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S1. Data Preparation Steps: 
The following section will primarily detail the technical aspects of the dataset, how the CT 
data was pre-processed, and prepped for radiomic feature extraction. 

S1.1. Dataset Acquisition and Separation 

• All CT scans were collected on a GE Light Speed CT scanner (GE Healthcare, 
Milwaukee, WI, USA) 

o Intravenous iodinated contrast injection was obtained at the portal venous 
phase for the chest, abdomen, and pelvis 

o The images were reconstructed with a 2 or 2.5 mm slice thickness imaging 
protocol 

o The average native resolution was 0.72mm x 0.72mm 
o Images were resampled to a uniform pixel size of 1mm x 1mm using a spline 

interpolation 
• The retrospective discovery cohort (N = 97) of patients, referred to the clinic 

between January 1st 2017 and December 31st 2018, and was described in prior work 
[1].  

• A separate, more recently collected set of patients (referred to clinic after January 
1st, 2019) made up the external cohort (N = 30). 

• Eligibility for radiomics analysis for these patients required them to have a primary 
or metastatic lung lesion greater than 1cm in diameter. 

o  97 of the 138 patients in the discovery cohort satisfied this constraint. 
o 17 of the 30 patients in the external cohort satisfied this constraint. 

S1.2. Image Resampling 

• Each individual CT lung volume was re-windowed to typical lung window levels: 
o Level = -600 HU 
o Width = 1500 HU 

• Then each rewindowed lung CT volume was converted from 16-bit to 8-bit values by 
rescaling to a pixel value range of [0-255]. 

S1.3. Segmentation and Radiomic Feature Extraction 

• All lung lesion segmentations were performed using an Otsu-based thresholding 
iterative operation based on radiologist annotated 3D bounding box coordinates for 
each lesion of interest.  

• Up to 5 axial slice representations of each lesion, centered on the radiologist’s 
annotated central slice, were isolated for radiomic feature extraction. 

• Manual annotation was performed to erase the segmentation mask when it was 
shown to extend into the chest wall or airways so as to not include extreme HU 



values during feature extraction in the interest of representing only lesion or 
parenchymal tissues. 

• Axial slice images were then intensity inverted as a preprocessing step  
• Axial slice images and segmentation masks were then processed by a C++ based 

feature bank calculator designed for cytopathological images [2] to extract all 
radiomic features. A full list of features can be found in Section 11 of this document. 

S2. Model Selection Criteria 
A Logistic Regression (LR) model was selected the primary prediction method for several 
reasons, both technical and qualitative, listed here:  

• An LR has easily interpretable beta coe icients. 

• A fair method of comparison against our previous research [1] that included some of 
the same discriminating features (Pack Years and No. of metastatic sites). 

• Is well-suited for the intake of categorical variables (i.e., Sex, Smoking Status, ECOG 
Score, and the presence of metastasis at specific organ site). 

• The assumption of linearity in the discovery dataset. 

• The removal of variables that represent multicollinearity as per the feature filtering 
operation exampled in Section 4 of this document. 

• A LR is unlikely to overfit on sparse-like tabular structured datasets with careful 
control and optimal selection of hyperparameters. 

• The discovery set, is a class imbalanced dataset, and has a modest number of 
patient samples and thus more complicated models that potentially have known 
sensitivities to these dataset issues were not evaluated. As we felt that without 
implementing resampling techniques during training these model might not perform 
repeatibly and the resampling could introduce additional class-based bias into the 
prediction model. 

• A LR model may have a lower likelihood of overfitting with our modestly sized and 
class imbalanced dataset due to the lower degrees of freedom.  

o Therefore, more complex models such as XGBoost, RandomForests, or 
Support Vector Machines (SVMs), were not felt suitable as a primary model 
for this study 

  



S3. Model Training Methods and Hyperparameters 
For each of the six potential LR models, a 5-fold cross validated grid search was performed 
to identify the optimal hyperparameters for the given combination of features selected 
(Table 2). An optimal combination of hyperparameters was considered to be the 
combination that resulted in the highest AUROC score on the 5-fold cross validation (CV) 
discovery set. Possible hyperparameters and ranges that were included in the grid search 
are included in the table below, as well as the optimized hyperparameters for the optimal 
model as described in Section 3.3 in the main text.  

