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Abstract: Brain tumor segmentation seeks to separate healthy tissue from tumorous regions. This
is an essential step in diagnosis and treatment planning to maximize the likelihood of successful
treatment. Magnetic resonance imaging (MRI) provides detailed information about brain tumor
anatomy, making it an important tool for effective diagnosis which is requisite to replace the existing
manual detection system where patients rely on the skills and expertise of a human. In order to solve
this problem, a brain tumor segmentation & detection system is proposed where experiments are
tested on the collected BraTS 2018 dataset. This dataset contains four different MRI modalities for
each patient as T1, T2, T1Gd, and FLAIR, and as an outcome, a segmented image and ground truth of
tumor segmentation, i.e., class label, is provided. A fully automatic methodology to handle the task of
segmentation of gliomas in pre-operative MRI scans is developed using a U-Net-based deep learning
model. The first step is to transform input image data, which is further processed through various
techniques—subset division, narrow object region, category brain slicing, watershed algorithm, and
feature scaling was done. All these steps are implied before entering data into the U-Net Deep
learning model. The U-Net Deep learning model is used to perform pixel label segmentation on the
segment tumor region. The algorithm reached high-performance accuracy on the BraTS 2018 training,
validation, as well as testing dataset. The proposed model achieved a dice coefficient of 0.9815, 0.9844,
0.9804, and 0.9954 on the testing dataset for sets HGG-1, HGG-2, HGG-3, and LGG-1, respectively.

Keywords: brain tumor segmentation; deep learning; U-Net; BraTs 2018; MRI

1. Introduction

A brain tumor can be defined as a cancerous or noncancerous mass or development of
abnormal cells in the brain. Gliomas can be categorized into High-Grade Glioma (HGG)
and Low-Grade Glioma (LGG), based on the pathological assessment of the tumor. Brain
tumor segmentation seeks to separate healthy tissue from tumorous regions. This is a cru-
cial step in analysis and treatment planning to improve the possibility of effective treatment.
Nowadays, biological science has emerged with several extended research problems under
the category of Digital Image Processing (DIP). The detection of the tumor and its clas-
sification, detection of the cancerous region and its classification, testing, and inspecting
crucial parts of the human body are some applications that fall under this category. Out
of various medical science problems, automatic brain tumor segmentation and detection
is of utmost importance, and efforts are being made in order to effectively handle this
problem. A January 2020 Cancer.net editorial approved a report that estimated that this
year, 23,890 adults, i.e., 13,590 males and 10,300 females, will be identified with cancerous
tumors of the brain and spinal cord in the USA. In general, brain tumor diagnosis usually
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starts with Magnetic Resonance Imaging (MRI). The suspicious regions are separated using
magnetic resonance segmentation using a complicated clinical imaging process. MRI is the
most commonly used process that highlights the tumorous region in the brain, although
brain tumor detection is still a manual process, examined and validated by experts. Thus,
we require a compelling process to identify brain tumors in the early stage to save patients
with high accuracy. There are some issues in the manual process, due to which the auto-
matic detection of brain tumors becomes pivotal. Computer-aided detection of abnormal
growth of tissue is primarily motivated by the necessity of reducing human error and thus
achieving maximum possible accuracy. Using automated algorithms for the accurate and
robust predictions of overall survival for patients diagnosed with gliomas can provide valu-
able guidance for diagnosis and necessary treatment. Furthermore, there is a lack of skilled
Oncologists and Neurologists, especially in developing countries. According to a report
in 2018, the country is facing a severe shortage of caregivers, with merely 2000 oncolo-
gists looking after around 10 million patients (https://timesofindia.indiatimes.com/india/
India-has-just-2000-oncologists-for-10-million-patients/articleshow/50842842.cms). Ow-
ing to the presence of abnormalities, no conventional technique can be developed for the
segmentation of brain tumors in the medical field. Generally, magnetic resonance image
(MRI) scans are utilized for the proper examination and diagnosis of brain tumors. This
study systematically works on the detection of brain tumors using MRI images [1]. Owing
to the profound significance of machine learning and deep learning, a vast number of meth-
ods have been developed, mostly using a specific technique, i.e., machine learning or deep
learning [2]. Despite initiating a breakthrough in handling tumor detection tasks, existing
applied deep learning models have some drawbacks. CNN-based deep learning techniques
require high volume data, which makes it a complex and expensive task. Massive features
are necessary to train tumor detection and segmentation accurately. However, the U-net
model of CNN has shown great help in prognosticating in medical image segmentation.
In recent literature, numerous works are done either using variation in U-Net architec-
ture or with some pre/post-filtering for outcome improvisation. A Multi-Inception-UNet
architecture is proposed to improve scalability and is applied to BraTs 2015, 2017, and
2019 datasets [3]. This is considered the latest work done in this same direction with
the help of this same U-Net Model. MRI Brain Tumor segmentation is validated using
3D-UNet on the BraTs’20 dataset, where the author achieved an accuracy of 0.83 on the
training set and 0.82 on the validation set [4]. The proposed work is somewhat motivated
by the work done by Jurdi et al. in June 2020; in their work, U-Net with Bounding Box
Prior is applied to two public datasets—SegTHOR is Computed Tomography (CT) im-
ages and another Cardiac dataset is a mono-modal MRI dataset. A bounding box (BB)
filter is inserted at the BBConV Layer, by which researchers can achieve approximately
98.32% average dice coefficient [5]. Henceforth, in this study, a systematic process is per-
formed for the detection of brain tumors using MRI images. The experimentation uses
U-Net to exhibit the knowledge of deep learning models for tumor image segmentation.
The deep learning model is applied for MRI segmentation on the BraTS 2018 dataset
(https://www.med.upenn.edu/sbia/brats2018/data.html), which contains four different
MRI modalities—T1, T2, T1Gd, and FLAIR of each patient (see Figure 1).
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Corresponding to each patient, the segmented tumor region and OT (ground truth
of tumor segmentation) are stated. Although experiments are primarily carried out on
the BraTS dataset, a list of datasets used to perform brain tumor detection tasks is also
tabulated in Table 1 for the readers’ point of view.

