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Simple Summary: Melanoma is an aggressive malignancy defined by significant intratu-
moral heterogeneity, driving its capacity for therapeutic resistance and recurrence. This
study adopts a systems-level approach to dissect the melanoma microenvironment, focus-
ing on intricate interactions between malignant cells and immune infiltrates. We identified
critical regulatory networks and intercellular communication pathways that appear to
influence disease progression. These findings highlight the dynamic interplay between
tumor-intrinsic factors and the surrounding microenvironment, revealing potential mech-
anisms underlying immune evasion and therapy resistance. By mapping these complex
interactions, the present study builds on our foundation for precision-based therapeutic
strategies tailored to the unique biological landscape of melanoma, offering promise for
improved clinical outcomes.

Abstract: Background: Despite significant strides in anti-melanoma therapies, resistance
and recurrence remain major challenges. A deeper understanding of the underlying biol-
ogy of these challenges is necessary for developing more effective treatment paradigms.
Methods: Melanoma single-cell data were retrieved from the Broad Single Cell Portal
(SCP11). High-dimensional weighted gene co-expression network analysis (hdWGCNA),
CellChat, and ligand-receptor relative crosstalk (RC) scoring were employed to evaluate
intercellular and intracellular signaling. The prognostic value of key regulatory genes
was assessed via Kaplan-Meier (KM) survival analysis using the ‘SKCM-TCGA’ dataset.
Results: Twenty-seven (27) gene co-expression modules were identified via hdWGCNA.
Notable findings include NRAS Q61L melanomas being enriched for modules involving
C19orf10 and ARF4, while BRAF V600E melanomas were enriched for modules involv-
ing ALAS1 and MYO1B. Additionally, CellChat analysis highlighted several dominant
signaling pathways, namely MHC-II, CD99, and Collagen-receptor signaling, with nu-
merous significant ligand-receptor interactions from melanocytes, including CD99-CD99
communications with cancer-associated fibroblasts, endothelial cells, NK cells, and T-cells.
KM analysis revealed that higher expression of SELL, BTLA, IL2RG, PDGFA, CLDN11,
ITGB3, and SPN improved overall survival, while higher FGF5 expression correlated
with worse survival. Protein-protein interaction network analysis further indicated sig-
nificant interconnectivity among the identified prognostic genes. Conclusions: Overall,
these insights underscore critical immune interactions and potential therapeutic targets
to combat melanoma resistance, paving the way for more personalized and effective
treatment strategies.
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1. Introduction
Melanoma is one of the deadliest cutaneous malignancies. From 1975 to 2021, melanoma

incidence surged by over 320% [1]. According to the National Cancer Institute, more than
one million Americans are actively living with melanoma, and current estimates sug-
gest nearly 20 persons die from melanoma every day in the United States [2]. Over the
past decade, significant advancements in targeted therapies and immunotherapies, such
as BRAF/MEK inhibitors and immune checkpoint inhibitors, have markedly improved
survival rates. However, treatment resistance (innate and acquired) and recurrence re-
main persistent challenges, partly driven by the remarkable intratumoral heterogeneity of
melanoma [3–5]. This heterogeneity, arising from melanoma cell plasticity and the complex
interplay with diverse stromal and immune cells, contributes to variable patient outcomes
and remains a critical focus of ongoing research.

In silico analysis of RNA sequencing data has opened new avenues for studying
melanoma by revealing complex molecular interactions at unprecedented depth. Tran-
scriptomic analysis has helped uncover critical ligand-receptor interactions [6,7], metabolic
pathways [8,9], and predictive gene expression signatures related to melanoma growth
and progression [10,11]. Single-cell sequencing, specifically, has lent to highly granu-
lar insights into the dynamic plasticity of melanoma cells, showcasing their ability to
transition between differentiated and dedifferentiated states, impacting invasiveness and
treatment responsiveness.

Despite these technologies, efforts to comprehensively map regulatory genes and cell-
to-cell signaling networks in melanoma at single-cell resolution remain limited. The present
study aims to address this gap via a detailed study of the melanoma interactome, poten-
tially invigorating future dermatogenomics research and the development of personalized
therapeutic strategies.