Table S1. Hyperparameter grid for logistic regression. 

Hyperparameter Range Optimized Value 
Penalty Term [L1, L2, ElasticNet, 

None] 
L2 

Tolerance [1e-5, 1e-4, 1e-4, 1e-2] 1e-4 
Solver [LibLinear, L-BFGS-S1] L-BFGS-S 
Class Weight [Balanced, None] Balanced 
Max Iterations [1e2, 1e3, 1e4] 1e2 

1 Limited-memory Broyden-Fletcher-Goldfarb-Shannon Solver 

 

To avoid sequential evaluation bias, we limited ourselves to verifying the generalizability of 
a finalized trained model by applying it to the external test set a single time. Results can be 
seen in Table 3 and Table 4 in the main text. 

 

S4. Data and Feature Set Preprocessing 
Several steps were taken to optimize and clean the tabular dataset for experimental 
execution: 

• Nested cross validation folds were decided randomly using a GroupKFold operation 
(Scikit-learn, v.0.22.2) to maintain patient-agnostic splits between the training and 
test folds in the discovery set. 
 

• Any missing radiomic feature per axial image mask was imputed using a K-Nearest 
Neighbor regression iterative imputer (K=3). A three tiered first-pass filtering 
operation was performed to reduce the number of confounding and redundant 
predictors. Filtering consisted of: 

o Removing predictors with zero-variance as these would have no predictive 
value. 

o Identifying weak predictors by individually fitting each feature with a single 
logit logistic regression to the patient labels and removing a feature if the p-



value associated with the beta coe icient was less than the significance 
threshold (𝛼 = 9.04E-5, Bonferonni corrected [3]). 

o Removing redundant features dropping pair-wise features that had a 
Spearman correlation coe icient greater than 0.9 in descending order of their 
beta coe icient associated p-value as per step 2 above [4]. 

 

S5. Feature Selection Hyperparameters 
• For each of the 3 feature selection algorithms (mRMR, ReliefF, and SFS), 5-fold CV 

was employed to determine the optimal predictive signature from the provided 
feature bank. While SFS has a built-in CV methodology, the mRMR and ReliefF 
python packages (PymRMR v.0.1.11, ReliefF v.0.1.2) do not. Thus, to decide the final 
predictive signatures, the following methodology was applied: 

o For each CV fold, fit the feature selection algorithm to the training set and 
generate a potential predictive signature. Then calculate the Area Under the 
ROC curve (AUROC) score on the validation set fold and pair these values to 
the selected feature names.  

o Identify common features across all folds and finalize these to resultant 
radiomic signature if the feature satisfies the following constraints: 
 Was selected in at least 3 folds 
 The AUROC score for the validation fold was greater than 0.51  

o Identify and rank potential uncommon features (appear in 2 or less folds) by 
their averaged validation AUROC scores. Append the highest ranked 
uncommon feature to the resultant radiomic signature if the max number of 
features has not been reached. In the event of a tied rank between 
uncommon features, the uncommon feature with the lower p-value in Table 
S5 will be selected.   

• A grid search for the optimal hyperparameters for each feature selection algorithm 
was implemented. The optimal values were selected based on which combination 
of hyperparameters produced the maximal AUROC score on the CV discovery set. 
The grids for each respective feature selection algorithm are listed below for the 
specific model type (Table 2 of the main text):  

 

1) mRMR: 

Table S2. Hyperparameter grid for mRMR. 

Hyperparameter Range Optimized Value 
for Model #1 

Optimized Value 
for Model #2 

Scoring [‘MIQ’, ‘MID’] MIQ MIQ 
 



2) ReliefF 

Table S3. Hyperparameter grid for ReliefF. 

Hyperparameter Range Optimized Value 
for Model #3 

Optimized Value 
for Model #4 

Number 
Of 

Neighbors 

[20, 30, 40, 50, 60, 
70, 80, 90, 100] 70 80 

 

3) Sequential Feature Selection: 

Table S4. Hyperparameter grid for Sequential Feature Selection. 

