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Simple Summary: Multiple myeloma is a blood cancer that progresses through distinct
stages, and identifying these stages accurately is crucial for selecting effective treatments.
Additionally, understanding which individuals with an asymptomatic precursor condition,
known as monoclonal gammopathy of undetermined significance, are at risk of developing
full-blown multiple myeloma remains a significant challenge. This study used machine
learning methods to analyze gene expression data from multiple datasets, aiming to im-
prove the accuracy of disease staging and identify individuals at higher risk of progression.
By finding key patterns and pathways involved in the disease, this research offers new tools
for earlier intervention and personalized care. These findings could significantly benefit the
research and medical communities by improving diagnosis, enhancing patient monitoring,
and opening avenues for targeted therapies.

Abstract: Background: The accurate staging of multiple myeloma (MM) is essential for opti-
mizing treatment strategies, while predicting the progression of asymptomatic patients, also
referred to as monoclonal gammopathy of undetermined significance (MGUS), to symp-
tomatic MM remains a significant challenge due to limited data. This study aimed to de-
velop machine learning models to enhance MM staging accuracy and stratify asymptomatic
patients by their risk of progression. Methods: We utilized gene expression microarray
datasets to develop machine learning models, combined with various data transformations.
For multiple myeloma staging, models were trained on a single dataset and validated across
five independent datasets, with performance evaluated using multiclass area under the
curve (AUC) metrics. To predict progression in asymptomatic patients, we employed two
approaches: (1) training models on a dataset comprising asymptomatic patients who either
progressed or remained stable without progressing to multiple myeloma, and (2) training
models on multiple datasets combining asymptomatic and multiple myeloma samples
and then testing their ability to distinguish between asymptomatic and asymptomatic
that progressed. We performed feature selection and enrichment analyses to identify key
signaling pathways underlying disease stages and progression. Results: Multiple myeloma
staging models demonstrated high efficacy, with ElasticNet achieving consistent multiclass
AUC values of 0.9 across datasets and transformations, demonstrating robust generaliz-
ability. For asymptomatic progression, both modeling approaches yielded similar results,
with AUC values exceeding 0.8 across datasets and algorithms (ElasticNet, Boosting, and
Support Vector Machines), underscoring their potential in identifying progression risk.
Enrichment analyses revealed key pathways, including PI3K-Akt, MAPK, Wnt, and mTOR,
as central to MM pathogenesis. Conclusions: To the best of our knowledge, this is the first
study to utilize gene expression datasets for classifying patients across different stages of
multiple myeloma and to integrate multiple myeloma with asymptomatic cases to predict
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disease progression, offering a novel methodology with potential clinical applications in
patient monitoring and early intervention.

Keywords: multiple myeloma; cancer; gammopathies; progression; machine learning

1. Introduction
Multiple myeloma constitutes approximately 1% of all cancer cases and about 10%

of hematologic malignancies [1,2]. Annually, more than 32,000 new cases are diagnosed
in the United States, with nearly 13,000 resulting in fatalities [3]. The yearly age-adjusted
incidence has remained steady for decades, hovering around 4 per 100,000 individuals [4].
It shows a slight preference for men over women and is twice as prevalent among African
Americans compared to Caucasians [5]. The median age at diagnosis is typically around
65 years [6].

Nearly all multiple myeloma patients progress from an asymptomatic precursor stage
known as monoclonal gammopathy of undetermined significance (MGUS) [7,8]. MGUS
is found in roughly 5% of individuals aged over 50, with a prevalence around twice as
high among Blacks compared to Whites [9–12]. MGUS transitions to multiple myeloma or
related malignancies at a rate of 1% per year [13,14]. As MGUS is asymptomatic, over 50% of
those diagnosed with it have likely harbored the condition for over a decade before clinical
diagnosis [15]. In particular cases, an intermediate asymptomatic but more advanced
pre-malignant stage, termed smoldering multiple myeloma (SMM), may be clinically
recognizable [16]. SMM progresses to multiple myeloma at a rate of approximately 10%
per year within the first five years post diagnosis, followed by 3% annually over the
subsequent five years and 1.5% per year thereafter. This progression rate is influenced
by the underlying cytogenetic profile, with patients harboring specific translocations at a
higher risk of progressing from MGUS or SMM to multiple myeloma [17–19].

Despite notable therapeutic advancements in recent years, multiple myeloma (MM)
remains an uncurable disease. Enhanced insights into MM’s biology and pathogenesis have
prompted a transformative shift in managing MM and its precursor states, monoclonal
gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma
(SMM) [20]. The conventional notion that MM treatment should only start upon the onset
of symptoms has been challenged by the introduction of novel therapies characterized
by both safety and efficacy. Clinical trials have underscored the significance of initiating
treatment early in high-risk asymptomatic cases, demonstrating a marked delay in disease
progression and improved progression-free survival outcomes for patients [21,22].