2. Methods
2.1. Overview of Datasets

Single-cell RNA (scRNA) sequencing data representing metastatic melanoma was
retrieved from Tirosh et al.’s 2016 study [12]. The corresponding expression data is main-
tained by the Broad Institute’s Single Cell Portal (SCP11), which includes the expression
profiles of 4645 single cells isolated from 19 patients. This data is composed of malignant,
immune, stromal, and endothelial cells. No patient identifiers are included in this dataset.
The present analysis was restricted to genotyped malignant cells to minimize the influence
of heterogeneous cell populations.

To assess the potential interplay between levels of identified regulatory genes and
patient prognosis, bulk cutaneous melanoma gene expression data and corresponding
survival data were retrieved from the Broad GDAC Firehose portal (http://firebrowse.org/
?cohort=SKCM, accessed on 1 April 2024).

2.2. Identification of Gene Co-Expression Networks via hdWGCNA Applied to scRNA Data

Weighted gene co-expression networks within the single-cell transcriptome expression
data were generated using the R package ‘hdWGCNA’ v0.3.00 [13]. For WGCNA input,
only genes expressed in at least 5% of cells were retained for analysis. Inferred cell types
were retrieved as a mixture of annotations provided by the original dataset authors and,

http://firebrowse.org/?cohort=SKCM
http://firebrowse.org/?cohort=SKCM
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when unavailable, by SingleR (cells < 100 transcripts ignored). Metacells were constructed
by cell type and sample. Co-expression networks were constructed at a soft-thresholding
power of 8 on the melanocyte expression set. Hub genes, defined here as the top 10 genes
based on the degree of within-network connectivity (numerized by kME), were resolved
from each generated network module using the GetHubGenes function. Gene scoring was
performed using the UCell algorithm (n_genes = 25) [14].

2.3. Identification of Significant Communications via CellChat Applied to scRNA Data

To predict important ligand-receptor (L-R) interactions, intercellular communication
networks were developed using ‘CellChat’ in label-free mode [15]. CellChatDB is a curated
database of 2021 validated L-R complexes (informed by KEGG.db and primary literature),
a constituent of cell-to-cell contact, ECM-receptor, and secreting interactions that has
demonstrated immense utility in similar efforts. L-R interactions between computationally
derived cell type pairs are modeled using the law of mass action, and communication
probability (or strength) is quantified via network propagation to project expression counts
onto validated protein-protein networks. Statistical significance is determined by a random
permutation test, with group labels shuffled 100 times.

CellChat was run in the default configuration, with cell-cell communication groups
derived from fewer than 10 cells excluded. CellChat’s extractEnrichedLR function was
used to extract significant L-R pairs and related signaling genes for each of the obtained
signaling pathways.

2.4. Identification of Significant L-R Interactions via Relative Crosstalk Scores Derived from Bulk
RNA Data

An additional source of significant communication pathways within the melanoma
interactome was derived from our previously published data, which utilized relative
crosstalk (RC) scores calculated from the SKCM-TCGA bulk RNA dataset [6,16].

In brief, the ESTIMATE algorithm [17] was used to predict tumor purities, defined
as the proportion of tumor cells in each tissue sample. Gene expression in the tumor and
stromal (nontumor) compartments was modeled as follows:

ebulk,i = pieT + (1 − pi)eS

where:

• ebulk,i represents the bulk mRNA expression for a given gene in tumor sample i,
• pieT is the average mRNA expression level in the tumor compartment, and
• (1 − pi)eS is the average mRNA expression level in the stromal compartment

Tumor and stroma compartment expression levels were obtained via negative least-
squares regression, assuming consistent average compartment expression levels across
tumor samples. This compartmental expression data was annotated with a curated set of
1,380 ligand-receptor pairs. Applying the Law of Mass Action, the molar concentration of
a given ligand-receptor interaction complex can be modeled as follows:

[LR] = [L][R]K−1
D

Assuming that (1) inferred mRNA expression values serve as reasonable proxies for
ligand and receptor concentrations, (2) ligand-receptor kinetics are uniform across samples,
and (3) mass action principles are upheld, the RC score equation below was utilized.
The numerator represents the ligand-receptor complex of interest, while the denominator
accounts for all potential ligand-receptor interactions (or directionalities).
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RCT,S =
(eL,TeR,S)K−1

D

(eL,TeR,S)K−1
D + (eL,TeR,T)K−1

D + (eL,SeR,S)K−1
D + (eL,SeR,T)K−1

D

where:

• RCT,S represents the relative crosstalk score for a tumor-stroma ligand-receptor interaction,
• eL,TeR,S represents the interaction of a tumor ligand with a stromal receptor,
• eL,TeR,T represents the interaction of a tumor ligand with a tumor receptor,
• eL,SeR,S represents the interaction of a stromal ligand with a stromal receptor, and
• eL,SeR,T represents the interaction of a stromal ligand with a tumor receptor.