Table 1. List of some sample datasets used for brain tumor detection and segmentation.

Dataset Used in Research Paper

BraTS 2012, 2015, 2016, 2018, 2019, 2020 [6–10]
Whole Brain Atlas (WBA) [11]

Rembrandt database [12]
MRI Image database, Pioneer diagnostic center [13]

BrainWeb: Simulated Brain Database [14]
CVC-ClinicDB [15]

ISIC-2017 [15]

In the proposed work, the tumor region in the MRI scan is segmented using a U-Net-
based deep learning model which has a fully connected Convolutional Neural Network
(CNN) foundation. Some image processing methods such as narrow object region filter
along with subset division, category brain slicing, and feature scaling are incorporated
before inputting the processed image to the deep learning model. Research work is done
in the same direction and some pre-filters and feature scaling are employed to get the
improved dice coefficient; the result section (Section 5) demonstrates success in getting
high accuracy in tumor segmentation.

The major contributions of this project can be summarized as:

• Explored advanced deep learning models in depth and proved the conjectured perfor-
mance evidence of U-Net deep learning models for brain tumor image segmentation
for detection.

• Experimented segmentation with standard U-Net, further explored and incorporated
subset division, category brain slicing, feature scaling, and narrow object region
filtering prior to feeding to U-Net model and examined the performance enhancement
of U-Net architecture by incorporating all these pre-learning processes.

• Specifically examined some challenging unsuccessful tumor segmentation test cases
and observe a substantial parameter tuning for result refinement.

• The manuscript presented a state-of-the-art brain tumor detection technique which,
in combination with a few image processing processes, followed by a deep learning
model, can provide accurate brain tumor segmentation. Undoubtedly, this approach
can assist in the medical workflow as well as give clinical direction in identification,
therapy planning, and later evaluations.