Yet, a critical challenge persists in identifying individuals with asymptomatic myeloma
at the highest risk of progression, thereby maximizing the benefits of early treatment strate-
gies. While risk stratification models such as the Mayo Clinic model [23] and the Spanish
model [24] have been valuable, they still possess notable limitations, particularly in the
context of modern therapies. Studies have revealed that patients with high-risk cytoge-
netic MM, including del17p, t(4;14), or t(14;20), may achieve survival rates comparable to
standard-risk patients through intensified treatment regimens involving a combination
of proteasome inhibitors, immunomodulatory drugs, and autologous stem cell transplan-
tation [25]. Consequently, there is an urgent imperative to deepen our comprehension
of the molecular mechanisms underpinning disease progression and refine risk strati-
fication models for asymptomatic MM concurrently with endeavors to optimize early
treatment strategies.
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Over the past several years, there has been a notable increase in the utilization of
machine learning (ML) algorithms and deep learning (DL) procedures for tumor detection.
These methods leverage diverse data sources, including proteomic, genomic, histopatho-
logical data, and images, as well as blood and biochemical exams. Such techniques have
proven beneficial not only in the realm of solid tumors but also in the management of
hematological malignancies. Recent studies on multiple myeloma have emphasized the
role of ML in diagnosing the disease through blood and biochemical exams and identifying
bone lesions through image data. Furthermore, ML applications have been utilized to
predict prognosis and therapeutic responses in multiple myeloma by analyzing gene ex-
pression data, highlighting their growing importance in personalized treatment strategies
for hematologic cancers [26].

Currently, serum markers are employed to categorize MGUS patients into different
clinical risk groups. However, no established molecular signature can reliably predict
the progression of MGUS. To address this gap, Sun et al. [27] conducted a study utilizing
gene expression profiling to stratify the risk of MGUS and devised a signature based on
extensive samples with long-term follow-up. They analyzed microarrays of plasma cell
mRNA from 334 MGUS patients with stable disease and 40 MGUS patients who progressed
to multiple myeloma (MM) within a decade and identified a thirty-six-gene molecular
signature indicative of MGUS risk.

The objectives of this study are as follows: (1) Develop machine learning models
capable of accurately predicting the stage of multiple myeloma (MM) based on microarray
datasets. We utilized advanced algorithms to analyze molecular data to classify patients
into different stages of the disease, thereby aiding clinicians in making more informed
treatment decisions. (2) By leveraging microarray datasets containing gene expression
profiles and clinical information from patients in the MGUS stage, we developed predictive
models that identify individuals at high risk of progressing to MM. Models trained to
distinguish MGUS from MM were tested for their effectiveness in separating MGUS from
progressing MGUS cases [27], with results indicating similar or better performance to models
explicitly trained for this task. This proactive approach aims to enable early intervention
strategies and improve patient outcomes by potentially delaying or preventing disease
progression. It is important to note that the use of microarray data was a mandate for this
task, as, to the best of our knowledge, no other omics data currently exist that include
MGUS and progressing MGUS samples.

2. Materials and Methods
2.1. Source of Microarray Datasets and Description of Data Variables and Features

We downloaded seven microarray datasets, two from ArrayExpress and five from the
Gene Expression Omnibus. In all cases, the samples were CD-138+ bone marrow plasma
cells from patients with different stages of multiple myeloma (MGUS, MM) and healthy.
The datasets came from four different platforms (A-AFFY-33, A-AFFY-44, GPL96, GPL570)
and contained different numbers of patients in total and per stage (see Table 1).

For each dataset, we downloaded the raw .cel files. We calculated the expression matrix
using the “Robust Multi-Array Average” expression measure via the rma() function of the
affy or oligo R packages, depending on the requirements of each dataset, with background
correction. At this step of the analysis, data were not normalized. Datasets from different
platforms had different numbers of probes. GLP96 and A-AFFY-33/A-AFFY-34 contained
~22,000 probes, whereas GLP570 and A-AFFY-44 contained ~55,000. We retained only the
22,277 shared probes across all datasets. Also, datasets contained samples corresponding
to disease stages outside of the scope of this study (for example, SMM, relapse MM, PCL,
and HUVEC), which we removed from our analysis.
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Table 1. The number of samples per dataset and disease stage. The table is sorted by the total number
of samples. The empty cells correspond to a zero number of samples.

Platform Dataset Normal MGUS Progressing
MGUS MM Total Number

of Samples

GLP96 GSE2113 7 39 46

A-AFFY-33
A-AFFY-34 EMTAB316 7 65 72

GLP570 GSE5900 22 44 66

GLP96 GSE6477 15 22 73 110

GLP96 GSE13591 5 11 133 149

A-AFFY-44 EMTAB317 23 226 249

GLP570 GSE235356 319 39 358

Total 7 42 433 39 536 1050

2.2. Data Cleaning and Preprocessing Techniques

We employed several data transformation and normalization techniques to prepare
our datasets for analysis (refer to Figure 1):

Robust Multi-Array Average (rma): We utilized the rma function with data background
correction, which was implemented in the affy or oligo R packages, depending on the
requirements of each dataset.

Binary Conversion: Expression values from rma were converted to binary (0–1) using
two quantile thresholds, 0 (binary_0) and 0.5 (binary_0.5) per sample. Values exceeding
the quantile threshold were set to 1, while those equal to or below the threshold were
set to 0. In the case of binary_0, all values except the minimum were set to 1, and the
minimum value was set to 0. Binary_0 was used as a negative control, where we expected
the machine learning algorithms to perform as random classifiers, offering a baseline for
performance comparison.

Ranking (ranking): Expression values were ranked from 0 to 1, with the highest value
assigned a rank of 1. This ranking system provided a relative measure of gene expression
levels within each sample.

Ratios (ratio): We selected only healthy samples from the GSE6477 dataset, which
served solely as a training set. We calculated the ratios by performing the following steps.
First, we used the ranks from the ranking transformation and calculated the standard
deviation of each probe. We kept 210 probes with the lowest standard deviation. This
number was chosen to minimize feature combinations, as the total number of combinations
when selecting two genes each time was 21,945 features—close to the total number of
features from the other preprocessing approaches. Then, we calculated all possible ratios of
these probes.

