Pinter, M.; Scheiner, B.; Pinato, D.J. Immune checkpoint inhibitors in hepatocellular carcinoma: Emerging challenges in clinical practice. Lancet Gastroenterol. Hepatol. 2023, 8, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Abbas, A.R.; de Galarreta, M.R.; Guan, Y.; Lu, S.; Koeppen, H.; Zhang, W.; Hsu, C.-H.; He, A.R.; Ryoo, B.-Y.; et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 2022, 28, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Greten, T.F.; Villanueva, A.; Korangy, F.; Ruf, B.; Yarchoan, M.; Ma, L.; Ruppin, E.; Wang, X.W. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2023, 20, 780–798. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Man, J.; Lord, S.; Cooper, W.; Links, M.; Gebski, V.; Herbst, R.S.; Gralla, R.J.; Mok, T.; Yang, J.C.-H. Clinical and Molecular Characteristics Associated With Survival Among Patients Treated With Checkpoint Inhibitors for Advanced Non–Small Cell Lung Carcinoma. JAMA Oncol. 2018, 4, 210–216. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H., 3rd; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef]
- Ring, A.; Nguyen-Sträuli, B.D.; Wicki, A.; Aceto, N. Biology, vulnerabilities and clinical applications of circulating tumour cells. Nat. Rev. Cancer 2022, 23, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Yeung, K.T.; Yang, J. Epithelial–mesenchymal transition in tumor metastasis. Mol. Oncol. 2016, 11, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.; Watters, M.; Davies, C.R.; Pantel, K.; Lu, Y.-J. Circulating tumour cells for early detection of clinically relevant cancer. Nat. Rev. Clin. Oncol. 2023, 20, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of Liver Function in Patients With Hepatocellular Carcinoma: A New Evidence-Based Approach—The ALBI Grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, A.; Kumada, T.; Tsuji, K.; Takaguchi, K.; Itobayashi, E.; Kariyama, K.; Ochi, H.; Tajiri, K.; Hirooka, M.; Shimada, N.; et al. Validation of Modified ALBI Grade for More Detailed Assessment of Hepatic Function in Hepatocellular Carcinoma Patients: A Multicenter Analysis. Liver Cancer 2018, 8, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Mazel, M.; Jacot, W.; Pantel, K.; Bartkowiak, K.; Topart, D.; Cayrefourcq, L.; Rossille, D.; Maudelonde, T.; Fest, T.; Alix-Panabières, C. Frequent expression of PD-L1 on circulating breast cancer cells. Mol. Oncol. 2015, 9, 1773–1782. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.L.; Adams, D.K.; He, J.; Kalhor, N.; Zhang, M.; Xu, T.; Gao, H.; Reuben, J.M.; Qiao, Y.; Komaki, R.; et al. Sequential Tracking of PD-L1 Expression and RAD50 Induction in Circulating Tumor and Stromal Cells of Lung Cancer Patients Undergoing Radiotherapy. Clin. Cancer Res. 2017, 23, 5948–5958. [Google Scholar] [CrossRef] [PubMed]
- Nicolazzo, C.; Raimondi, C.; Mancini, M.; Caponnetto, S.; Gradilone, A.; Gandini, O.; Mastromartino, M.; del Bene, G.; Prete, A.; Longo, F.; et al. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Sci. Rep. 2016, 6, 31726. [Google Scholar] [CrossRef] [PubMed]
- Khattak, M.A.; Reid, A.; Freeman, J.; Pereira, M.; McEvoy, A.; Lo, J.; Frank, M.H.; Meniawy, T.; Didan, A.; Spencer, I.; et al. PD-L1 Expression on Circulating Tumor Cells May Be Predictive of Response to Pembrolizumab in Advanced Melanoma: Results from a Pilot Study. Oncologist 2019, 25, e520–e527. [Google Scholar] [CrossRef]
- Strati, A.; Koutsodontis, G.; Papaxoinis, G.; Angelidis, I.; Zavridou, M.; Economopoulou, P.; Kotsantis, I.; Avgeris, M.; Mazel, M.; Perisanidis, C.; et al. Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Ann. Oncol. 2017, 28, 1923–1933. [Google Scholar] [CrossRef]