The fragments of this manuscript are organized as follows. Section 2 presents a com-
prehensive study covering existing literature on MRI tumor detection, classification, and
segmentation with the aim to assist researchers in developing an efficacious model that
automatically detects the tumor from an MRI image. Section 3 presents the material used to
perform the experiments and the research flow of the proposed methodology implemented
to achieve high accuracy. After presenting the research flow, the methodology is discussed
in Section 4, which subsequently gives the overall process of pre-learning techniques and
the U-Net deep-learning model in Sections 4.1 and 4.2. Experimental setup and results
are detailed in Section 5; this section presents the used evaluation measure, model out-
come observations, and performance evaluation outcome. Finally, Section 6 concludes
the manuscript.

2. Related Work

The literature has expanded significantly in order to handle brain tumor detection us-
ing MRI scan images, intensifying the need to review and summarize used methodologies,
associated datasets, and performance achieved. The work in this area uses brain tumor
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detection work with the use of machine learning techniques. Machine learning models re-
quire feature data to learn the tumor detection system. Therefore, the most commonly used
technique in the research literature for feature extraction is the gray level co-occurrence ma-
trix (GLCM) [11,16–18]. In the first instance under artificial intelligence, machine learning
techniques are applied to extracted features; some are SVM [19–21], Adaboost [16], Neural
Network [22], KNN Classifier [23], Naïve Bayes [12], Fuzzy C Means [24], bagging [25], or
Mathematical Morphological Reconstruction [21]. Secondly, the research direction moves
towards self-activating feature generation, i.e., learning models themselves will generate
features. Hence, researchers started using CNN [9,26], its variants, and pre-trained CNN
models [27]. Despite initiating a breakthrough in handling tumor detection tasks, existing
applied deep learning models have some drawbacks. Most automatic brain tumor segmen-
tation methods, as suggested in various research, use hand-crafted features such as edges,
corners, histogram of gradient, local binary patterns, etc. In these methods, the focus has
been on the implementation of a classical machine learning pipeline. The intended features
are first extracted and then given to a classifier. The training procedure of the classifier is
not affected by the nature of those features. CNN-based deep learning techniques require
high volume data, which makes it a complex and expensive task. Massive features are
necessitated to accurately train tumor detection and segmentation [28]. However, the U-net
model of CNN has shown great help in prognosticating in medical image segmentation.
Researchers even quoted in their work that U-Net, which is an advanced CNN model, has
the potential to work best for brain tumor detection, and the same has been shown by
using this advanced segmentation image generation model for tumor segmentation [29,30].
Therefore, the researcher’s direction took a turn towards specific work done using U-Net
Architecture and this section strives to introduce the latest developments in the domain
of brain tumor detection using deep learning techniques. Recent U-Net-specific work
for brain tumor detection is enlisted in Table 2. U-Net Accuracy is measured using Dice
Score Coefficient; the dice score achieved in U-Net specific work is also stated in the table,
along with the methodology used. All the work was done in the BraTS 2018 dataset, and
classification is done in three classes—Enhancing Tumor (ET), Whole Tumor (WT), and
Core Tumor (CT).

Dong et al. worked on automatic brain tumor detection and segmentation using U-Net
architecture for the BraTs 2015 dataset [31]. The dataset was normalized for each sequence
of the multimodal MI images by subtracting the mean of each sequence and dividing it by
its standard deviation. Furthermore, the extension in the dataset was done using several
data augmentation techniques. The evaluation was done using a five-fold cross-validation
method for the HGG and LGG data, respectively. For each patient, they were validated
on three sub-tumoral regions, namely the complete tumor region, the core tumor region,
and the enhancing tumor region. The dice similarity coefficient (DSC) for the complete,
core, and enhancing tumor region is 0.88, 0.87, and 0.81 for HGG, respectively, and 0.84,
0.85, and 0.89 for LGG, respectively. The combined DSC score is 0.86, 0.86, and 0.85,
respectively. There are still some limitations of the current work. First, the segmentation
method was evaluated using a cross-validation scheme, which can provide an unbiased
predictor, but running the model on a separate and independent testing dataset may
produce a more objective evaluation. Secondly, several parameters need to be carefully
tuned in the network. Currently, all the parameters were determined via an empirical
study [31]. Sun et al. proposed a deep learning ensemble model in which three different
3DCNN architectures are used—(1) Cascaded Anisotropic Convolutional Neural Network
(CA-CNN), in which the cascade is used to convert multi-class segmentation problem into
a sequence of three hierarchical binary segmentation problems; (2) DFKZ Net DKZ Net
uses a context encoding pathway that extracts abstract representations of the input, and
a decoding pathway used to recombine these representations; and (3) 3D U-Net, which
consists of a contracting path to capture the context and a symmetric expanding path
that enables precise localization with extension [32]. Ensemble experiments are tested on
the BraTS 2018 dataset. At the validation stage, the ensemble model had a classification
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accuracy of 46.4% while at the testing stage, the accuracy was 61%. The specificity of the
ensemble model is much higher than the sensitivity, which indicates an under-segmentation
of the model. The limited number of samples to train the regression model lowered
the accuracy, and for improvement, feature selection methods should be optimized for
survival prediction.