Quantile Normalization (qnorm): Quantile normalization was applied in a train–
test fashion using the preprocess R package. The training set underwent quantile nor-
malization, and the parameters learned from this process were then applied to the test
set. This approach ensured consistency in data distribution between the training and
test datasets.
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Figure 1. Flowchart of the analysis. (A) The flowchart illustrates the process used for predicting the 
stage of multiple myeloma. The method encompasses multiple steps: data preprocessing, model 
training, and performance evaluation applied across various datasets. Preprocessing includes sev-
eral data transformations and the training phase incorporates a variety of machine learning models. 
After predictions, the model’s key features were interpreted through enrichment analyses. In the 
figure, (ps) indicates per-sample preprocessing, (train) indicates that normalization was applied to 
training samples, and (test) refers to applying the parameters learned from training to the test set. 
(B) The flowchart outlines the process used for predicting the progression of MGUS to MM using 
machine learning techniques. The method involves preprocessing, model training, and performance 
evaluation using different datasets similar to A. The boxes with a black background indicate the use 
of the GSE235356 dataset for training and testing in a 10-fold nested cross-validation fashion. In 
contrast, gray background boxes represent training on various datasets and testing on the 
GSE235356 dataset.  

Figure 1. Flowchart of the analysis. (A) The flowchart illustrates the process used for predicting
the stage of multiple myeloma. The method encompasses multiple steps: data preprocessing,
model training, and performance evaluation applied across various datasets. Preprocessing includes
several data transformations and the training phase incorporates a variety of machine learning
models. After predictions, the model’s key features were interpreted through enrichment analyses.
In the figure, (ps) indicates per-sample preprocessing, (train) indicates that normalization was
applied to training samples, and (test) refers to applying the parameters learned from training to
the test set. (B) The flowchart outlines the process used for predicting the progression of MGUS to
MM using machine learning techniques. The method involves preprocessing, model training, and
performance evaluation using different datasets similar to A. The boxes with a black background
indicate the use of the GSE235356 dataset for training and testing in a 10-fold nested cross-validation
fashion. In contrast, gray background boxes represent training on various datasets and testing on the
GSE235356 dataset.
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2.3. Overview of Machine Learning (ML) Algorithms

We evaluated the following parametric and non-parametric methods (see Figure 1).
ElasticNet (glmnet) is a parametric method that fits generalized linear and similar

models via penalized maximum likelihood [28]. We employed its implementation in
the glmnet package in R. ElasticNet’s advantage is that it is the most interpretable ML
method [29] among these mentioned here.

Random Forest (rf) is a non-parametric tree-based method. We utilized its imple-
mentation in the randomForest R package. RF is somewhat interpretable as it provides
information on which features are more important for the model by calculating variable
importance scores [29].

Boosting (gbm) is a non-parametric method. We used gradient boosting machines
implemented in the gbm package in R. Like RF, boosting is somewhat interpretable and
provides the most important features [30].

Support Vector Machine (SVM) is a non-parametric method that has the advantage
of projecting the data to a different feature space [29]. However, even though SVMs can
produce very accurate models, they lack interpretability. We used the implementation
of SVMs in the e1071 [31] R package to fit an SVM with the linear kernel (svmLinear2)
and the implementation in the kernlab [32] R package to fit an SVM with the radial
kernel (svmRadial).

2.4. Model Training and Interpretation

We utilized the caret R package, which stands for classification and regression
training [33], to train, optimize, and test our models (see Figure 1). In order to opti-
mize the model’s hyperparameters, we employed a ten-fold cross-validation repeated
ten times. As the performance metric to determine the best model, we used the mul-
ticlass area under the ROC curve (multiclass_auc) for multiclass problems (see task 1
below) and the area under the ROC curve (AUC) for two-class problems (see task 2
below). For all models, except svmRadial, we tuned our models in a set of ten hyper-
parameters by setting caret’s tuneLength argument to ten. For the svmRadial model,
we used the sigest() function from the kernlab R package to calculate the range of the
sigma hyperparameter. The cost hyperparameter was set to the following values: 0.25,
0.50, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. In all cases, the data were centered
and scaled.

To interpret our models, we calculated the importance of each feature by utilizing the
varImp() function from the caret R package. We then performed enrichment analysis for
GO biological processes, KEGG and Reactome pathways, and disease ontology semantics
using the clusterProfiler R package [34]. Last, we filtered the results with the following
terms related to multiple myeloma: MAPK, RAS, RAF, MEK, ERK, ERK1, ERK2, PI3K, AKT,
NF-KB, Jak-STAT, Wnt, Hedgehog, TNFa, mTOR, multiple myeloma, myeloid, leukemia,
myeloma, Plasmacytoma, Amyloidosis, Chronic Lymphocytic Leukemia, Heavy Chain
Disease, and Lymphoma [35,36].

3. Results
3.1. Task 1—Predicting the Stage of Multiple Myeloma
3.1.1. Model Development for Disease Staging

We trained our models using the GSE6477 microarray dataset [37]. This dataset
comprises 162 samples representing various stages of myeloma. Specifically, it includes
15 samples classified as Normal, 21 as MGUS (monoclonal gammopathy of undetermined
significance), 23 as SMM (smoldering multiple myeloma), 75 as MM (newly diagnosed
myeloma), and 28 as RMM (relapsed myeloma samples). We focused on 110 samples after
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excluding the SMM and RMM categories. We trained our models to separate the three
classes: Normal, MGUS, and MM. The training process involved preprocessing the dataset,
followed by splitting the data into training and validation sets. We used the training set
to train the models and the validation set for hyperparameter tuning employing a tenfold
cross-validation protocol repeated ten times. We used all other datasets (see Table 1) only
for testing.