- Satelli, A.; Batth, I.S.; Brownlee, Z.; Rojas, C.; Meng, Q.H.; Kopetz, S.; Li, S. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients. Sci. Rep. 2016, 6, 28910. [Google Scholar] [CrossRef]
- Winograd, P.; Hou, S.; Court, C.M.; Lee, Y.-T.; Chen, P.-J.; Zhu, Y.; Sadeghi, S.; Finn, R.S.; Teng, P.-C.; Wang, J.J.; et al. Hepatocellular Carcinoma–Circulating Tumor Cells Expressing PD-L1 Are Prognostic and Potentially Associated With Response to Checkpoint Inhibitors. Hepatol. Commun. 2020, 4, 1527–1540. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Zhang, W.; Yang, Z.; Li, G.; Cheng, S.; Zhang, K.; Feng, L. Correlation between PD-L1 expression ON CTCs and prognosis of patients with cancer: A systematic review and meta-analysis. OncoImmunology 2021, 10, 1938476. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Jiang, Y.; Li, P.; Wang, Y.; Xue, J.; Li, N.; Li, D.; Wang, R.; Dang, Y.; Hu, Z.; et al. Dynamic change of PD-L1 expression on circulating tumor cells in advanced solid tumor patients undergoing PD-1 blockade therapy. OncoImmunology 2018, 7, e1438111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, L.; Zeng, L.; Xiong, Y.; Liu, L.; Zhou, C.; Yang, H.; Wang, Z.; Xia, Q.; Jiang, W.; et al. Sintilimab plus docetaxel as second-line therapy of advanced non-small cell lung cancer without targetable mutations: A phase II efficacy and biomarker study. BMC Cancer 2022, 22, 952. [Google Scholar] [CrossRef] [PubMed]
- Chiang, P.-J.; Xu, T.; Cha, T.-L.; Tsai, Y.-T.; Liu, S.-Y.; Wu, S.-T.; Meng, E.; Tsao, C.-W.; Kao, C.-C.; Chen, C.-L.; et al. Programmed Cell Death Ligand 1 Expression in Circulating Tumor Cells as a Predictor of Treatment Response in Patients with Urothelial Carcinoma. Biology 2021, 10, 674. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, S.; Coym, A.; Ott, L.; Soave, A.; Rink, M.; Janning, M.; Stoupiec, M.; Coith, C.; Peine, S.; von Amsberg, G.; et al. Evaluation of PD-L1 expression on circulating tumor cells (CTCs) in patients with advanced urothelial carcinoma (UC). OncoImmunology 2020, 9, 1738798. [Google Scholar] [CrossRef] [PubMed]
- Guibert, N.; Delaunay, M.; Lusque, A.; Boubekeur, N.; Rouquette, I.; Clermont, E.; Mourlanette, J.; Gouin, S.; Dormoy, I.; Favre, G.; et al. PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer 2018, 120, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Guo, L.; He, K.; Rao, M.; Zhang, J.; Yang, X.; Huang, W.; Gu, T.; Xu, K.; Liu, Y.; et al. PD-L1 expression on circulating tumor cells can be a predictive biomarker to PD-1 inhibitors combined with radiotherapy and antiangiogenic therapy in advanced hepatocellular carcinoma. Front. Oncol. 2022, 12, 873830. [Google Scholar] [CrossRef]
- Janning, M.; Kobus, F.; Babayan, A.; Wikman, H.; Velthaus, J.-L.; Bergmann, S.; Schatz, S.; Falk, M.; Berger, L.-A.; Böttcher, L.-M.; et al. Determination of PD-L1 Expression in Circulating Tumor Cells of NSCLC Patients and Correlation with Response to PD-1/PD-L1 Inhibitors. Cancers 2019, 11, 835. [Google Scholar] [CrossRef]
- Spiliotaki, M.; Neophytou, C.M.; Vogazianos, P.; Stylianou, I.; Gregoriou, G.; Constantinou, A.I.; Deltas, C.; Charalambous, H. Dynamic monitoring of PD-L1 and Ki67 in circulating tumor cells of metastatic non-small cell lung cancer patients treated with pembrolizumab. Mol. Oncol. 2022, 17, 792–809. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Zhong, S.; Ma, Z.; Kong, H.; Medvec, A.; Ahmed, R.; Freeman, G.J.; Krogsgaard, M.; Riley, J.L. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc. Natl. Acad. Sci. USA 2013, 110, E2480–E2489. [Google Scholar] [CrossRef] [PubMed]