Hyperparameter Range Optimized Value 
for Model #5 

Optimized Value 
for Model #6 

Direction [‘Forward’, 
’Backward’] Forward Forward 

Criterion Function [‘Logistic 
Regression’,  

‘Linear Discriminant 
Analysis’]* 

Logisitic Regression Logistic Regression 

* These criterion functions implemented default hyperparameters as per Scikit-learn 
v.0.22.2 

 

S6. Choosing a Radiomic Signature 
Selecting a highly discriminating radiomics signature that also generalizes well to a test set 
is a crucial step in the prediction model process. First, we identified a number of 
established feature selection algorithms to choose radiomic signatures as applied to the 
discovery training set and our results (main text, Table 2) indicate that Sequential Forward 
Selection (SFS) algorithm achieved a superior classification performance. While SFS has a 
slower convergence speed than mRMR and ReliefF, the SFS method allowed us to identify 
clear signs of potential overfitting as well as generalization potential with the discovery set 
while incorporating 5-fold cross validation (Figure S1). While mRMR and ReliefF have been 
shown to have success with feature-rich datasets[5], SFS convergence and feature analysis 
were more desirable aspects given the trade-o  of the high number of features and 
relatively small number of samples. Second, a maximum of 5 features was decided a priori 
(See main text, section 2.4.2) as we intended to maintain generalizability against a test set 
while respecting the lower number of PD patients in the discovery set. While only two 



radiomic signatures resulted in a classification performance above 0.85 AUC on the 
discovery set, we chose the radiomic signature with the smallest error bounds to be the 
final predictive signature (main text, model #5, Table 2). 

 

Figure S1. Overall area under the ROC curve (AUC) performance across five-fold 
cross validation during the Sequential Forward Feature (SFS) selection process on 
the discovery set. As additional features are added to the predictive signature, the 
overall AUC performance score increases with diminishing returns. The shaded area 
represents the standard deviation of the AUCs across all five-folds. 

 

S7. Optimizing Patient-Level Predictions 
To determine the optimal patient-level prediction model, we implemented a grid search of 
slice- and lesion-level predictive thresholds that yielded the high patient-level ROC AUC 
score. Using the discovery set only, a grid of possible slice prediction thresholds (i.e., fifty 
linearly spaced thresholds between [0.00, 1.00]) and possible lesions prediction 
thresholds (i.e., [0, 1, 2, 3, 4+] slices]) were iterated through during the frequency 
thresholding operation. The output of this grid search was the patient-level AUC score. 
Whichever combination of slice- and lesion-level thresholds resulted in the highest patient-
level AUC score were considered to be the optimal prediction thresholds at their respective 
levels. In this optimization routine framework, a slice-level threshold of 0.224491, and a 
lesion-level threshold of 2 slices resulted in a maximized patient-level discovery set ROC 
AUC score of 0.85 ± 0.02.  

 



S8. Lesion-level and Slice-level Predictions 

 
(a)   (b) 

Figure S2. ROC analysis of the 5-fold cross validated Logistic Regression (LR) model on 
discovery and external test set when trained on a combination of radiomic and baseline CT 
clinical/patient descriptor features. ROC Curves are plotted at the lesion-level. The 
Youden-J threshold index is marked on the discovery-set with a triangle for the LR model (YJ 
threshold = 3 slices). (a) LR model predictive ability on the discovery set during 5-fold cross 
validation (AUC: 0.87 ± 0.02; Sensitivity: 0.88; Specificity: 0.76); (b) predictive ability of the 
discovery-trained LR model on the patient-level external test set (AUC: 0.80; CI 95%: 0.64-
0.96). From the discovery set, the optimal cut-o  threshold is reported as 2 slices with 
scores greater than the optimal prediction threshold at the slice-level when implementing 
a frequency scoring method to the patient-level. 



Figure S3. ROC analysis of the 5-fold cross validated Logistic Regression (LR) model on the 
discovery and external test set when trained on a combination of radiomic and baseline CT 
clinical/patient descriptor features. ROC Curves are plotted at the slice-level. The Youden-J 
threshold index is marked on the discovery-set with a triangle for the LR model (YJ 
threshold = 0.48). (a) LR model predictive ability on the discovery set during 5-fold cross 
validation (AUC: 0.81 ± 0.04; Sensitivity: 0.85; Specificity: 0.65); (b) predictive ability of the 
discovery-trained LR model on the patient-level external test set (AUC: 0.71; CI 95%: 0.59-
0.82). The optimal cut-o  threshold is reported as 0.22 (red marker) on the discovery set 
when implementing a frequency scoring method to the patient-level. 
 

