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S1. Data Preparation Steps:

The following section will primarily detail the technical aspects of the dataset, how the CT
data was pre-processed, and prepped for radiomic feature extraction.

S1.1. Dataset Acquisition and Separation

e AllCT scans were collected on a GE Light Speed CT scanner (GE Healthcare,
Milwaukee, WI, USA)
o Intravenous iodinated contrast injection was obtained at the portal venous
phase for the chest, abdomen, and pelvis
o Theimages were reconstructed with a 2 or 2.5 mm slice thickness imaging
protocol
The average native resolution was 0.72mm x 0.72mm
Images were resampled to a uniform pixel size of Tmm x Tmm using a spline
interpolation
e The retrospective discovery cohort (N = 97) of patients, referred to the clinic
between January 112017 and December 312018, and was described in prior work
(1.
e A separate, more recently collected set of patients (referred to clinic after January
1¢t, 2019) made up the external cohort (N = 30).
e Eligibility for radiomics analysis for these patients required them to have a primary
or metastatic lung lesion greater than 1cm in diameter.
o 97 of the 138 patients in the discovery cohort satisfied this constraint.
o 17 of the 30 patients in the external cohort satisfied this constraint.

S1.2. Image Resampling

e Eachindividual CT lung volume was re-windowed to typical lung window levels:
o Level=-600HU
o Width=1500 HU
e Then eachrewindowed lung CT volume was converted from 16-bit to 8-bit values by
rescaling to a pixel value range of [0-255].

S1.3. Segmentation and Radiomic Feature Extraction

e Alllung lesion segmentations were performed using an Otsu-based thresholding
iterative operation based on radiologist annotated 3D bounding box coordinates for
each lesion of interest.

e Upto 5 axial slice representations of each lesion, centered on the radiologist’s
annotated central slice, were isolated for radiomic feature extraction.

e Manual annotation was performed to erase the segmentation mask when it was
shown to extend into the chest wall or airways so as to not include extreme HU



values during feature extraction in the interest of representing only lesion or
parenchymal tissues.

Axial slice images were then intensity inverted as a preprocessing step

Axial slice images and segmentation masks were then processed by a C++ based
feature bank calculator designed for cytopathological images [2] to extract all
radiomic features. A full list of features can be found in Section 11 of this document.

S2. Model Selection Criteria

A Logistic Regression (LR) model was selected the primary prediction method for several
reasons, both technical and qualitative, listed here:

An LR has easily interpretable beta coefficients.

A fair method of comparison against our previous research [1] that included some of
the same discriminating features (Pack Years and No. of metastatic sites).

Is well-suited for the intake of categorical variables (i.e., Sex, Smoking Status, ECOG
Score, and the presence of metastasis at specific organ site).

The assumption of linearity in the discovery dataset.

The removal of variables that represent multicollinearity as per the feature filtering
operation exampled in Section 4 of this document.

A LR is unlikely to overfit on sparse-like tabular structured datasets with careful
control and optimal selection of hyperparameters.

The discovery set, is a class imbalanced dataset, and has a modest number of
patient samples and thus more complicated models that potentially have known
sensitivities to these dataset issues were not evaluated. As we felt that without
implementing resampling techniques during training these model might not perform
repeatibly and the resampling could introduce additional class-based bias into the
prediction model.

A LR model may have a lower likelihood of overfitting with our modestly sized and
class imbalanced dataset due to the lower degrees of freedom.

o Therefore, more complex models such as XGBoost, RandomForests, or
Support Vector Machines (SVMs), were not felt suitable as a primary model
for this study



S3. Model Training Methods and Hyperparameters

For each of the six potential LR models, a 5-fold cross validated grid search was performed
to identify the optimal hyperparameters for the given combination of features selected
(Table 2). An optimal combination of hyperparameters was considered to be the
combination that resulted in the highest AUROC score on the 5-fold cross validation (CV)
discovery set. Possible hyperparameters and ranges that were included in the grid search
are included in the table below, as well as the optimized hyperparameters for the optimal
model as described in Section 3.3 in the main text.

Table S1. Hyperparameter grid for logistic regression.