3.1.2. Evaluation of Model Performance

During training, all models consistently achieved a multiclass_auc with a cross-
validation median ranging from 0.9 to 1 across various data transformations and machine
learning methods (refer to Supplementary Figure S1). For the binary_0 transformation,
where all expressions except from the lowest were set to 1, the median training perfor-
mance of all models was around 0.5, which corresponds to a random classifier, as expected.
Subsequently, we evaluated the multiclass_auc for all test datasets using all models and
data transformations (see Figure 2 and Supplementary Figure S2).
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Figure 2. Models’ multiclass auc in the external validation sets. (A) The performance of the external
dataset used across all data transformations and machine learning algorithms. (B) The relation of
performance to the data transformations across datasets generated in GLP96 or A.AFFY.34 platforms
and all machine learning algorithms. (C) The relation of performance to the machine learning
algorithms across datasets generated in GLP96 or A.AFFY.34 platforms and all data transformations.

Focusing on the platform of origin for the data, we noted that datasets (GSE13591,
GSE2113) originating from the same platform (GPL96) as the training set exhibited similar
multiclass_auc scores as seen during training (see Figure 2A). We observed a slight decline
in performance, approximately 0.1 (see Supplementary Figure S3). EMTAB316 originated
from A-AFFY-34, which is very close to GPL96, and showed similar multiclass_auc scores
with training. In contrast, for datasets generated using different platforms (EMTAB317 from
A-AFFY-44 and GSE5900, GSE235356 from GPL570), our models experienced a more signif-
icant decrease in performance. This suggests that performance variability across datasets
may be attributed to differences in the platforms used for data generation. Regarding
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GSE235356, it is important to note that this dataset includes only MGUS and progressing
MGUS samples, which could contribute to the observed decline in performance.

For the subsequent phases of our analysis, we focused on datasets generated from
the GPL96 and A-AFFY-34 platforms. Concerning data transformations, we found
that binary_0.5 yielded the highest multiclass_auc in the test datasets and exhibited
less performance degradation compared to training results across all machine learn-
ing algorithms (refer to Figure 2B). Following binary_0.5, ranking, qnorm, rma, and
ratio transformations were observed. In terms of machine learning algorithms, we ob-
served that glmnet demonstrated the highest multiclass_auc in the test datasets across
all data transformations and showed less performance degradation relative to the train-
ing phase (see Figure 2C). Succeeding glmnet, rf, svmlinear2, gbm, and svmRadial
were observed.

3.1.3. Model Interpretation

We calculated the importance of each feature for each model and data transformation
combination. The svmLinear2 and svmRadial models utilized all available features (22,277).
RandomForest models used between 1260 and 4866 features, while gbm models employed
fewer features, ranging from 228 to 3371. The glmnet models used the least features, with
counts between 197 and 798 (see Figure 3).
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Figure 3. The number of features utilized by each model across different data transformations. The
plot shows the variation in feature selection for each model, highlighting the range of features used
in the analysis.

We observed that most selected features were specific to the model and transformation
used. For the rma transformation, 72 probes were selected across glmnet, gbm, and rf
models. Similarly, 62 probes, 58 probes, 101 probes, and 37 ratios were selected for the
qnorm, ranking, binary_0.5, and ratio transformations, respectively (see Supplementary
Figure S3A). Within the same model type (glmnet, gbm, rf), there was minimal overlap of
probes across different normalizations. No probes overlapped across all five normalizations.
The number of common probes for 4 out of 5 transformations was 8 for gbms, 30 for glmnet,
and 31 for rf (see Supplementary Figure S3B).

Next, using the probes selected by at least one data transformation for each method,
we performed enrichment analysis of biological processes via Gene Ontology (GO) terms
(see Supplementary Figure S4), Reactome pathways (see Supplementary Figure S5), KEGG
pathways (see Figure 4), and disease ontology semantics (see Figure 4). Our models
identified probes whose respective genes are involved in pathways highly related to
multiple myeloma, such as the PI3K-Akt, MAPK, JAK-STAT, and Wnt signaling pathways,
the RAF/MAP kinase cascade, NF-kB-related pathways, and signaling by RAS and BRAF
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mutants. The disease ontology semantics highlighted several blood cancers, including
multiple myeloma, across all methods.

Cancers 2025, 17, 332 9 of 20 
 

 

mutants. The disease ontology semantics highlighted several blood cancers, including 
multiple myeloma, across all methods. 

 

Figure 4. Enrichment analysis for the selected probes. (Top): KEGG pathways associated with iden-
tified genes. This figure illustrates the KEGG pathways enriched for the genes identified by the ma-
chine learning models across different data transformations and training datasets. The pathways 
displayed are significantly associated with the probes selected by at least one model. Key pathways 
related to multiple myeloma, such as PI3K-Akt, MAPK, and Wnt signaling, are highlighted. (Bottom): 
Disease-related terms associated with identified genes. The figure illustrates the distribution of dis-
ease-related terms associated with the genes identified by the models. The chart highlights how 
different methods and data transformations reveal connections to various cancers, including multi-
ple myeloma. Each term represents a disease category. In both figures, the size and color indicate 
the strength of the association and statistical significance. 