S9. Feature Impact on Predictions 
Optical density centroid di erence is a measure of the distance between geometric 
center of the mask and the density weight center of mass.  
Radial centre is a di erence between the geometric density centre of the object and the 
true centre of the boundary of the object. 

 
(a)   (b) 



 

Figure S4. A visualization of SHAP values on the Discovery set for each individual slice (N = 
560 slices). Each dot on the plot represents the contribution and feature importance of the 
4 selected features in the best-performing logistic regression (LR) model. Horizontal 
placement of each dot indicates the magnitude of the SHAP value, and the vertical 
placement is captured into the feature bin. A positive SHAP value indicates a feature that 
positively influences the LR’s prediction towards predicting the positive endpoint 
(Progressive Disease). The colormap (red to blue) indicates the relative feature value itself. 
For example, a larger Number of Metastatic Sites influences the LR model into predicting 
Progressive Disease, as this is reflected by more points being < SHAP value=0.   

Figure S5. A visualization of SHAP values on the External test set for each individual slice 
(N = 94 slices).  

S10. Device Specs and Auto-routine run-times 
All experiments were performed on a Windows 10 operating system, with an AMD Ryzen 
Threadripper 1920X 12-Core 3.50GHz CPU, NVIDIA GeForce GTX 1050 Ti GPU, and 64GB of 
RAM. 



All run-times are calculated from the average of 5 executions: 

• Run-time for automatic lung parenchyma segmentation: 111.72s 
• Run-time for automatic lung lesion segmentation: 10.26s per slice  
• Run-time for Sequential Forward Feature Selection: 35.04s 
• Run-time for ReliefF: 0.80s 
• Run-time for mRMR: 0.53s 
• Run-time for fitting LR model with 5 features: 0.11s 

 

S11. Feature List 
The following feature list was calculated using a feature bank from [2]. Additional details 
and applications of this cytopathological-based feature bank can also be found in [6]. 

The full list of possible baseline patient characteristics that feature selection algorithms 
were allowed to select from include: 

• Age 
• Sex 
• ECOG Score Average 
• Disease Stage (III or IV) 
• Smoking Status 
• Current Smoker 
• Ex-Smoker 
• Never Smoker 
• Pack Years 
• Target Lung Lesion size (mm) 
• Presence of a Lung Metastasis 
• Presence of Thoracic Lung Nodules 
• Presence of Adrenal Metastases 
• Presence of Liver Metastases 
• Presence of Bone Metastases 
• Presence of Brain Metastases 
• Presence of Metastases in the Pleura 
• Presence of Metastases in any region besides the listed above 
• The Total Number of Sites with Metastases 

 

  



Table S5. Radiomic feature list with beta coe icient associated p-values determined by 
individually fitting single logit logistic regressions to patient outcome labels (Progressive 
Disease vs. Disease Control).  

Feature Name Core Mask  
p-value* 

Core Plus Edge 
Mask  

p-value* 

Ring Mask  
p-value* 

Area 1.527e-10 3.601e-12 7.735e-16 
AreaPRad 1.236e-17 1.343e-19 2.647e-05 

Background † 4.158e-26 3.197e-26 1.342e-25 
Bndvarhigh † 2.649e-18 1.702e-23 7.958e-21 
Bndvarlow † 1.226e-18 7.281e-20 1.917e-17 
Circularity 1.665e-20 6.740e-24 9.654e-18 
Coverage 1.510e-19 8.329e-23 1.465e-17 

Di orient † 4.384e-23 3.498e-23 1.402e-21 
DNA_Amount † 1.584e-10 9.326e-11 1.612e-01 
DNA_Cindex † 1.584e-10 9.326e-11 1.612e-01 
DNA_Index † 1.584e-10 9.326e-11 1.612e-01 
Eccentricity 1.004e-22 1.453e-23 4.072e-23 
Elongation 5.431e-20 7.792e-22 2.975e-02 