Simplifying further, the RC score for a specific tumor ligand and stromal receptor pair
is calculated as:

RCT,S =
eL,TeR,S

eL,TeR,S + eL,TeR,T + eL,SeR,S + eL,SeR,T

This formulation provides a robust measure of tumor-stroma crosstalk, allowing for
the identification of significant L-R interactions critical to the melanoma microenvironment.

2.5. Kaplan-Meier Survival Analysis of Consensus Regulatory Genes

For each regulatory gene, patient groups representing the top 50% and bottom 50%, by
median gene expression were created using SKCM-TCGA bulk expression data. Differences
in corresponding overall and disease-free survival between patient groups were then
tested by Kaplan-Meier analysis. Log-rank p-values were adjusted for false discovery rate.
Adjusted p-values < 0.05 were considered statistically significant.

3. Results
A total of 3515 single cells from fourteen (14) patients with available genotyping

information were analyzed: 1970 from wild-type melanomas, 1051 from NRAS Q61L
melanomas, 226 from BRAF V600K melanomas, and 268 from BRAF V600E melanomas
(Figure 1A). The first two principal components, grouped by malignancy status and anno-
tated by Seurat cluster, are illustrated in Figure 1B. Dimensionality reduction revealed areas
of clear clustering based on cell type, especially between T-cells, B-cells, and melanocytes.
Eosinophils, epithelial cells, myocytes, and pericytes were sparsely represented in our
dataset (Figure 1C,D).

3.1. Generation of Co-Expression Networks

Application of hdWGCNA to the global single-cell population generated twenty-seven
(27) gene modules (Figure 2A–D). From these, a total of 270 hub genes were obtained, with
kME values ranging from 0.26 to 0.93 (median kME = 0.54).

Among modules with ≥40% expression, wild-type melanomas were most enriched for
module 16 (top 3 hub genes, by kME: MGC27345, TSFM, GDNF) and moderately downreg-
ulated for module 26. NRAS Q61L melanomas were most enriched for modules 7 (C19orf10,
ARF4, KDELR2), 13 (TIMM50, ZBED3-AS1, SERPINF1), and 15 (RAP1GAP, OCA2, PAICS).
BRAF V600K melanomas were downregulated for module 1 (RPS15, RPL29, RPL10). BRAF
V600E melanomas were most enriched for modules 3 (ALAS1, HMG20B, CALR), 26 (PAN3,
CCT2, BTF3), and 27 (MYO1B, USE1, REXO2), and moderately downregulated for module
7 (Figure 3A, B). Analysis of differential MEs revealed module 14 (TLCD2, PRICKLE2-AS3,
and SPN) was significantly upregulated by NRAS Q61L melanomas (log2fc = 100.2,
adjusted p = 1.32 × 10−2) and downregulated by BRAF V600E melanomas (log2fc = −206.3,
adjusted p = 3.51 × 10−14) (Figure 3C).
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Figure 1. Raw data visualization. (A) Single-cell counts by driver mutation of tumor of origin. (B) 
Principal component analysis biplot of single cells by inferred malignancy status, annotated by 
Seurat cluster. (C) Uniform manifold approximation and projection biplot of single cells by driver 
mutation of tumor of origin, annotated by inferred cell type. (D) Feature counts by inferred cell type. 
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Figure 1. Raw data visualization. (A) Single-cell counts by driver mutation of tumor of origin.
(B) Principal component analysis biplot of single cells by inferred malignancy status, annotated by
Seurat cluster. (C) Uniform manifold approximation and projection biplot of single cells by driver
mutation of tumor of origin, annotated by inferred cell type. (D) Feature counts by inferred cell type.