3.2. Task 2—Predicting Progression from MGUS to MM 

3.2.1. Model Development for Disease Progression Prediction 

We trained our models employing individual datasets—GSE235356, GSE6477, and 
EMTAB317—and combining datasets generated from the GLP96 and A-AFFY-33 plat-
forms in one dataset, specifically GSE6477, GSE2113, EMTAB316, and GSE13591. For the 
GSE235356 dataset [27], we focused on training models to distinguish between MGUS and 
progressing MGUS, where the latter refers to MGUS cases that progressed to MM. We used 
10-fold cross-validation to optimize hyperparameters and employed a 10-fold nested 
cross-validation protocol to evaluate model performance. Due to the computational ex-
pense of nested cross-validation, we optimized hyperparameters using standard 10-fold 
cross-validation instead of performing 10 repeated iterations. We chose nested cross-

Figure 4. Enrichment analysis for the selected probes. (Top): KEGG pathways associated with
identified genes. This figure illustrates the KEGG pathways enriched for the genes identified by
the machine learning models across different data transformations and training datasets. The
pathways displayed are significantly associated with the probes selected by at least one model.
Key pathways related to multiple myeloma, such as PI3K-Akt, MAPK, and Wnt signaling, are
highlighted. (Bottom): Disease-related terms associated with identified genes. The figure illustrates
the distribution of disease-related terms associated with the genes identified by the models. The chart
highlights how different methods and data transformations reveal connections to various cancers,
including multiple myeloma. Each term represents a disease category. In both figures, the size and
color indicate the strength of the association and statistical significance.

3.2. Task 2—Predicting Progression from MGUS to MM
3.2.1. Model Development for Disease Progression Prediction

We trained our models employing individual datasets—GSE235356, GSE6477, and
EMTAB317—and combining datasets generated from the GLP96 and A-AFFY-33 plat-
forms in one dataset, specifically GSE6477, GSE2113, EMTAB316, and GSE13591. For the
GSE235356 dataset [27], we focused on training models to distinguish between MGUS
and progressing MGUS, where the latter refers to MGUS cases that progressed to MM.
We used 10-fold cross-validation to optimize hyperparameters and employed a 10-fold
nested cross-validation protocol to evaluate model performance. Due to the computa-
tional expense of nested cross-validation, we optimized hyperparameters using stan-
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dard 10-fold cross-validation instead of performing 10 repeated iterations. We chose
nested cross-validation for performance evaluation because we did not have an external
dataset containing both MGUS and progressing MGUS samples. In all other scenarios,
we trained the models to differentiate between MGUS and MM, optimizing hyperparam-
eters with 10-fold cross-validation repeated 10 times, as in Task 1. For consistency, we
applied the same machine learning models and data transformations as in Task 1 (see
Figure 1).

The scope of these two training approaches (MGUS vs. progressing MGUS and MGUS
vs. MM) was twofold. First, we aimed to assess whether models trained to differentiate
MGUS from MM could effectively distinguish MGUS from progressing MGUS, using
the GSE235356 dataset for testing. Second, we sought to compare the performance of
these models with those specifically trained to separate MGUS from progressing MGUS
patients. This comparison would provide insights into whether models generalized well
across related conditions or if specialized training was required for optimal performance in
predicting MGUS progression.

3.2.2. Evaluation of Model Performance

Using the GSE235356 dataset for training, we calculated the cross-validation area
under the ROC curve (AUC) during model optimization (auc_cv), the mean cross-
validation AUC (auc_cvmean), and the outer cross-validation AUC from the nested
cross-validation protocol (auc_test). Among the models, glmnet achieved the best per-
formance, followed by gbm, rf, svmRadial, and svmLinear2 (refer to Figure 5). Specifi-
cally, glmnet with rma, qnorm, or ranking transformations showed the highest perfor-
mance, with both auc_cvmean and auc_test around 0.8 (refer to Figure 5). All algo-
rithms and data transformations also demonstrated good generalization performance
in the outer cross-validation fold. The mean auc_test across all outer cross-validation
folds fell within the AUC distribution achieved during training cross-validation (refer to
Figure 6).

We trained our models to distinguish MGUS from MM using the GSE6477 dataset.
These models achieved a training cross-validation AUC median ranging from 0.93 to 1
across all data transformations and machine learning methods (refer to Supplementary
Figure S6). Most models demonstrated good generalization performance when applied
to other datasets (EMTAB316, EMTAB317, GSE13591, GSE2113) for identifying MGUS
from MM (refer to Supplementary Figure S7). For EMTAB316 and GSE2113, the test AUC
median was 0.9 and 0.86 across all data transformations and machine learning methods.
For GSE13591, the test AUC median was 0.8 across all methods and transformations. The
models achieved the lowest test AUC for the EMTAB317 dataset, with an AUC median
of 0.7. This result is consistent with our findings in task 1 and likely due to the different
microarray platforms used to generate the data.