Hyperparameter Range Optimized Value
Penalty Term [L1, L2, ElasticNet, L2
None]
Tolerance [1e-5, 1e-4, 1e-4,1e-2] 1e-4
Solver [LibLinear, L-BFGS-S'] | L-BFGS-S
Class Weight [Balanced, None] Balanced
Max Iterations [1e2, 1e3, 1e4] 1e2

' Limited-memory Broyden-Fletcher-Goldfarb-Shannon Solver

To avoid sequential evaluation bias, we limited ourselves to verifying the generalizability of
a finalized trained model by applying it to the external test set a single time. Results can be
seen in Table 3 and Table 4 in the main text.

S4. Data and Feature Set Preprocessing

Several steps were taken to optimize and clean the tabular dataset for experimental
execution:
o Nested cross validation folds were decided randomly using a GroupKFold operation
(Scikit-learn, v.0.22.2) to maintain patient-agnostic splits between the training and
test folds in the discovery set.

e Any missing radiomic feature per axial image mask was imputed using a K-Nearest
Neighbor regression iterative imputer (K=3). A three tiered first-pass filtering
operation was performed to reduce the number of confounding and redundant
predictors. Filtering consisted of:

o Removing predictors with zero-variance as these would have no predictive
value.

o ldentifying weak predictors by individually fitting each feature with a single
logit logistic regression to the patient labels and removing a feature if the p-



value associated with the beta coefficient was less than the significance
threshold (a = 9.04E-5, Bonferonni corrected [3]).

Removing redundant features dropping pair-wise features that had a
Spearman correlation coefficient greater than 0.9 in descending order of their
beta coefficient associated p-value as per step 2 above [4].

S5. Feature Selection Hyperparameters

For each of the 3 feature selection algorithms (MRMR, ReliefF, and SFS), 5-fold CV
was employed to determine the optimal predictive signature from the provided
feature bank. While SFS has a built-in CV methodology, the mRMR and ReliefF
python packages (PymRMR v.0.1.11, ReliefF v.0.1.2) do not. Thus, to decide the final
predictive signatures, the following methodology was applied:

o Foreach CV fold, fit the feature selection algorithm to the training set and

generate a potential predictive signature. Then calculate the Area Under the
ROC curve (AUROC) score on the validation set fold and pair these values to
the selected feature names.

Identify common features across all folds and finalize these to resultant
radiomic signature if the feature satisfies the following constraints:

= Was selected in at least 3 folds

= The AUROC score for the validation fold was greater than 0.51

Identify and rank potential uncommon features (appear in 2 or less folds) by
their averaged validation AUROC scores. Append the highest ranked
uncommon feature to the resultant radiomic signature if the max number of
features has not been reached. In the event of a tied rank between
uncommon features, the uncommon feature with the lower p-value in Table
S5 will be selected.

A grid search for the optimal hyperparameters for each feature selection algorithm
was implemented. The optimal values were selected based on which combination
of hyperparameters produced the maximal AUROC score on the CV discovery set.
The grids for each respective feature selection algorithm are listed below for the
specific model type (Table 2 of the main text):

1) mRMR:

Table S2. Hyperparameter grid for mRMR.

Hyperparameter Range Optimized Value Optimized Value

for Model #1 for Model #2

Scoring [‘MIQ’, ‘MID’] MIQ MIQ



2) ReliefF
Table S3. Hyperparameter grid for ReliefF.

Hyperparameter Range Optimized Value Optimized Value
for Model #3 for Model #4
Number
of [20, 30, 40, 50, 60, 70 80

Neighbors 70, 80, 90, 100]

3) Sequential Feature Selection:

Table S4. Hyperparameter grid for Sequential Feature Selection.

Hyperparameter Range Optimized Value Optimized Value
for Model #5 for Model #6

Direction ,[ Forward: Forward Forward
Backward’]

Criterion Function [‘Logistic
Regression’, o . . .