Module membership of genes belonging to the mitogen-activated protein kinase
(MAPK) and phosphatidylinositol 3-kinase (PI3K) and pathways is shown in Figure 3D.

3.2. Predicted Ligand-Receptor Interactions

To predict significant components of the melanoma L-R interactome, we applied
CellChat to the complete single-cell population, identifying a total of 407 signaling genes
involved in significant L-R interactions.

Assessment of interactions between melanocytes (source) and other cell types (targets)
revealed that, most significantly, melanocytes communicated with CAFs (p < 0.01), endothe-
lial cells (p < 0.01), NK cells (p < 0.05), and T-cells (p < 0.01) via CD99-CD99 interactions, as
well as with macrophages via CD99-CD99L2 (p < 0.01). Additionally, strong signaling from
melanocytes was detected with endothelial cells via GDF15-TGFBR2 (p < 0.01), T-cells via
HLA-F-CD8A (p < 0.01), and NK cells via ICAM1-(ITGAL+ITGB2) (p < 0.01) (Figure 4A).

Overall, the top 3 most active signaling pathways were MHC-II, CD99, and Collagen-
receptor signaling, and the top 3 most contributory L-R pairs were CD99-CD99, HLA-
DQB1-CD4, and HLA-DPB1-CD4 (Figure 4B). Assessment of the signaling interaction
network highlighted the central roles of macrophages, CAFs, and B-cells, as well as a promi-
nent reliance of melanocytes on CD99, HLA-F, GDF15, and ICAM1 (Figure 4C). Overall,
CD99-CD99, HLA-DQB1-CD4, and HLA-DPB1-CD4 interactions demonstrated the highest
contributions across the signaling network (Figure 4D).

To understand which cell types are dominant senders (i.e., cell types sending sig-
nals) and which are dominant receivers (i.e., cell types receiving signals), with respect to
each L-R interaction analyzed, incoming and outgoing interactions strengths (weights)
were calculated in the context of all pathways, secreted signaling, cell-to-cell contact, and
ECM-receptor interactions. Respectively, the galectin signaling pathway emerged as the
greatest contributor to secreted signaling, MHC-II signaling to cell-to-cell contact, and
collagen signaling to ECM-receptor interactions (Figure 5A). Additionally, macrophages
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displayed the most robust overall incoming and outgoing interaction strength among im-
mune cells (Figure 5B). CAFs showed the strongest incoming and outgoing ECM-receptor
interaction strengths. Melanocytes had relatively poor outgoing interaction strength and
middling incoming interaction strength. Moreover, NK cells demonstrated uniquely strong
secreted signaling.
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Among modules with ≥40% expression, wild-type melanomas were most enriched 
for module 16 (top 3 hub genes, by kME: MGC27345, TSFM, GDNF) and moderately 
downregulated for module 26. NRAS Q61L melanomas were most enriched for modules 
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Figure 2. hdWGCNA pipeline: generation and analysis of weighted gene co-expression network
modules. (A) Plots of scale-free topology (top left), mean connectivity (top right), median connectivity
(bottom left), and max connectivity (bottom right) as a function of soft power threshold. (B) Module
dendrogram, where grey coloration indicates an unresolved module. (C) Modules generated from
melanocytes with corresponding top 5 hub genes, ranked by kME value. (D) Unified network
plot comprised of hub genes as nodes and edge as relationships (top) and UMAP of the network
topological overlap matrix (bottom). (E) Module feature plots of hub genes scores, derived by
UCell algorithm.
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Figure 3. (A) Dot plot of MEs by driver mutation. (B) Dot plot of MEs by inferred cell type.
(C) Differential module eigengene analysis, grouped by driver mutation. (D) MAPK (left) and PI3K
(right) pathways annotated by gene module membership.

From our prior investigation, we extracted an additional set of eighty-five (85) genes.
These genes encoded for L-R pairs with high relative crosstalk scores (top 15) along each of
the tumor-to-stroma, stroma-to-tumor, tumor-to-tumor, and stroma-to-stroma signaling
axes in a mixed sample of primary and metastatic melanoma.

3.3. Testing the Prognostic Value of Each Consensus Gene

A total of seventeen (17) unique genes were shared by at least two sets of genes
resolved from the weighted gene co-expression networks, CellChat communications, and
L-R RC scores (Table 1) (Figure 6).