Fclusterp1 † 2.019e-10 5.368e-08 7.620e-20 
Fclusterp2 † 1.772e-11 6.792e-08 4.536e-20 
Fclusters1 † 3.890e-16 9.072e-11 4.728e-01 
Fclusters2 † 3.328e-16 8.927e-10 4.209e-02 
Fcontrast1 † 2.842e-17 1.953e-15 2.694e-10 
Fcontrast2 † 3.962e-16 9.282e-15 2.811e-10 

Fcorrelation1 † 3.274e-15 3.078e-20 2.676e-10 
Fcorrelation2 † 5.007e-13 8.752e-21 1.187e-09 

Fenergy1 † 2.542e-21 8.499e-21 9.104e-21 
Fenergy2 † 2.677e-20 4.697e-19 2.342e-19 

Fentropy1 † 5.585e-25 3.121e-25 3.248e-23 
Fentropy2 † 5.376e-25 2.458e-25 2.265e-23 

FFT10 8.887e-17 1.490e-18 5.261e-16 
FFT11 4.678e-18 4.524e-20 5.026e-16 
FFT12 7.746e-16 2.106e-19 1.812e-15 
FFT2 4.421e-16 5.550e-16 1.402e-15 
FFT3 2.878e-16 1.877e-15 2.076e-15 
FFT4 8.909e-15 1.666e-15 1.764e-13 
FFT5 1.430e-16 1.048e-20 3.423e-14 
FFT6 2.693e-15 7.372e-18 3.836e-13 
FFT7 1.353e-17 1.183e-21 1.630e-13 
FFT8 2.379e-17 4.767e-19 6.667e-15 
FFT9 1.815e-17 4.996e-20 8.466e-14 

Fhomogeneity1 † 8.687e-25 3.632e-25 1.582e-25 
Fhomogeneity2 † 4.897e-24 5.181e-24 7.161e-25 

Fract_Area1 † 1.521e-07 1.830e-13 6.261e-14 
Fract_Area2 † 9.005e-09 2.520e-15 1.300e-13 
Fractal_Dim † 5.716e-23 2.141e-24 3.742e-25 
GradNormal † 1.013e-21 2.529e-14 8.131e-16 



Gray0_Level † 3.477e-07 8.566e-09 1.332e-17 
Gray135_Level † 1.316e-07 8.526e-09 1.668e-17 
Gray45_Level † 3.024e-07 2.857e-08 4.243e-17 
Gray90_Level † 2.710e-07 1.995e-08 7.554e-17 
Gray_Level0 † 3.487e-07 1.590e-08 3.687e-17 
Gray_Level1 † 1.659e-07 8.931e-09 2.931e-17 
Gray_Level2 † 2.915e-07 4.220e-08 4.969e-17 
Gray_Level3 † 2.276e-07 1.340e-08 2.632e-17 
Gray_Level4 † 7.946e-03 3.108e-02 9.166e-09 
Gray_Level5 † 2.377e-01 3.165e-01 5.033e-01 
Gray_Level6 † 1.952e-01 3.760e-01 5.162e-01 

HighIOD † 3.429e-02 3.390e-02 1.000 
HighArea † 3.446e-02 3.659e-02 1.000 

HighvsLow † 1.000 1.331e-04 1.000 
InertIODratio † 2.836e-05 7.161e-08 1.426e-15 

Inertia † 1.048e-23 3.394e-25 5.012e-16 
Intensity_Kurt † 4.793e-04 2.749e-01 5.006e-08 
Intensity_SD † 4.194e-24 1.130e-24 2.948e-17 

Intensity_Skew † 3.613e-13 4.046e-08 2.117e-19 
IOD_Kurt † 2.911e-24 1.976e-24 8.091e-06 

IOD_Mean † 4.745e-22 1.573e-21 1.525e-03 
IOD_Parea † 4.745e-22 1.573e-21 1.525e-03 

IOD_SD † 8.972e-25 2.429e-25 1.853e-14 
IOD_Skew † 5.305e-26 5.031e-26 6.410e-19 
LDcentdi  † 4.014e-20 2.831e-20 1.780e-19 