‘Linear Discriminant Logisitic Regression = Logistic Regression

Analysis’]*

* These criterion functions implemented default hyperparameters as per Scikit-learn
v.0.22.2

S6. Choosing a Radiomic Signature

Selecting a highly discriminating radiomics signature that also generalizes well to a test set
is a crucial step in the prediction model process. First, we identified a number of
established feature selection algorithms to choose radiomic signatures as applied to the
discovery training set and our results (main text, Table 2) indicate that Sequential Forward
Selection (SFS) algorithm achieved a superior classification performance. While SFS has a
slower convergence speed than mRMR and ReliefF, the SFS method allowed us to identify
clear signs of potential overfitting as well as generalization potential with the discovery set
while incorporating 5-fold cross validation (Figure S$1). While mRMR and ReliefF have been
shown to have success with feature-rich datasets[5], SFS convergence and feature analysis
were more desirable aspects given the trade-off of the high number of features and
relatively small number of samples. Second, a maximum of 5 features was decided a priori
(See main text, section 2.4.2) as we intended to maintain generalizability against a test set
while respecting the lower number of PD patients in the discovery set. While only two



radiomic signatures resulted in a classification performance above 0.85 AUC on the
discovery set, we chose the radiomic signature with the smallest error bounds to be the
final predictive signature (main text, model #5, Table 2).
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Figure S1. Overall area under the ROC curve (AUC) performance across five-fold
cross validation during the Sequential Forward Feature (SFS) selection process on
the discovery set. As additional features are added to the predictive signature, the
overall AUC performance score increases with diminishing returns. The shaded area
represents the standard deviation of the AUCs across all five-folds.

S7. Optimizing Patient-Level Predictions

To determine the optimal patient-level prediction model, we implemented a grid search of
slice- and lesion-level predictive thresholds that yielded the high patient-level ROC AUC
score. Using the discovery set only, a grid of possible slice prediction thresholds (i.e., fifty
linearly spaced thresholds between [0.00, 1.00]) and possible lesions prediction
thresholds (i.e., [0, 1, 2, 3, 4+] slices]) were iterated through during the frequency
thresholding operation. The output of this grid search was the patient-level AUC score.
Whichever combination of slice- and lesion-level thresholds resulted in the highest patient-
level AUC score were considered to be the optimal prediction thresholds at their respective
levels. In this optimization routine framework, a slice-level threshold of 0.224491, and a
lesion-level threshold of 2 slices resulted in a maximized patient-level discovery set ROC
AUC score of 0.85 = 0.02.



S8. Lesion-level and Slice-level Predictions
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Figure S2. ROC analysis of the 5-fold cross validated Logistic Regression (LR) model on
discovery and external test set when trained on a combination of radiomic and baseline CT
clinical/patient descriptor features. ROC Curves are plotted at the lesion-level. The
Youden-J threshold index is marked on the discovery-set with a triangle for the LR model (Y]J
threshold = 3 slices). (a) LR model predictive ability on the discovery set during 5-fold cross
validation (AUC: 0.87 £ 0.02; Sensitivity: 0.88; Specificity: 0.76); (b) predictive ability of the
discovery-trained LR model on the patient-level external test set (AUC: 0.80; Cl 95%: 0.64-
0.96). From the discovery set, the optimal cut-off threshold is reported as 2 slices with
scores greater than the optimal prediction threshold at the slice-level when implementing
a frequency scoring method to the patient-level.



Discovery Training Set | Slice-level External Test Set | Slice-level
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Figure S3. ROC analysis of the 5-fold cross validated Logistic Regression (LR) model on the
discovery and external test set when trained on a combination of radiomic and baseline CT
clinical/patient descriptor features. ROC Curves are plotted at the slice-level. The Youden-J
threshold index is marked on the discovery-set with a triangle for the LR model (YJ
threshold = 0.48). (a) LR model predictive ability on the discovery set during 5-fold cross
validation (AUC: 0.81 * 0.04; Sensitivity: 0.85; Specificity: 0.65); (b) predictive ability of the
discovery-trained LR model on the patient-level external test set (AUC: 0.71; Cl 95%: 0.59-
0.82). The optimal cut-off threshold is reported as 0.22 (red marker) on the discovery set
when implementing a frequency scoring method to the patient-level.

S9. Feature Impact on Predictions

Optical density centroid difference is a measure of the distance between geometric
center of the mask and the density weight center of mass.

Radial centre is a difference between the geometric density centre of the object and the
true centre of the boundary of the object.