Table 2. Integrated Summary of Literature Studied.

Author Method Used Results

Mehta et al., 2018 [29]

• Pre-processing: mean subtraction, dividing by
the SD and re-scaling 0–1

• Modified 3D U-net architecture
DataSet: BraTS 2018

ET: 0.78, WT: 0.90, CT: 0.82

Fridman et al., 2018 [30]

• SimpleITK bias field correction filter on all T1
and T1C images in the dataset.

• Pre-processing: On standardized voxel intensities
• U-Net deep convolutional networks.
DataSet: BraTS 2018

No accuracy metric was presented.

Tuan et al., 2019 [33]

• Bit-plane: Get significant bits.
• Pre-processing: Scaled 3D image in the range

[0–255], category brain slicing
• U-Net architecture
DataSet: BraTS 2018

WT:0.82, ET: 0.68, CT:0.70

Shaocheng et al., 2018 [34]

• Pre-processing: Image normalization
• Data augmentation
• U-Net based segmentation
DataSet: BraTS 2018

Training phase:
WT: 0.90, CT: 0.81, ET: 0.76
Validation set: WT: 0.91, CT: 0.83, ET: 0.79

Wei et al., 2018 [35]

• N4ITK bias correction algorithm applied to the
T1, T1c, and T2 scans.

• Reduce the resolution of the feature maps and
double the number of feature channels.

• Segmentation: Convolutional NN
DataSet: BraTS 2018

ET: 0.69, WT: 0.84, CT: 0.78

Nabil et al., 2019 [15]

• Feature Mapping: Uses 32; 64; 128; 256 filters in
the blocks of the four Res paths.

• MultiResUNet model: Sequence of two
convolutional layers with MultiRes block.

5 datasets: 97 fluorescence microscopy images, 30
electron microscopy images, ISIC-2017, CVC-ClinicDB,
BraTS 2017

Average accuracy:
80.3%, 82%, 91.65%, 88%, 78.2%

Cahall et al., 2019 [36]

• Pre-processing: rescaling pixels
• Segmentation: 2D U-Net and factorized

convolution inception module.
DataSet: BraTS 2018

Intra-tumoral:
WT: 0.925, CT: 0.95, ET: 0.95
Glioma subregions:
WT: 0.92, CT: 0.95, ET: 0.95

Malathi et al., 2019 [9]

• Preprocessing: n41TK bias correction median
filter for noise reduction.

• Classification: CNN
• Segmentation: 4 classes—necrotic core,

advancing tumor, non-advancing tumor, and
swelling tumors part/edema.

DataSet: BraTS 2018

Average Dice co-efficient: 0.73
Sensitivity: 0.82

Yogananda et al., 2019 [10]

• Preprocessing: N4BiasCorrection to remove the
RF in homogeneity and intensity normalization
to zero-mean and unit variance.

• Segmentation: 3 groups of 3 Dense-UNets
DataSet: BraTS 2018

Accuracy: 89%
WT: 0.95, CT: 0.92. ET:0.90
Survival Prediction: Accuracy: 44.8%
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Table 2. Cont.