When we applied our models to separate MGUS from progressing MGUS, the mod-
els differentiated the two classes. Specifically, the test AUC achieved by gbm, glmnet,
rf, and svmLinear2 ranged from 0.7 to 0.8, falling within the AUC distribution achieved
with cross-validation during training with the GSE235356 dataset (refer to Figure 6) and
within the outer cross-validation auc_test distribution of the GSE235356 dataset (refer to
Supplementary Figure S11). In the case of svmRadial, the auc_test ranged from 0.54
to 0.69; in all cases except rma normalization, it was below the training AUC cross-
validation distribution but inside the outer cross-validation auc_test distribution of the
GSE235356 dataset.
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Figure 5. Performance of machine learning algorithms on the GSE235356 dataset. The figure
displays the distribution of the mean cross-validation AUC (auc_cvmean, shown in red) and the
distribution of the AUC from the outer hold of the nested cross-validation (auc_test, shown in cyan)
for each algorithm when the GSE235356 dataset was used for training and testing. The auc_cvmean
represents the performance across the cross-validation folds, while the auc_test indicates the model’s
generalizability on unseen data. The comparison of these distributions highlights the algorithm’s
generalization and stability.

Next, we trained our models to distinguish MGUS from MM, employing the EMTAB317
dataset. These models achieved a training cross-validation AUC median ranging from 0.79 to
0.94 across all data transformations and machine learning methods (refer to Supplementary
Figure S8). Most models demonstrated good generalization performance when applied to
other datasets (EMTAB316, GSE13591, GSE2113, GSE6477) for identifying MGUS from MM
(refer to Supplementary Figure S9). For EMTAB316 and GSE6477, the median test AUC was
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close to 0.75 and 0.82 across all data transformations and machine learning methods. For
GSE13591 and GSE2113, the median test AUC was close to 0.86 and 0.91 across all methods
and transformations.
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Figure 6. Model performance in differentiating MGUS from progressing MGUS across different
datasets. The boxplots show the distribution of the mean cross-validation AUC for models trained
to differentiate MGUS from progressing MGUS using the GSE235356 dataset. The colored points
represent the performance of each algorithm–data transformation combination across various training
datasets: models trained with the EMTAB317 dataset are shown in red; those trained with the
GSE235356 dataset are in green; models trained with the GSE6477 dataset are shown in cyan; and
those trained with the combined GSE6477 + GSE2113 + EMTAB316 + GSE13591 datasets are depicted
in purple. Notably, in all cases except for the second (GSE235356), the models were specifically
trained to distinguish MGUS from MM.

When we applied our models to separate MGUS from progressing MGUS, the models
showed a test AUC performance ranging from 0.5 to 0.76, with a median of 0.65. The test
AUC achieved by gbm, glmnet, rf, and svmRadial fell below the cross-validation AUC
distribution achieved during training with the GSE235356 dataset (refer to Figure 6) but
within the outer cross-validation auc_test distribution of the GSE235356 dataset (refer
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to Supplementary Figure S11). Interestingly, for svmLinear2, the test AUC fell within
the AUC cross-validation distribution during training with the GSE235356 dataset for all
data transformations.

Last, we trained our models to separate MGUS from MM using all datasets generated
from the GLP96 or A-AFFY-33 platforms (GSE6477 + GSE2113 + EMTAB316 + GSE13591).
Our models achieved a training cross-validation AUC median ranging from 0.94 to 0.97
across all data transformations and machine learning methods (refer to Supplementary
Figure S10). Similarly, we applied our models to separate MGUS from progressing MGUS.
The models’ test AUC performance ranged from 0.55 for svmRadial using ranking to
0.82 for glmnet employing rma, with a median performance across all models and data
transformations of 0.77. Importantly, the test AUC achieved by gbm, glmnet, and rf fell
within the cross-validation AUC distribution achieved during training with the GSE235356
dataset (refer to Figure 6) and within the outer cross-validation auc_test distribution of the
GSE235356 dataset (refer to Supplementary Figure S11). For svmRadial, the test AUCs fell
below the cross-validation AUC distribution for all data transformations except binary_0.5,
and at the lower end of the outer cross-validation auc_test distribution. Interestingly, for
svmLinear2, the test AUC fell above the cross-validation AUC distribution for all data
transformations except binary_0.5, and on the upper end of the outer cross-validation
auc_test distribution. Additionally, with the inclusion of the GSE2113, EMTAB316, and
GSE13591 datasets, glmnet and svmLinear2 showed a 0.05 increase in median test AUC
across all data transformations compared to when only the GSE6477 was used for training;
however, these differences were not statistically significant.

Next, we conducted a permutation test to assess the statistical significance of the
observed model performances in the test dataset in comparison to a random classification.
In this analysis, we permuted the class labels (MGUS, progressing MGUS) and recalculated
the auc_test for each model. Models with auc_test values close to 0.5, which correspond to
a random classifier, did not demonstrate a statistically significant different performance
from random, as expected. Conversely, models with auc_test values exceeding 0.7 showed
highly significant results, clearly falling outside the permutation distribution (refer to
Supplementary Figure S12).

3.2.3. Model Interpretation

We focused on interpreting the models trained using either the GSE235356 dataset or
all GPL96 datasets combined. The svmLinear2 and svmRadial models utilized all available
features. When all GPL96 datasets were used for training, the rf models employed between
2169 and 10,269 features, glmnet selected between 236 and 859 probes, and gbm chose
between 214 and 685 probes. In contrast, when the GSE235356 dataset was used for training,
the rf models utilized between 3090 and 11,650 features, glmnet selected between 10 and
792 probes, and gbm chose between 47 and 2084 probes (see Supplementary Figure S13).
We also assessed the overlap of probes selected across the two training datasets. For gbm
and glmnet, only a small number of probes (ranging from 1 to 99) were selected in both
cases. In contrast, the rf models showed a higher degree of overlap, with common probes
ranging from 482 to 5459 (refer to Supplementary Figure S14).