- Verdeil, G.; Marraco, S.A.F.; Murray, T.; Speiser, D.E. From T cell “exhaustion” to anti-cancer immunity. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2016, 1865, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Sinoquet, L.; Jacot, W.; Gauthier, L.; Pouderoux, S.; Viala, M.; Cayrefourcq, L.; Quantin, X.; Alix-Panabières, C. Programmed Cell Death Ligand 1-Expressing Circulating Tumor Cells: A New Prognostic Biomarker in Non-Small Cell Lung Cancer. Clin. Chem. 2021, 67, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, M.A.; Koutsopoulos, A.V.; Tsoulfas, P.G.; Lagoudaki, E.; Aggouraki, D.; Monastirioti, A.; Koutoulaki, C.; Apostolopoulou, C.A.; Merodoulaki, A.C.; Papadaki, C.; et al. Clinical Relevance of Immune Checkpoints on Circulating Tumor Cells in Breast Cancer. Cancers 2020, 12, 376. [Google Scholar] [CrossRef] [PubMed]
- Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2021, 18, 345–362. [Google Scholar] [CrossRef]
- Licata, L.; Mariani, M.; Rossari, F.; Viale, G.; Notini, G.; Naldini, M.M.; Bosi, C.; Piras, M.; Dugo, M.; Bianchini, G. Tissue- and liquid biopsy-based biomarkers for immunotherapy in breast cancer. Breast 2023, 69, 330–341. [Google Scholar] [CrossRef]
Characteristics | Atezolizumab + Bevacizumab (n = 22) | Lenvatinib (n = 24) |
---|---|---|
Age, median (IQR), years | 73 (64–80) | 73 (66–78) |
Gender, male/female, n | 17/5 | 19/5 |
ECOG PS, 0/1/2/3/4, n | 17/5/0/0/0 | 22/2/0/0/0 |
Etiology, HBV/HCV/NBNC, n | 3/9/10 | 3/10/11 |
PLT, ×109/L, median (IQR) | 151 (110–176) | 144 (116–168) |
PT, INR, median (IQR) | 1.06 (0.98–1.15) | 1.03 (0.96–1.10) |
ALB, g/dL, median (IQR) | 3.5 (3.1–3.8) | 3.6 (3.4–4.0) |
T-bil, g/dL, median (IQR) | 0.9 (0.6–1.3) | 0.8 (0.6–1.0) |
modified ALBI grade, 1/2a/2b/3, n | 5/6/10/1 | 9/4/10/1 |
ALT, IU/L, median (IQR) | 25 (19–37) | 29 (14–40) |
AFP, ng/mL, median (IQR) | 16.5 (6.0–312.7) | 10.8 (3.9–135.6) |
DCP, mAU/mL, median (IQR) | 602 (26–1569) | 275 (30–744) |
Maximum tumor size, cm, median (IQR) | 3.5 (2.6–6.5) | 3.4 (2.2–7.7) |
Number of tumor, 1/2/3+, n | 2/2/18 | 1/3/20 |
Vascular invasion, absent/present, n | 17/5 | 18/6 |
BCLC stage, A/B/C, n | 0/11/11 | 1/14/9 |
Extrahepatic metastasis, n | ||
None | 17 | 20 |
Lymph node | 3 | 3 |
Bone | 1 | 0 |
Lung | 1 | 1 |
Prior systemic therapy, n | ||
None | 13 | 12 |
Sorafenib | 1 | 0 |
Lenvatinib | 5 | ― |
Atezolizumab plus Bevacizumab | ― | 8 |
HAIC | 1 | 3 |
Lenvatinib, HAIC | 2 | 0 |
Sorafenib, Atezolizumab plus Bevacizumab | ― | 1 |
CTC counts (/5 mL), median (IQR) | 161 (97–254) | 213 (38–422) |
Tumor biopsy | ||
Tumor differentiation, well/moderate/poor, n | 5/5/1 | ― |
PD-L1 (IHC, H-score), median (IQR) | 7 (4–52) | ― |
Observation period, median, days | 314 | 261 |
Target | Application | Target Species | Host Species | Clone | Company | Catalogue No. |
---|---|---|---|---|---|---|
CD45 | Flow cytometry; IF | Human | Mouse | 2D1 | BioLegend | 368516 |
pan-Cytokeratin | Flow cytometry; IF | Human | Mouse | C-11 | Cayman Chemical | 10478 |
PD-L1 | Flow cytometry | Human | Mouse | 29E.2A3 | BD Biosciences | 568319 |
PD-L1 | IHC | Human | Rabbit | 28-8 | abcam | ab205921 |
Gene | Species | Dye | Company | Catalogue No. |
---|---|---|---|---|
AFP | Human | FAM | Applied Biosystems | Hs00173490_m1 |
ALB | Human | FAM | Applied Biosystems | Hs00609411_m1 |
CD274 (PD-L1) | Human | FAM | Applied Biosystems | Hs00204257_m1 |
CDH1 (E-cadherin) | Human | FAM | Applied Biosystems | Hs01023895_m1 |
CDH2 (N-cadherin) | Human | FAM | Applied Biosystems | Hs00983056_m1 |
EpCAM | Human | FAM | Applied Biosystems | Hs00901885_m1 |
GAPDH | Human | FAM | Applied Biosystems | Hs02786624_g1 |