LDdi orient † 7.584e-13 4.593e-12 3.596e-07 
LDreccent † 2.924e-24 2.601e-25 4.300e-22 
LDrinertia † 4.229e-24 6.358e-27 2.724e-21 
LDrmaxaxis 9.190e-25 6.277e-27 3.993e-23 
LDrminaxis 2.061e-24 4.870e-26 4.145e-24 

Long0_Runs † 2.845e-09 2.851e-09 1.910e-16 
Long135_Runs † 2.017e-10 1.282e-09 3.471e-17 
Long45_Runs † 1.000e-10 1.706e-10 1.536e-16 
Long90_Runs † 6.091e-10 7.091e-10 9.495e-18 

Long_Run0 † 3.051e-10 5.367e-10 2.486e-17 
Long_Run1 † 1.187e-10 1.711e-10 2.613e-17 
Long_Run2 † 2.074e-09 2.814e-09 1.444e-16 
Long_Run3 † 3.004e-10 5.816e-10 1.506e-17 
Long_Run4 † 7.706e-04 6.502e-04 1.105e-02 
Long_Run5 † 3.188e-01 6.358e-01 4.399e-01 
Long_Run6 † 7.579e-01 7.172e-02 1.577e-06 

LowIOD † 5.704e-14 1.356e-19 1.171e-25 
LowArea † 1.181e-12 7.591e-18 1.339e-25 

MaxAxis 1.247e-18 7.656e-20 3.771e-17 
Max_Radius_M 1.123e-18 4.249e-20 1.599e-18 

Maxradius 1.123e-18 4.249e-20 1.599e-18 
ModehighIOD † 1.904e-18 9.279e-18 2.145e-02 

Mean_Radius_M 1.430e-18 4.342e-20 8.953e-16 
MeanBackground † 4.192e-26 3.201e-26 9.706e-26 

MeanIntensity † 2.114e-24 4.948e-25 4.294e-26 



MeanRadius 1.430e-18 4.342e-20 8.953e-16 
MedIOD † 1.125e-17 4.648e-17 2.145e-02 
MedArea † 4.265e-18 2.345e-17 3.123e-02 

MedHighArea † 3.849e-19 2.042e-18 3.123e-02 
MedHighvsLow † 6.922e-23 1.893e-22 7.121e-01 

MedvsLow † 3.286e-23 8.021e-23 7.121e-01 
Minaxis 3.213e-18 6.665e-20 2.837e-13 

Min_Radius_M 2.144e-17 1.306e-19 1.686e-05 
MinIntensity † 3.118e-23 2.300e-23 2.259e-25 

MinRadius 2.144e-17 1.306e-19 1.686e-05 
OD-Eccentric † 5.604e-22 2.233e-22 5.557e-10 

OD-Inertia † 2.496e-04 1.269e-07 3.906e-15 
OD-CentroidDi erence † 1.206e-21 2.903e-24 5.434e-25 

OD-maxAxisRatio † 1.840e-23 2.631e-23 4.137e-10 
OD-minAxisRatio † 4.425e-20 2.453e-23 6.008e-15 

Orientation 2.828e-23 6.091e-23 1.227e-24 
RadCentre † 3.184e-06 2.765e-08 1.363e-08 
RadCode † 5.064e-25 5.409e-26 7.185e-25 

RadCvangle † 3.807e-22 7.705e-24 7.964e-16 
RadEdge † 7.852e-25 1.213e-24 2.511e-16 

RadEdgeVar † 5.900e-18 8.272e-23 8.844e-21 
Radkurtangle † 5.247e-09 4.539e-10 8.281e-01 

RadLength † 1.852e-16 3.523e-19 1.195e-23 
RadMean † 6.132e-23 3.884e-23 1.061e-15 

RadMeanArea † 6.046e-06 1.371e-11 2.622e-16 
RadMinAngle † 4.720e-26 9.890e-24 6.949e-24 
RadMinMax † 4.738e-18 7.240e-20 7.840e-26 

RadMode † 6.035e-18 4.784e-20 2.801e-19 
RadRangeVar † 3.634e-17 4.150e-18 1.788e-19 