Discovery Set - SHAP Values

High
No. of Metastatic Sites of l I l o 0
u
OD-CentroidDifference (Ring) *s.®» —-4 E
L
RadialCentre (Ring) '——-. -—es * %
i
Pack Years e +
Low

5 ) 5 ) 5

SHAP vah‘le (impact 6n model c])[utput) )
Figure S4. A visualization of SHAP values on the Discovery set for each individual slice (N =
560 slices). Each dot on the plot represents the contribution and feature importance of the
4 selected features in the best-performing logistic regression (LR) model. Horizontal
placement of each dot indicates the magnitude of the SHAP value, and the vertical
placement is captured into the feature bin. A positive SHAP value indicates a feature that
positively influences the LR’s prediction towards predicting the positive endpoint
(Progressive Disease). The colormap (red to blue) indicates the relative feature value itself.
For example, a larger Number of Metastatic Sites influences the LR model into predicting
Progressive Disease, as this is reflected by more points being < SHAP value=0.
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Figure S5. A visualization of SHAP values on the External test set for each individual slice
(N =94 slices).

S10. Device Specs and Auto-routine run-times

All experiments were performed on a Windows 10 operating system, with an AMD Ryzen
Threadripper 1920X 12-Core 3.50GHz CPU, NVIDIA GeForce GTX 1050 Ti GPU, and 64GB of
RAM.



All run-times are calculated from the average of 5 executions:

e Run-time for automatic lung parenchyma segmentation: 111.72s
e Run-time for automatic lung lesion segmentation: 10.26s per slice
e Run-time for Sequential Forward Feature Selection: 35.04s

e Run-time for ReliefF: 0.80s

e Run-time for mMRMR: 0.53s

e Run-time for fitting LR model with 5 features: 0.11s

S11. Feature List

The following feature list was calculated using a feature bank from [2]. Additional details
and applications of this cytopathological-based feature bank can also be found in [6].

The full list of possible baseline patient characteristics that feature selection algorithms
were allowed to select from include:

Age

Sex

ECOG Score Average

Disease Stage (lll or IV)

Smoking Status

Current Smoker

Ex-Smoker

Never Smoker

Pack Years

Target Lung Lesion size (mm)

Presence of a Lung Metastasis

Presence of Thoracic Lung Nodules
Presence of Adrenal Metastases

Presence of Liver Metastases

Presence of Bone Metastases

Presence of Brain Metastases

Presence of Metastases in the Pleura
Presence of Metastases in any region besides the listed above
The Total Number of Sites with Metastases



Table S5. Radiomic feature list with beta coefficient associated p-values determined by
individually fitting single logit logistic regressions to patient outcome labels (Progressive
Disease vs. Disease Control).

Core Plus Edge

Feature Name Core Mask Mask Ring Mask

p-value* p-value*
p-value*

Area 1.527e-10 3.601e-12 7.735e-16
AreaPRad 1.236e-17 1.343e-19 2.647e-05
Background t 4.158e-26 3.197e-26 1.342e-25
Bndvarhigh t 2.649e-18 1.702e-23 7.958e-21
Bndvarlow t 1.226e-18 7.281e-20 1.917e-17
Circularity 1.665e-20 6.740e-24 9.654e-18
Coverage 1.510e-19 8.329e-23 1.465e-17
Difforient 4.384e-23 3.498e-23 1.402e-21
DNA_Amount t 1.584e-10 9.326e-11 1.612e-01
DNA_Cindex t 1.584e-10 9.326e-11 1.612e-01
DNA_Index t 1.584e-10 9.326e-11 1.612e-01
Eccentricity 1.004e-22 1.453e-23 4.072e-23
Elongation 5.431e-20 7.792e-22 2.975e-02
Fclusterp1 t 2.019e-10 5.368e-08 7.620e-20
Fclusterp2 t 1.772e-11 6.792e-08 4.536e-20
Fclusters1 t 3.890e-16 9.072e-11 4.728e-01
Fclusters2 t 3.328e-16 8.927e-10 4.209e-02
Fcontrast1 t 2.842e-17 1.953e-15 2.694e-10
Fcontrast2 t 3.962e-16 9.282e-15 2.811e-10
Fcorrelation1 1 3.274e-15 3.078e-20 2.676e-10
Fcorrelation2 1 5.007e-13 8.752e-21 1.187e-09
Fenergy1 t 2.542e-21 8.499e-21 9.104e-21
Fenergy2 t 2.677e-20 4.697e-19 2.342e-19
Fentropy1 1 5.585e-25 3.121e-25 3.248e-23
Fentropy2 t 5.376e-25 2.458e-25 2.265e-23
FFT10 8.887e-17 1.490e-18 5.261e-16
FFT11 4.678e-18 4.524e-20 5.026e-16
FFT12 7.746e-16 2.106e-19 1.812e-15
FFT2 4.421e-16 5.550e-16 1.402e-15
FFT3 2.878e-16 1.877e-15 2.076e-15
FFT4 8.909e-15 1.666e-15 1.764e-13
FFT5 1.430e-16 1.048e-20 3.423e-14
FFT6 2.693e-15 7.372e-18 3.836e-13
FFT7 1.353e-17 1.183e-21 1.630e-13
FFT8 2.379e-17 4.767e-19 6.667e-15
FFT9 1.815e-17 4.996e-20 8.466e-14
Fhomogeneity1 t 8.687e-25 3.632e-25 1.582e-25
Fhomogeneity2 t 4.897e-24 5.181e-24 7.161e-25
Fract_Arealt 1.521e-07 1.830e-13 6.261e-14
Fract_Area2 9.005e-09 2.520e-15 1.300e-13
Fractal_Dim t 5.716e-23 2.141e-24 3.742e-25