GPC3 | Human | FAM | Applied Biosystems | Hs01018936_m1 |
KLF4 | Human | FAM | Applied Biosystems | Hs00358836_m1 |
MYC | Human | FAM | Applied Biosystems | Hs00153408_m1 |
NANOG | Human | FAM | Applied Biosystems | Hs02387400_g1 |
POU5F1 (OCT3/4) | Human | FAM | Applied Biosystems | Hs04260367_gH |
SALL4 | Human | FAM | Applied Biosystems | Hs00360675_m1 |
SOX2 | Human | FAM | Applied Biosystems | Hs01053049_s1 |
THY1 (CD90) | Human | FAM | Applied Biosystems | Hs06633377_s1 |
Factors | Patients Number (n = 22) | Univariate Analysis (p-Value) |
---|---|---|
CTC RNA expression (qRT-PCR) | ||
PD-L1, (<median/≥median), n | 11/11 | 0.018 |
CD90, (<median/≥median), n | 11/11 | 0.910 |
OCT3/4, (<median/≥median), n | 11/11 | 0.929 |
SOX2, (<median/≥median), n | 11/11 | 0.953 |
KLF4, (<median/≥median), n | 11/11 | 0.209 |
MYC, (<median/≥median), n | 11/11 | 0.436 |
NANOG, (<median/≥median), n | 11/11 | 0.943 |
SALL4, (<median/≥median), n | 11/11 | 0.576 |
EpCAM, (<median/≥median), n | 11/11 | 0.502 |
E-cadherin, (<median/≥median), n | 11/11 | 0.730 |
N-cadherin, (<median/≥median), n | 11/11 | 0.167 |
AFP, (<median/≥median), n | 16/6 | 0.683 |
GPC3, (<median/≥median), n | 14/8 | 0.402 |
ALB, (<median/≥median), n | 11/11 | 0.272 |
CTC counts (FACS) | ||
CTC counts, /5 mL, (<150/≥150), n | 11/11 | 0.492 |
Tumor biopsy | ||
Tumor differentiation, (well/moderate, poor), n | 5/6 | 0.353 |
PD-L1, H-score, (<10/≥10), n | 6/5 | 0.238 |
Clinical features | ||
Age, y, (<75/≥75), n | 12/10 | 0.852 |
Gender, (male/female), n | 17/5 | 0.321 |
ECOG PS, (0/≥1), n | 17/5 | 0.945 |
Etiology, (HBV, HCV/NBNC), n | 12/10 | 0.212 |
mALBI grade, (1,2a/2b,3), n | 11/11 | 0.767 |
AFP, ng/mL, (<13.4/≥13.4), n | 9/13 | 0.974 |
DCP, mAU/mL, (<100/≥100), n | 8/14 | 0.099 |
Prior systemic therapy, (TKI/none or HAIC), n | 8/14 | 0.525 |
Extrahepatic metastasis, (present/absent), n | 5/17 | 0.442 |
Vascular invasion, (present/absent), n | 5/17 | 0.197 |
Maximum tumor size, cm, (<4/≥4), n | 13/9 | 0.468 |
Tumor number, (<3/≥3), n | 4/18 | 0.738 |
BCLC stage (B/C), n | 11/11 | 0.600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosaka, T.; Murata, Y.; Akazawa, Y.; Tanaka, T.; Takahashi, K.; Naito, T.; Matsuda, H.; Ohtani, M.; Imamura, Y.; Nakamoto, Y. Programmed Death Ligand 1 Expression in Circulating Tumor Cells as a Predictor and Monitor of Response to Atezolizumab plus Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. Cancers 2024, 16, 1785. https://doi.org/10.3390/cancers16091785
Nosaka T, Murata Y, Akazawa Y, Tanaka T, Takahashi K, Naito T, Matsuda H, Ohtani M, Imamura Y, Nakamoto Y. Programmed Death Ligand 1 Expression in Circulating Tumor Cells as a Predictor and Monitor of Response to Atezolizumab plus Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. Cancers. 2024; 16(9):1785. https://doi.org/10.3390/cancers16091785
Chicago/Turabian StyleNosaka, Takuto, Yosuke Murata, Yu Akazawa, Tomoko Tanaka, Kazuto Takahashi, Tatsushi Naito, Hidetaka Matsuda, Masahiro Ohtani, Yoshiaki Imamura, and Yasunari Nakamoto. 2024. "Programmed Death Ligand 1 Expression in Circulating Tumor Cells as a Predictor and Monitor of Response to Atezolizumab plus Bevacizumab Treatment in Patients with Hepatocellular Carcinoma" Cancers 16, no. 9: 1785. https://doi.org/10.3390/cancers16091785
APA StyleNosaka, T., Murata, Y., Akazawa, Y., Tanaka, T., Takahashi, K., Naito, T., Matsuda, H., Ohtani, M., Imamura, Y., & Nakamoto, Y. (2024). Programmed Death Ligand 1 Expression in Circulating Tumor Cells as a Predictor and Monitor of Response to Atezolizumab plus Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. Cancers, 16(9), 1785. https://doi.org/10.3390/cancers16091785