Using the probes selected by at least one data transformation for each method and train-
ing dataset, we conducted enrichment analyses on Gene Ontology (GO) biological processes,
KEGG pathways, Reactome pathways, and disease ontology semantics. The analysis re-
vealed that our models identified probes associated with genes involved in pathways closely
related to multiple myeloma, such as PI3K-Akt (see Supplementary Figure S17), MAPK (see
Supplementary Figures S15–S17), Wnt signaling (see Supplementary Figure S16), BRAF
and RAF1 fusion signaling (see Supplementary Figure S17), and mTOR pathways (see
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Supplementary Figure S16). The disease ontology analysis also underscored the relevance
of several blood cancers, including multiple myeloma, across most methods and training
datasets (see Figure 7).

Cancers 2025, 17, 332 14 of 20 
 

 

training, the rf models utilized between 3090 and 11,650 features, glmnet selected between 
10 and 792 probes, and gbm chose between 47 and 2084 probes (see Supplementary Figure 
S13). We also assessed the overlap of probes selected across the two training datasets. For 
gbm and glmnet, only a small number of probes (ranging from 1 to 99) were selected in 
both cases. In contrast, the rf models showed a higher degree of overlap, with common 
probes ranging from 482 to 5459 (refer to Supplementary Figure S14). 

Using the probes selected by at least one data transformation for each method and 
training dataset, we conducted enrichment analyses on Gene Ontology (GO) biological 
processes, KEGG pathways, Reactome pathways, and disease ontology semantics. The 
analysis revealed that our models identified probes associated with genes involved in 
pathways closely related to multiple myeloma, such as PI3K-Akt (see Supplementary Fig-
ure S17), MAPK (see Supplementary Figures S15–S17), Wnt signaling (see Supplementary 
Figure S16), BRAF and RAF1 fusion signaling (see Supplementary Figure S17), and mTOR 
pathways (see Supplementary Figure S16). The disease ontology analysis also under-
scored the relevance of several blood cancers, including multiple myeloma, across most 
methods and training datasets (see Figure 7). 

 

Figure 7. Disease-related terms associated with identified genes. The figure illustrates the distribu-
tion of disease-related terms associated with the genes identified by the models. The chart highlights 
how different methods across all data transformations and the different training datasets reveal 
connections to various cancers, including multiple myeloma. Each term represents a disease cate-
gory. The size and color indicate the strength of the association and statistical significance. “all 
GLP96” refers to the combined dataset of GSE6477 + GSE2113 + EMTAB316 + GSE13591, and “GSE” 
to the GSE235356 dataset. 

4. Discussion 
In this study, we utilized machine learning (ML) techniques to tackle two critical 

challenges in multiple myeloma (MM): predicting the disease stage and predicting disease pro-
gression from monoclonal gammopathy of undetermined significance (MGUS) to MM. 
Through comprehensive data preprocessing, model training, and evaluation across mul-
tiple datasets, we aimed to enhance diagnostic precision and offer valuable prognostic 
insights for hematologic malignancies. 

The first focus of our study was on predicting the stage of MM. Accurate staging is 
crucial for determining the appropriate treatment strategy and prognosis. We developed 
models using various ML algorithms, including ElasticNet, Random Forest, Boosting, and 
Support Vector Machines. These models were trained on a dataset comprising samples 
from different stages of MM and healthy samples, and their performance was evaluated 
on external validation datasets. The multiclass area under the curve values obtained dur-
ing cross-validation and testing consistently demonstrated that the selected features and 
ML algorithms effectively capture the biological differences across disease stages. Specif-
ically, our models identified genes involved in pathways that are well documented in the 

Figure 7. Disease-related terms associated with identified genes. The figure illustrates the distribution
of disease-related terms associated with the genes identified by the models. The chart highlights
how different methods across all data transformations and the different training datasets reveal
connections to various cancers, including multiple myeloma. Each term represents a disease category.
The size and color indicate the strength of the association and statistical significance. “all GLP96”
refers to the combined dataset of GSE6477 + GSE2113 + EMTAB316 + GSE13591, and “GSE” to the
GSE235356 dataset.

4. Discussion
In this study, we utilized machine learning (ML) techniques to tackle two critical

challenges in multiple myeloma (MM): predicting the disease stage and predicting disease
progression from monoclonal gammopathy of undetermined significance (MGUS) to MM.
Through comprehensive data preprocessing, model training, and evaluation across multiple
datasets, we aimed to enhance diagnostic precision and offer valuable prognostic insights
for hematologic malignancies.

The first focus of our study was on predicting the stage of MM. Accurate staging is
crucial for determining the appropriate treatment strategy and prognosis. We developed
models using various ML algorithms, including ElasticNet, Random Forest, Boosting, and
Support Vector Machines. These models were trained on a dataset comprising samples
from different stages of MM and healthy samples, and their performance was evaluated on
external validation datasets. The multiclass area under the curve values obtained during
cross-validation and testing consistently demonstrated that the selected features and ML
algorithms effectively capture the biological differences across disease stages. Specifically,
our models identified genes involved in pathways that are well documented in the lit-
erature for their roles in MM pathogenesis (see below for details). Among the models
evaluated, gbm achieved the highest performance in training, and glmnet showed minimal
degradation across different data transformations and datasets, indicating its robustness
and generalizability. Our findings align with the growing body of literature that supports
the use of ML in oncology, particularly in hematologic malignancies. Previous studies
have shown the effectiveness of ML algorithms in improving diagnostic accuracy and risk
stratification in MM [26,38]. The variability in model performance across different plat-
forms, observed in datasets from GPL96, A-AFFY-34, GPL570, and A-AFFY-44, underscores
the challenges of integrating data from diverse sources. This issue has been documented
in the literature, where differences in data generation methods significantly affect model
performance [39,40].