GradNormal t 1.013e-21 2.529e-14 8.131e-16



Gray0_Level T
Gray135_Level t
Gray45_Level T
Gray90_Level t
Gray_LevelO
Gray_Level1 t
Gray_Level2 t
Gray_Level3 t
Gray_Leveld T
Gray_Level5 t
Gray_Level6 t
HighlOD t
HighArea t
HighvsLow t
InertlODratio t
Inertia t
Intensity_Kurt
Intensity_SD 1
Intensity_Skew t
10D_Kurt t
I0D_Mean t
IOD_Pareat
IOD_SD t
10D_Skew t
LDcentdiff T
LDdifforient T
LDreccent t
LDrinertia
LDrmaxaxis
LDrminaxis
Long0_Runs t
Long135_Runs T
Long45_Runs T
Long90_Runs
Long RunO
Long_Run1t
Long Run2t
Long Run3t
Long Run4 t
Long Run5
Long_Runé6 t
LowlOD t
LowArea t
MaxAxis
Max_Radius_M
Maxradius
ModehighlOD t
Mean_Radius_M
MeanBackground T
Meanlntensity t

3.477e-07
1.316e-07
3.024e-07
2.710e-07
3.487e-07
1.659e-07
2.915e-07
2.276e-07
7.946e-03
2.377e-01
1.952e-01
3.429e-02
3.446e-02
1.000
2.836e-05
1.048e-23
4.793e-04
4.194e-24
3.613e-13
2.911e-24
4.745e-22
4.745e-22
8.972e-25
5.305e-26
4.014e-20
7.584e-13
2.924e-24
4.229%e-24
9.190e-25
2.067e-24
2.845e-09
2.017e-10
1.000e-10
6.091e-10
3.051e-10
1.187e-10
2.074e-09
3.004e-10
7.706e-04
3.188e-01
7.579e-01
5.704e-14
1.181e-12
1.247e-18
1.123e-18
1.123e-18
1.904e-18
1.430e-18
4.192e-26
2.114e-24

8.566e-09
8.526e-09
2.857e-08
1.995e-08
1.590e-08
8.931e-09
4.220e-08
1.340e-08
3.108e-02
3.165e-01
3.760e-01
3.390e-02
3.659e-02
1.331e-04
7.161e-08
3.394e-25
2.749e-01
1.130e-24
4.046e-08
1.976e-24
1.573e-21
1.573e-21
2.429e-25
5.031e-26
2.831e-20
4.593e-12
2.601e-25
6.358e-27
6.277e-27
4.870e-26
2.851e-09
1.282e-09
1.706e-10
7.091e-10
5.367e-10
1.711e-10
2.814e-09
5.816e-10
6.502e-04
6.358e-01
7.172e-02
1.356e-19
7.591e-18
7.656e-20
4.249e-20
4.249e-20
9.279%e-18
4.342e-20
3.201e-26
4.948e-25