KM analysis revealed increased overall survival in patients with higher melanoma
expression of SELL (median 105.0 months vs. 58.0 months, FDR-adjusted p = 1.37 × 10−3),
BTLA (median 107.1 months vs. 53.9 months, FDR-adjusted p = 4.26 × 10−4), IL2RG
(median 107.3 months vs. 55.5 months, FDR-adjusted p = 4.74 × 10−5), PDGFA
(median 103.1 months vs. 62.8 months, FDR-adjusted p = 4.26 × 10−2), CLDN11 (median
112.5 months vs. 61.1 months, FDR-adjusted p = 4.32 × 10−2), ITGB3 (median 103.0 months
vs. 69.0 months, FDR-adjusted p = 4.77 × 10−2), and SPN (median 107.1 months vs.
58.5 months, FDR-adjusted p = 4.26 × 10−4). Conversely, lower expression of FGF5 was
correlated with increased overall survival (median 61.0 months vs. 105.0, FDR-adjusted
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p = 4.32 × 10−2). Expression levels of ERBB3, FGFR2, EGFR, ACVR2B, BMPR1B, LRP6,
NAMPT, NCL, and CD99 were not significantly associated with overall survival (Table 2)
(Figure 7A).
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Figure 4. CellChat pipeline: significant L-R interactions and pathways. (A) Bubble plot of significant
interactions (secreted signaling, cell-cell contact, and ECM-receptor signaling) from melanocytes
to all other cell types. (B) Heatmap of highest-contributing outgoing (left) and incoming (right)
signaling pathways. (C) Chord diagrams of significant interactions between all cell types (left) and
from melanocytes on all other cell types (right). (D) Relative contribution of the top L-R interactions.
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Table 1. Overlapping gene set.

HUGO Name Chr Function

SELL Selectin L Chr1 Leukocyte adhesion and migration

NCL Nucleolin Chr2 Ribosome biogenesis and nucleic
acid binding

ACVR2B Activin A Receptor Type 2B Chr3 Signal transduction

BTLA B and T Lymphocyte Attenuator Chr3 Immune response regulation

CLDN11 Claudin 11 Chr3 Tight junction formation

BMPR1B Bone Morphogenetic Protein Receptor Type 1B Chr4 Bone and cartilage development

FGF5 Fibroblast Growth Factor 5 Chr4 Regulation of cell proliferation
and differentiation

EGFR Epidermal Growth Factor Receptor Chr7 Cell proliferation and survival

PDGFA Platelet-Derived Growth Factor Subunit A Chr7 Cell growth, division, and angiogenesis

NAMPT Nicotinamide Phosphoribosyltransferase Chr7 NAD biosynthesis

FGFR2 Fibroblast Growth Factor Receptor 2 Chr10 Cell growth and differentiation

ERBB3 Erb-B2 Receptor Tyrosine Kinase 3 Chr12 Signal transduction

LRP6 Low-Density Lipoprotein Receptor-Related
Protein 6 Chr12 Wnt signaling

SPN Sialophorin Chr16 Cell adhesion
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Table 1. Cont.

HUGO Name Chr Function

ITGB3 Integrin Subunit Beta 3 Chr17 Cell adhesion and signal transduction

IL2RG Interleukin 2 Receptor Subunit Gamma ChrX Cytokine signaling

CD99 CD99 Molecule ChrX Cell adhesion and migration
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Table 2. Overall survival (OS) and disease-free survival (DFS) analyses of top and bottom 50% groups
by expression level.