Author Method Used Results

Hasan et al., 2018 [37]

Preprocessing: Image scaling, translation, rotation,
and shear.
Classification: Proposed NNRET U-net deep
convolution neural network.
DataSet: BraTS 2018

Dice coefficient: 0.87

Tuan et al. worked on the BraTS 2018 dataset and used bit-plane and U-Net. Their
proposed approach starts with Bit-plane to get the most significant and least significant
bits which can cluster and generate more images, followed by U-Net to segment all glioma
regions [33]. This research work implemented the U-NET with multiple kernels to get
better performance. Furthermore, the result is evaluated without any additional data, and
it demonstrated promising performance with a mean dice score of 0.82, 0.68, and 0.70 for
the whole tumor (WT), enhancing tumor (ET), and tumor core (TC), respectively.

In the present work, and with some advancement, the achieved accuracy is better
compared to existing work. One optimistic modification was proposed by Cahall et al.
in 2019 by introducing an end-to-end brain tumor segmentation framework that utilizes
a modified U-Net architecture with Inception modules to accomplish multi-scale feature
extraction [36]. Moreover, the author evaluated the impact of training various models to
segment the glioma sub-regions directly rather than the intra-tumoral structures. Both
learning regimes were incorporated into a new loss function based on the Dice similarity
coefficient. It was noticed that for intra-tumoral structures, adding Inception modules to
the U-Net resulted in significant improvements in WT (DSC improved from 0.903 to 0.925),
TC (0.938 to 0.952), and ET (0.937 to 0.948). For the glioma sub-regions, adding Inception
modules to the U-Net also resulted in improvements in WT (0.898 to 0.918), TC (0.942 to
0.951), and ET (0.942 to 0.948). The study performed by Çinar et al. in 2021 applied various
pre-trained CNN models—AlexNet, GoogleNet, ResNet50, and DenseNet201. In their
work, a hybrid-improved deep learning model is introduced by which achieved accuracy
is 97.01 [38].

Kermi et al. in 2019 used the BraTS 2018 dataset and during preprocessing, the
researchers removed 1% of the highest and lowest intensities, then each modality of MR
images was normalized [39]. To address the class imbalance problem in the data, various
data augmentation techniques were employed, such as rotation, translation, and horizontal
flipping and mirroring. As the deep learning model CNN is used with similar architecture
as that of U-net. The designed network was trained with axial slices extracted from the
training MRI set, including HGG and LGG cases, and the corresponding ground truth
segmentations. The accuracy of the work is evaluated using the dice coefficient where the
enhanced tumor, whole tumor, and core tumor detection dice coefficient is 0.717, 0.867, and
0.798, respectively. Our target is to provide an improved deep-learning-based model that
can overcome the shortcomings of manual analysis of brain MRI scans, thus saving time
and improving the accuracy of detecting abnormalities in the human brain.

3. Material and Research Flow

The studied literature broadens the understanding of the principal practices used
to get the best performance and efficiency. Based on the studied literature, the brain
tumor MRI scan dataset was taken for experimental consideration and a research flow was
designed to achieve the research objective.

3.1. Material

The MICCAI BraTS 2018 dataset was acquired from the University of Pennsylvania’s
Perelman School of Medicine. The data provided as part of BraTS 2018 was co-registered
to the same anatomical template and interpolated to the same resolution of 1 mm3 and
it was also skull-stripped. The BraTS dataset contains brain images of patients in each
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category—HGG (High-Grade Glioma) and LGG (Low-Grade Glioma). There is a different
folder for each patient. The dataset contains four modalities and the segmented results for
each patient. The different modalities are—Native (T1), T2-weighted (T2), post-contrast
T1-weighted (T1Gd), and T2 Fluid Attenuated Inversion Recovery (FLAIR). Correspond-
ing to each record, a tumor-segmented region and ground truth of tumor segmentation
(OT) are provided in the BraTS 2018 dataset. The ground truth contains annotations of
three nested subregions—Whole Tumor (WT), Tumor Core (TC), and enhancing tumor
(ET). Two more datasets for testing and validation are provided along with that. The
dataset details are enlisted in Table 3. The validation set was designed for intermediate
evaluation, i.e., can be validated through multiple submissions, whereas the test set only
has final submissions, and no intermediate evaluations are available. Table 3 provides
the dataset size for the training, test, and validation sets. The multimodal scans in the
BraTS dataset are available as NIfTI files (.nii.gz). The OT (ground truth of tumor seg-
mentation/segmented result) is analyzed for comparison with our predicted output. All
the imaging datasets were segmented manually and their annotations were affirmed by
experienced neuroradiologists.