1.332e-17
1.668e-17
4.243e-17
7.554e-17
3.687e-17
2.931e-17
4.969e-17
2.632e-17
9.166e-09
5.033e-01
5.162e-01
1.000
1.000
1.000
1.426e-15
5.012e-16
5.006e-08
2.948e-17
2.117e-19
8.091e-06
1.525e-03
1.525e-03
1.853e-14
6.410e-19
1.780e-19
3.596e-07
4.300e-22
2.724e-21
3.993e-23
4.145e-24
1.910e-16
3.471e-17
1.536e-16
9.495e-18
2.486e-17
2.613e-17
1.444e-16
1.506e-17
1.105e-02
4.399e-01
1.577e-06
1.171e-25
1.339e-25
3.771e-17
1.599e-18
1.599e-18
2.145e-02
8.953e-16
9.706e-26
4.294e-26



MeanRadius
MedIlOD t
MedArea t

MedHighArea t
MedHighvsLow t
MedvsLow t
Minaxis
Min_Radius_M
Minintensity t
MinRadius
OD-Eccentric t
OD-Inertia t

OD-CentroidDifference t

OD-maxAxisRatio t
OD-minAxisRatio t
Orientation
RadCentre t
RadCode t
RadCvangle t
RadEdge T
RadEdgeVar t
Radkurtangle t
RadLength {
RadMean
RadMeanArea t
RadMinAngle T
RadMinMax t
RadMode
RadRangeVar t
RadRatio t
RadSDAnNgle t
RadSmooth t
RadVar t
RadVarAngle t
RadVariance t
RadWeight t
Run0_Length t
RunO_Percent t
Run135_Length t
Run135_Percent t
Run45_Length {
Run45_Percent t
Run90_Length t
Run90_Percent t
Run_LengthO t
Run_Length1 t
Run_Length2 t
Run_Length3 t
Run_Length4
Run_Length5 t

1.430e-18
1.125e-17
4.265e-18
3.849e-19
6.922e-23
3.286e-23
3.213e-18
2.144e-17
3.118e-23
2.144e-17
5.604e-22
2.496e-04
1.206e-21
1.840e-23
4.425e-20
2.828e-23
3.184e-06
5.064e-25
3.807e-22
7.852e-25
5.900e-18
5.247e-09
1.852e-16
6.132e-23
6.046e-06
4.720e-26
4.738e-18
6.035e-18
3.634e-17
3.769e-22
1.061e-24
2.454e-22
4.012e-26
3.758e-25
7.852e-09
2.857e-16
5.268e-21
4.375e-18
4.101e-21
3.272e-17
6.945e-20
3.905e-17
2.134e-20
5.278e-16
9.300e-21
1.253e-20
1.532e-20
1.019e-20
9.952e-10
2.276e-01

4.342e-20
4.648e-17
2.345e-17
2.042e-18
1.893e-22
8.021e-23
6.665e-20
1.306e-19
2.300e-23
1.306e-19
2.233e-22
1.269e-07
2.903e-24
2.631e-23
2.453e-23
6.091e-23
2.765e-08
5.409e-26
7.705e-24
1.213e-24
8.272e-23
4.53%e-10
3.523e-19
3.884e-23
1.371e-11
9.890e-24
7.240e-20
4.784e-20
4.150e-18
1.567e-23
1.213e-25
7.813e-25
5.659e-20
6.367e-26
7.425e-10
4.498e-17
1.250e-22
6.035e-18
3.036e-23
7.693e-19
2.540e-21
9.487e-17
6.748e-22
6.311e-17
3.662e-22
1.867e-22
1.642e-22
2.078e-22
9.375e-15
8.897e-01

8.953e-16
2.145e-02
3.123e-02
3.123e-02
7.121e-01
7.121e-01
2.837e-13
1.686e-05
2.259e-25
1.686e-05
5.557e-10
3.906e-15
5.434e-25
4.137e-10
6.008e-15
1.227e-24
1.363e-08
7.185e-25
7.964e-16
2.511e-16
8.844e-21
8.281e-01
1.195e-23
1.061e-15
2.622e-16
6.949e-24
7.840e-26
2.801e-19
1.788e-19
3.048e-11
1.442e-23
1.483e-24
2.852e-19
7.233e-27
1.838e-12
5.947e-13
2.759e-24
7.041e-16
8.612e-25
6.156e-17
8.591e-24
1.212e-15
3.410e-24
1.024e-15
9.281e-24
1.253e-24
2.086e-24
2.402e-24
3.711e-24
5.488e-01