Gene

Median OS
Months, High

Expression
Group

Median OS
Months, Low

Expression
Group

Adjusted
Log-Rank

p-Value, OS

Median DFS
Months, High

Expression
Group

Median DFS
Months, Low

Expression
Group

Adjusted
Log-Rank

p-Value, DFS

SELL 105 58 1.37 × 10−3 51.5 48.2 3.87 × 10−1

NCL 66.4 103.2 1.31 × 10−1 44.6 55.5 3.87 × 10−1

ACVR2B 68.1 92.9 2.92 × 10−1 51.1 49.4 8.76 × 10−1

BTLA 107.1 53.9 4.26 × 10−4 55.4 43 3.87 × 10−1

CLDN11 112.5 61.1 4.32 × 10−2 59 42.4 1.68 × 10−1

BMPR1B 78.9 80.6 3.12 × 10−1 48.6 51.4 3.87 × 10−1

FGF5 61.0 105.0 4.32 × 10−2 37.9 66.0 4.73 × 10−2

EGFR 68 89.1 1.39 × 10−1 46.7 55.8 3.87 × 10−1

PDGFA 103.1 62.8 4.26 × 10−2 55.5 48 4.73 × 10−2

NAMPT 103 66 8.71 × 10−2 55.5 48 1.68 × 10−1

FGFR2 66.4 92.9 4.91 × 10−1 49.2 52.1 6.62 × 10−1

ERBB3 68.1 96.2 8.11 × 10−2 55.5 46.7 6.94 × 10−1
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Table 2. Cont.

Gene

Median OS
Months, High

Expression
Group

Median OS
Months, Low

Expression
Group

Adjusted
Log-Rank

p-Value, OS

Median DFS
Months, High

Expression
Group

Median DFS
Months, Low

Expression
Group

Adjusted
Log-Rank

p-Value, DFS

LRP6 89.1 66.6 7.98 × 10−1 52.1 48 3.87 × 10−1

SPN 107.1 58.5 4.26 × 10−4 53.1 48.2 3.87 × 10−1

ITGB3 103 69 4.77 × 10−2 51.5 48.2 2.46 × 10−1

IL2RG 107.3 55.5 4.74 × 10−5 51.5 49.2 2.66 × 10−1

CD99 66.6 96.2 8.85 × 10−2 48.0 56.8 3.87 × 10−1

p-values < 0.05 bolded.

Cancers 2025, 17, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 7. Kaplan-Meier survival analysis. (A) Comparison of overall survival (months) between 
patients with high or above-median (red) vs. low or below-median (light blue) consensus gene 
expression. (B) Comparison of disease-free survival (months) between patients with high or above-
median (blue) vs. low or below-median (yellow) consensus gene expression. Red box indicates FDR-
adjusted log-rank p-value < 0.05. 

3.4. Mapping Expression Patterns of Prognostic Consensus Genes in Melanoma 

Using SKCM-TCGA RNA data, strong positive (defined as Spearman’s rho [ρ] > 0.8) 
correlations were observed between the expression levels of SELL and BTLA (ρ = 0.844, p 
= 4.42× 10-101); levels of SELL and IL2RG (ρ = 0.851, p = 1.82 × 10-104); levels of SELL and SPN 
(ρ = 0.804, p = 8.33 × 10-85); levels of BLTA and IL2RG (ρ = 0.858, p = 4.01 × 10-108); levels of 

Figure 7. Kaplan-Meier survival analysis. (A) Comparison of overall survival (months) between
patients with high or above-median (red) vs. low or below-median (light blue) consensus gene



Cancers 2025, 17, 148 12 of 18

expression. (B) Comparison of disease-free survival (months) between patients with high or above-
median (blue) vs. low or below-median (yellow) consensus gene expression. Red box indicates
FDR-adjusted log-rank p-value < 0.05.

Better disease-free survival probability was reported in patients with higher expression
of PDGFA (median 55.5 months vs. 48.0 months, FDR-adjusted p = 4.73 × 10−2) and in
patients with lower expression of FGF5 (median 66.0 months vs. 37.9 months, FDR-adjusted
p = 4.73 × 10−2). None of SELL, BTLA, IL2RG, CLDN11, ITGB3, and SPN proffered a disease-
free survival benefit (Table 2) (Figure 7B).

3.4. Mapping Expression Patterns of Prognostic Consensus Genes in Melanoma

Using SKCM-TCGA RNA data, strong positive (defined as Spearman’s rho [ρ] > 0.8)
correlations were observed between the expression levels of SELL and BTLA (ρ = 0.844,
p = 4.42× 10−101); levels of SELL and IL2RG (ρ = 0.851, p = 1.82 × 10−104); levels of SELL and
SPN (ρ = 0.804, p = 8.33 × 10−85); levels of BLTA and IL2RG (ρ = 0.858, p = 4.01 × 10−108);
levels of BLTA and SPN (ρ = 0.850, p = 6.95 × 10−104); and levels of IL2RG and SPN
(ρ = 0.919, p ~ 0) (Figure 8).