Table 3. BraTS 2018 Dataset details.

Input Image Size 240*240*155

Training
# of HGG Images 210

# of LGG Images 75

# of Test Dataset 191

# of Validation Dataset 66

3.2. Research Flow

This section details the research flow of the work done in order to achieve the best
accuracy for brain tumor detection using MRI scans. The research flow was designed to
extract tumor segmented regions in comparison to classification. The input images were
taken from the well-known BraTs 2018 dataset. Broadly, this research work was performed
in two steps—(1) pre-learning process techniques and (2) deep-learning model for tumor
image segmentation. Under pre-learning, the process started with a data transformation,
which converted the brain tumor image dataset into a python machine-readable format.
The subset division step was done to divide the dataset as the formed dataset is large in
size and has resources restriction. Furthermore, category brain slicing and narrow object
regions downsized the images by removing unnecessary content from the input image.
Basic level image segmentation was accomplished by a watershed algorithm, and finally,
feature scaling was applied to standardize the independent features, which ended the
pre-learning process.

For biomedical imaging research problems, image localization is a specialized and
essential task that needed an adequate deep learning mode. Therefore, U-Net architecture
is the most preferable model for localization in the image out of variants of conventional
convolutional neural network models. U-Net architecture aims to pinpoint the localized re-
gion of brain tumors. The strength of U-Net architecture is to identify unclear and irregular
discontinuities and boundaries to a great extent, which was otherwise posing a great chal-
lenge, especially against edge-based methods for tumor region detection research problems.
The last need of the research is to evaluate the performance of the research methodology,
for which dice coefficient and loss function has been validated for the achieved outcome of
deep learning-based segmentation. This performance measure is applicable to quantify the
performance of the segmented tumor region. The overall framework is shown in Figure 2.
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4. Methodology
4.1. Pre-Learning Process Techniques
4.1.1. Data Transformation

As mentioned in the data above (Section 3.1), the multimodal scans in BraTS 2018
dataset were formatted in NIfTI files (.nii.gz). All the given images were processed to
convert from the .nii.gz format to NumPy arrays. This was done using Python’s SimpleITK
library. Since the given data was already skull-stripped, each patient’s MRI scan volumes
were collected and directly combined to form a Numpy array. The formed Numpy array is
of size (X, S, D, D, N), where

X: number of HGG/LGG data (BraTS 2018 contains 210 patients’ scans under HGG
and 75 patients’ scans under LGG);

S: number of total 2D slices corresponding to each MRI 3D volume imagery
D: dimensions of each 2D slice
N: number of modalities.

4.1.2. Subset Division

The formed Numpy array is of a large size, which required high RAM availability
for further pre-processing and training. The data was handled by dividing it into four
subsets, namely HGG-1, HGG-2, HGG-3, and LGG-1. This was done in an effort to reduce
RAM consumption and feed the data sequentially. BraTS 2018 contains 210 patients’ scans
under HGG and 75 patients’ scans under LGG. Thus, the HGG data was divided into
three sets, each consisting of 70 patients’ scans, and the LGG data was considered as the
fourth set. Similarly, the corresponding ground truth scans were also extracted and divided
into four subsets.

4.1.3. Category Brain Slicing

All the 2D slices corresponding to each MRI 3D volume image would not show the
tumor region. Thus, the slices which can contain the tumor region were grouped to get
better accuracy. This implementation of brain slicing can be automated by learning features
or set manually by excluding some first and end slices. Thus, from the 155 slices that
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corresponded to each MRI 3D volume imager, only the mid-portion, i.e., from the 30th slice
to 120th slice, was taken to generate the sliced data.