Run_Length6 t 1.094e-01 4.148e-01 1.224e-11

Run_Percent0 t 3.579e-17 5.701e-17 4.277e-15
Run_Percent1 t 5.607e-17 3.799¢-18 1.514e-16
Run_Percent2 t 1.954e-17 1.748e-17 1.466e-16
Run_Percent3 t 3.062e-17 6.169e-18 3.089e-16
Run_Percent4 t 1.377e-06 4.047e-09 1.445e-10
Run_Percent5 t 7.432e-01 3.725e-01 5.090e-01
Run_Percent6 t 1.563e-01 1.769e-01 6.728e-01
Short0_Runs t 4.584e-26 3.180e-25 1.312e-24
Short135_Runs t 6.340e-26 4.750e-26 3.043e-25
Short45_Runs t 1.916e-25 1.376e-24 1.186e-24
Short90_Runs t 1.900e-25 3.882e-25 8.299e-25
Short_Run0 t 9.195e-26 1.112e-25 6.955e-25
Short_Run1t 8.012e-26 4.466e-25 6.450e-25
Short_Run2 t 3.551e-23 1.296e-23 2.204e-21
Short_Run3 8.088e-26 3.091e-25 8.127e-25
Short_Run4 t 3.373e-23 1.680e-21 5.069e-22
Short_Run5 t 1.531e-03 1.295e-06 5.677e-06
Short_Runé6 t 5.475e-06 1.784e-12 1.007e-16
Sphericity 1.178e-24 8.354e-25 1.172e-08
Stext_Orient 6.557e-01 2.831e-23 4.883e-24
Text_Orient 5.064e-18 6.989e-20 6.170e-22
Total_Variance t 6.749e-23 9.800e-18 4.849e-10
Vclusterp1t 1.256e-08 5.140e-07 5.930e-21
Vclusterp2 t 1.207e-09 9.384e-07 3.656e-21
Vclusters1 t 8.515e-13 5.489e-08 8.629e-14
Vclusters2 t 1.815e-12 1.090e-06 4.120e-12
Vcontrast1 t 4.667e-13 9.001e-18 1.616e-17
Vcontrast2 t 4.688e-13 4.990e-17 7.693e-20
Vcorrelation1 t 3.612e-19 1.833e-24 2.769e-21
Vcorrelation2 t 4.131e-17 8.710e-25 3.399e-19
Venergy1 t 2.574e-21 2.337e-20 3.660e-19

T = Texture or Intensity based feature. * = the chi-squared probability of getting a log-
likelihood ratio statistic greater than the likelihood ratio chi-squared statistic

References

1. Silver, A.; Ho, C.; Ye, Q.; Zhang, J.; Janzen, L; Li, J.; Martin, M.; Wu, L.; Wang, Y.; Lam, S.; et al. Prediction of
Disease Progression to Upfront Pembrolizumab Monotherapy in Advanced Non-Small-Cell Lung Cancer with High
PD-L1 Expression Using Baseline CT Disease Quantification and Smoking Pack Years. Curr Oncol 2023, 30, 5546-5559,
d0i:10.3390/curroncol30060419.

2. Doudkine, A.; Macaulay, C.; Poulin, N.; Palcic, B. Nuclear texture measurements in image cytometry.
Pathologica 1995, 87, 286-299.

3. Bonferroni, C. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di
Scienze Economiche e Commericiali di Firenze 1936, 8, 3-62.

4. Spearman, C. The Proof and Measurement of Association between Two Things. The American Journal of
Psychology 1904, 15, 72-101, doi:10.2307/1412159.

5. Zhang, Y.; Ding, C.; Li, T. Gene selection algorithm by combining reliefF and mRMR. BMC Genomics 2008, 9,

527, d0i:10.1186/1471-2164-9-52-S27.



6. MacAulay, C.; Keyes, M.; Hayes, M.; Lo, A.; Wang, G.; Guillaud, M.; Gleave, M.; Fazli, L.; Korbelik, J.; Collins,
C. Quantification of large scale DNA organization for predicting prostate cancer recurrence. Cytometry Part A 2017, 91,
1164-1174.