Understanding the impact of copy number alterations on immune cell infiltration is
crucial for identifying potential mechanisms of immune evasion in melanoma (Figure 9).
Compared to tumors with diploid/normal copy number, levels of B cell and CD4+ T cell
infiltration were reduced in tumor samples with arm-level deletion of BTLA, CLDN11, and
FGF5. Tumors with arm-level deletion or arm-level gain of IL2RG were associated with
decreased infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and
dendritic cells (p < 0.001). Similarly, arm-level deletion and arm-level gain of SPN were
predictive of lower infiltration levels of CD8+ T cells, CD4+ T cells, and dendritic cells.
Arm-level deletion of ITGB3 was most correlated with decreased infiltration of CD8+ T cells,
macrophages, and dendritic cells (p < 0.001); high amplification of ITGB3 also correlated
with decreased dendritic cell infiltration (p < 0.001). High amplification of PDGFA was
significantly associated with lower infiltration levels of CD8+ T cells (p < 0.01), CD4+ T cells
(p < 0.05), macrophages (p < 0.001), neutrophils (p < 0.001), and dendritic cells (p < 0.001).
Arm-level gain of SELL correlated with significantly decreased infiltration of B cells (C),
CD8+ T cells (p < 0.05), CD4+ T cells (p < 0.01), neutrophils (p < 0.01), and dendritic cells
(p < 0.001); high SELL amplification similarly correlated with decreased infiltration of B
cell (p < 0.01), but correlated with significantly increased CD4+ T cell infiltration levels
(p < 0.05).

Interconnectivity between consensus genes was further interrogated by StringDB
(https://string-db.org/, accessed on 1 April 2024) and GeneMANIA (https://genemania.
org/, accessed on 1 April 2024) (Figure 10A,B). The String protein-protein interaction
network was found to have eight edges (expected edges = 1) (p = 8.62 × 10−6), with
an average local clustering coefficient of 0.521, suggesting the inputted nodes are not ran-
dom. An expanded String network of 28 nodes contained 234 edges (expected edges = 35)
(p < 1.0 × 10−16), with an average local clustering coefficient of 0.802. GeneMANIA re-
vealed network enrichment for cellular extravasation (FDR-adjusted p = 2.83 × 10−6,
coverage = 6/56), leukocyte migration (FDR-adjusted p = 2.47 × 10−5, coverage = 8/281),
and leukocyte cell-cell adhesion (FDR-adjusted p = 2.47 × 10−5, coverage = 8/274).

https://string-db.org/
https://genemania.org/
https://genemania.org/
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4. Discussion
In the present study, we present a picture of malignant melanoma as an active yet

organized cancer. The results indicated that wild-type melanomas enriched genes network
modules regulated by genes involved in mitochondrial function; NRAS Q61L melanomas
were most enriched for modules regulated by C19orf10, ARF4, KDELR2; BRAF V600K
melanomas downregulated modules regulated by ribosomal proteins; and BRAF V600E
melanomas were most enriched for modules regulated by processing and trafficking pro-
teins. Tumor-associated macrophages expectedly played a dominant role in outgoing and
incoming communications, confirming what is understood in other cancers [18,19].

We also distinguished a subset of key signaling genes with apparent significance in
melanoma survival outcomes. Interestingly, correlation and network analyses suggested
these genes (1) are interconnected, (2) enrich their environments for cellular extravasation,
leukocyte migration, and cell-cell adhesion, and (3) are predictive of differential immune
infiltrates by somatic copy number alteration.

SELL encodes a cell surface adhesion molecule that recognizes sialylated carbohydrate
groups. Higher expression of SELL was associated with better survival outcomes in basal,
Her2 +, and luminal B subtypes of breast cancer [20]. Ji and colleagues had also described
SELL as a hub gene in their use of TCGA expression data but did not realize any effect on
survival (albeit using a Cox regression approach) [21].