Predicting the progression of monoclonal gammopathy of undetermined significance
(MGUS) to multiple myeloma (MM) remains one of the most pressing challenges in man-



Cancers 2025, 17, 332 15 of 19

aging plasma cell disorders. The early identification of high-risk MGUS patients could
significantly enhance clinical outcomes by enabling timely interventions that might delay or
even prevent the onset of MM. A significant obstacle in this effort is the limited availability
of datasets that include progressing MGUS patients, as these cases are inherently rare and
difficult to procure. To address this challenge, we employed a two-pronged approach. First,
we developed machine learning models using a dataset specifically containing MGUS and
progressing MGUS patients, achieving a maximum AUC of 0.8 with the glmnet model com-
bined with quantile normalization. Other models and data transformations demonstrated
good generalization performance, with AUC values around 0.75. This result highlights the
potential of machine learning in identifying high-risk MGUS patients even with limited
data availability. Second, to evade the scarcity of progressing MGUS samples, we trained
our models using multiple datasets containing both MGUS and MM patients. These models
were then evaluated for their ability to distinguish MGUS from progressing MGUS cases.
Our findings indicate that machine learning models, including ElasticNet, Boosting, SVM
with linear kernel, and Random Forest, achieved AUC values close to 0.8, suggesting a
strong potential for these models in risk stratification. Although some models, such as
SVM with radial kernel, demonstrated lower performance, the overall results underscore
the utility of incorporating both MGUS and MM data in predictive modeling.

To our knowledge, this study is the first to develop comprehensive machine learning
models specifically designed to predict the progression of MGUS to MM by leveraging
datasets from both MGUS and MM cases. Our innovative approach of integrating MM data
to train models that predict MGUS progression offers a novel and potentially more accurate
method for risk assessment. This methodology could have significant clinical implications,
particularly in distinguishing MGUS patients who require closer monitoring from those
who may not. The novelty and potential impact of our approach are further emphasized
by recent reviews in the field, such as the one by Awada et al. [41], which highlight the
need for more sophisticated predictive models that integrate data across disease stages to
enhance prognostication and treatment planning.

The feature selection and enrichment analyses conducted in this study provided
significant insights into the molecular pathways and biological processes involved in the
progression of multiple myeloma. Our models consistently identified genes involved in
critical signaling pathways, such as PI3K-Akt, MAPK, Wnt, and mTOR. These pathways are
well known for their roles in cell growth, survival, and proliferation, and their involvement
in MM pathogenesis is well documented [42]. For instance, the PI3K-Akt pathway has been
widely recognized as a key player in MM, influencing proliferation, migration, apoptosis,
and autophagy [43]. Similarly, the MAPK pathway is involved in the regulation of cell
proliferation, survival, and differentiation, and its dysregulation has been implicated
in various cancers, including MM [44,45]. The Wnt pathway, which is crucial for cell
differentiation and proliferation, has also been associated with MM progression, particularly
in the context of bone disease [46]. The consistency of our results with established biological
knowledge validates our models and suggests potential therapeutic targets that could be
explored in future research.

While the results of this study are promising, several limitations should be considered
when interpreting our findings. One significant challenge is the variability in model per-
formance across different microarray platforms. This variability suggests a need for more
comprehensive cross-platform validation to ensure the robustness of our models when
applied to data generated from various microarray platforms, which may have different
processing methods and platform-specific characteristics. Ensuring model performance
across these platforms is crucial for the generalizability of our models in clinical settings.
Moreover, the relatively small number of datasets used in this study and the focus on a
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limited set of machine learning algorithms may have constrained our ability to explore
other potentially valuable approaches. Future research should aim to include a more
extensive variety of datasets, especially those generated from different omics technologies
(e.g., proteomics, genomics, and transcriptomics), to enhance the generalizability and ro-
bustness of the models. This approach would help address the limitations of relying solely
on microarray data and provide a more comprehensive understanding of disease mecha-
nisms. Additionally, integrating clinical data, such as patient demographics and treatment
history, could provide a more comprehensive understanding of disease progression and
improve the clinical applicability of the models. These challenges are well recognized in
the literature [47–49]. All studies emphasize the need for cross-platform validation and
standardization in ML models, particularly in the context of precision medicine, where the
ability to generalize across different datasets is crucial for clinical implementation.

5. Conclusions
This study demonstrated the utility of machine learning models in addressing two

critical challenges in multiple myeloma (MM): accurate disease staging and predicting the
progression of monoclonal gammopathy of undetermined significance (MGUS) to MM. By
leveraging diverse datasets and ML algorithms, we achieved robust performance, with
ElasticNet and Boosting models consistently yielding high AUC values for both tasks.
Importantly, feature selection identified key signaling pathways central to MM pathogene-
sis, aligning with established biological knowledge and suggesting potential therapeutic
targets. While promising, our findings highlight the need for broader dataset inclusion,
cross-platform validation, and the integration of clinical data to further enhance the models’
generalizability and clinical applicability. These advances could pave the way for more
precise prognostic tools and targeted interventions in hematologic malignancies. Also, to
improve model robustness, an ensemble classification approach could be explored. By
combining multiple machine learning algorithms, ensemble methods can reduce perfor-
mance variability across platforms and enhance prediction accuracy, offering more reliable
generalizability for clinical use.
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