RadRatio † 3.769e-22 1.567e-23 3.048e-11 
RadSDAngle † 1.061e-24 1.213e-25 1.442e-23 
RadSmooth † 2.454e-22 7.813e-25 1.483e-24 

RadVar † 4.012e-26 5.659e-20 2.852e-19 
RadVarAngle † 3.758e-25 6.367e-26 7.233e-27 
RadVariance † 7.852e-09 7.425e-10 1.838e-12 
RadWeight † 2.857e-16 4.498e-17 5.947e-13 

Run0_Length † 5.268e-21 1.250e-22 2.759e-24 
Run0_Percent † 4.375e-18 6.035e-18 7.041e-16 

Run135_Length † 4.101e-21 3.036e-23 8.612e-25 
Run135_Percent † 3.272e-17 7.693e-19 6.156e-17 

Run45_Length † 6.945e-20 2.540e-21 8.591e-24 
Run45_Percent † 3.905e-17 9.487e-17 1.212e-15 
Run90_Length † 2.134e-20 6.748e-22 3.410e-24 

Run90_Percent † 5.278e-16 6.311e-17 1.024e-15 
Run_Length0 † 9.300e-21 3.662e-22 9.281e-24 
Run_Length1 † 1.253e-20 1.867e-22 1.253e-24 
Run_Length2 † 1.532e-20 1.642e-22 2.086e-24 
Run_Length3 † 1.019e-20 2.078e-22 2.402e-24 
Run_Length4 † 9.952e-10 9.375e-15 3.711e-24 
Run_Length5 † 2.276e-01 8.897e-01 5.488e-01 



Run_Length6 † 1.094e-01 4.148e-01 1.224e-11 
Run_Percent0 † 3.579e-17 5.701e-17 4.277e-15 
Run_Percent1 † 5.607e-17 3.799e-18 1.514e-16 
Run_Percent2 † 1.954e-17 1.748e-17 1.466e-16 
Run_Percent3 † 3.062e-17 6.169e-18 3.089e-16 
Run_Percent4 † 1.377e-06 4.047e-09 1.445e-10 
Run_Percent5 † 7.432e-01 3.725e-01 5.090e-01 
Run_Percent6 † 1.563e-01 1.769e-01 6.728e-01 
Short0_Runs † 4.584e-26 3.180e-25 1.312e-24 

Short135_Runs † 6.340e-26 4.750e-26 3.043e-25 
Short45_Runs † 1.916e-25 1.376e-24 1.186e-24 
Short90_Runs † 1.900e-25 3.882e-25 8.299e-25 

Short_Run0 † 9.195e-26 1.112e-25 6.955e-25 
Short_Run1 † 8.012e-26 4.466e-25 6.450e-25 
Short_Run2 † 3.551e-23 1.296e-23 2.204e-21 
Short_Run3 † 8.088e-26 3.091e-25 8.127e-25 
Short_Run4 † 3.373e-23 1.680e-21 5.069e-22 
Short_Run5 † 1.531e-03 1.295e-06 5.677e-06 
Short_Run6 † 5.475e-06 1.784e-12 1.007e-16 

Sphericity 1.178e-24 8.354e-25 1.172e-08 
Stext_Orient 6.557e-01 2.831e-23 4.883e-24 
Text_Orient 5.064e-18 6.989e-20 6.170e-22 

Total_Variance † 6.749e-23 9.800e-18 4.849e-10 
Vclusterp1 † 1.256e-08 5.140e-07 5.930e-21 
Vclusterp2 † 1.207e-09 9.384e-07 3.656e-21 
Vclusters1 † 8.515e-13 5.489e-08 8.629e-14 
Vclusters2 † 1.815e-12 1.090e-06 4.120e-12 
Vcontrast1 † 4.667e-13 9.001e-18 1.616e-17 
Vcontrast2 † 4.688e-13 4.990e-17 7.693e-20 

Vcorrelation1 † 3.612e-19 1.833e-24 2.769e-21 
Vcorrelation2 † 4.131e-17 8.710e-25 3.399e-19 

Venergy1 † 2.574e-21 2.337e-20 3.660e-19 
† = Texture or Intensity based feature. * = the chi-squared probability of getting a log-
likelihood ratio statistic greater than the likelihood ratio chi-squared statistic 
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