BTLA encodes for a protein that functions as an immune checkpoint receptor to regu-
late immune responses [22]. Elevated levels of BTLA in melanoma have been previously
associated with increased immune filtration levels (namely CD8+ T cells) and improved
prognosis [23]. BTLA expression has been specifically associated with improved clinical
responses in patients undergoing adoptive T-cell therapy for metastatic melanoma [24].
However, other research indicates that BTLA can inhibit tumor-specific CD8+ T cells,
potentially compromising anti-tumor immunity [25].

IL2RG encodes for a subunit of the interleukin-2 receptor complex, which regulates
T-cell function, was previously linked to poorer prognosis in gastric cancer [26], and
IL2Rγ/JAK3 signaling has been shown to contribute to pancreatic cancer proliferation
in vivo [27]. The rapid in vitro loss of IL2Rγ expression in cultured cells has posed a signifi-
cant challenge to fully elucidating the intricacies of the IL2Rγ signaling pathway, restricting
further insights into its functional dynamics [28].

High expression of PDGFA predicts poor prognosis of esophageal squamous cell
carcinoma [29]. PDGFA-positive immunostaining had a higher likelihood of the risk of
death (hazard ratio = 2.907, p = 0.016) [30]. A gene expression analysis found PDGFA
to have significantly higher expression levels in esophageal cancer tissues compared to
corresponding normal samples [31]. This upregulation suggests a potential role for PDGFA
in tumor progression and pathology.

Several claudin genes (including CLDN11) are downregulated in colon adenocarci-
noma [32]; Li et al. previously reported increased metastasis and worse progression-free
survival in colorectal cancer patients with methylated CLDN11 [33]. Increased expression
of CLDN11 has also been linked to better overall breast cancer survival [34].

ITGB3 is associated with melanoma progression and metastasis-promoting potential
as its overexpression causes melanoma cells to transition from the radial growth phase to
the vertical growth phase [35]. The expression of ITGB3 RNA was linked with prolonged
survival of melanoma patients, supporting its potential role as an effector in the metastasis
suppressor function of NME1 [36]. Haqq et al. reported a significant increase in the
transcription level of ITGB3 in melanoma patients, showing a 3.147-fold change compared
to normal skin tissue [37]. Thus, abnormal expression of ITGB3 in melanoma may serve as
a prognostic marker [38].
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Elevated SPN expression hinders the clustering of tumor cells with T cells, which re-
duces the effectiveness of CD3 bispecific antibody-mediated tumor cell lysis [39]. However,
SPN otherwise remains poorly described in the literature.

FGF5 is characterized as a critical regulator of hair growth that promotes angiogenesis,
differentiation, and cell proliferation [40]. Overexpression of FGF5 may promote melanoma
growth through increased activation of the MAPK pathway [41]. FGF5 overexpression in
melanoma cells suggests pro-tumorigenic functions with enhanced malignancy through
paracrine effects [41,42].

Overall study limitations include low sample size (and thus total cell counts); re-
stricted (by missing) genotyping for several tumors; use of a separate non-metastatic
sample for assessing survival outcomes; noisiness inherent to single-cell analysis; and re-
liance on CellChat for cell-to-cell communication analysis, which may miss uncharacterized
or context-specific interactions due to its dependence on predefined L-R pairs and static
assumptions. Additionally, the computation of relative crosstalk scores in our previous
analysis used mean expression across tumor and stromal compartments, which may dis-
count heterogeneity in the latter. Nonetheless, the present study identifies a set of novel
and testable gene candidates with potential therapeutic value in melanoma.

5. Conclusions
Our findings reveal the extensive diversity of the melanoma microenvironment, high-

lighting prominent contributions from tumor-associated macrophages and key L-R interac-
tions along secreted signaling, ECM-receptor, and cell-cell contact signaling axes. Among
master regulatory genes, we observed significant clinical relevance and functional network
interconnectedness in SELL, FGF5, BTLA, IL2RG, PDGFA, CLDN11, ITGB3, and SPN.

The persistent challenge of primary and acquired resistance to current therapies un-
derscores the need for novel, mechanistically driven therapeutic targets. The pathways and
interactions identified in this study represent promising candidates for further investigation.
Future efforts should prioritize in vivo validation and elucidate the mechanistic roles of
these signalers within the melanoma interactome and their influence on tumor-immune
dynamics. Such efforts are crucial for translating these insights into precision oncologic
strategies to improve patient outcomes.
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