4.1.4. Narrow Object Region

Each 2D image can be cropped to discard the unnecessary background and implement
deep learning effectively. The images were, therefore, resized before feeding them to the
architecture. Thus, to narrow the object region, we cropped the image size from (240,240)
to (192,192) for all four modalities.

4.1.5. Watershed Algorithm

To optimize the learning process, we segmented the brain image with a tumor before
inputting it to the feature extraction module. The outcome of segmentation rendered
two regions of an image—the Tumor Region and the Non-Tumor Region. Watershed
algorithm [40] has been used for segmentation, and in our experiments, we used OpenCV’s
marker-based watershed algorithm. In this algorithm, one specifies which valley points are
to be merged, i.e., included, and which are not, i.e., excluded. In our process, we labeled
the region which we were sure of being the foreground or object with one color/intensity
and labeled the region which we were sure of being the background, i.e., the non-object
with another color. Finally, the region in which we were not sure of anything was labeled
with 0—that was our marker. Then, the watershed algorithm was applied. Our marker
was updated with the labels we gave, and the boundaries of objects were given a value of
−1. An original image and its segmented image using the watershed algorithm are shown
in Figure 3a,b, respectively.
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Figure 3. Watershed algorithm outcome. (a) Original image; (b) Segmented image.

4.1.6. Feature Scaling

Feature Scaling is a technique used to standardize independent features provided
in the information onto a specified interval. It is a requisite part for tumor detection
through the deep-learning process because the learning model uses gradient descent, which
converges faster with scaled features as compared to without it. Z-score normalization was
applied, which transforms each feature value range from zero to its unit-variance. Z-Score
was computed using Equation (1), as given below.

Z− Score =
x− µ

σ
(1)

where Z is the Z-transformation value of the specific feature value x, µ is the mean, and σ
is the standard deviation of the image features.
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4.2. Deep Learning Model for Tumor Region Segmentation

Biomedical image processing needs specialized deep learning techniques due to
localization requirements to achieve the desired outcome. In the considered problem,
localization aims to pinpoint the position of the tumor regions while locating, for example,
attempts to assign a class label to each pixel. Standardized convolution neural networks
are not apt for biomedical image segmentation problems as these models are used for
classification tasks to assign each image a corresponding class label rather than to identify
the segmented region.

The same U-Net model was used as a deep learning methodology based on fully con-
volutional neural networks. The main idea is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators. Hence,
these layers increase the resolution of the output. In order to localize, high-resolution
features from the contracting path are combined with the upsampled output. A succes-
sive convolution layer can then learn to assemble a more precise output based on this
information. In the upsampling part, we have also a large number of feature channels,
which allow the network to propagate context information to higher resolution layers. As
a consequence, the expansive path is more or less symmetric to the contracting path and
yields a u-shaped architecture. Figure 4 illustrates the network architecture, in which each
blue box corresponds to a multi-channel feature map. It consists of a contracting path on
the left side and an expansive path on the right side. The contracting path follows the
typical architecture of a convolutional network. It consists of the repeated application of
two 3 × 3 convolutions (unpadded convolutions), each followed by a rectified linear unit
(ReLU) and a 2 × 2 max pooling operation with stride three for downsampling.
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In our work, at each downsampling step, the numbers of feature channels are doubled.
Every step in the expansive path consists of an upsampling of the feature map followed by
a 2 × 2 convolution that halves the number of feature channels, a concatenation with the
correspondingly cropped feature map from the contracting path, and two 3 × 3 convolu-
tions, each followed by a ReLU. The cropping is necessary due to the loss of border pixels in
every convolution. At the final layer, a 1× 1 convolution is used to map each 64-component
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feature vector to the desired number of classes. Hence, the U-Net Convolutional networks
comprise of two parts:

• A contracting path similar to an encoder to capture the context from a compact
feature representation.

• A symmetric expanding path that is similar to a decoder, which allows for accurate
localization. This step is done to retain boundary information (spatial information)
despite downsampling and max-pooling performed in the encoder stage.

5. Experimental Setup and Results

MRI tumor identification in this work was performed using the deep learning-based
segmentation model U-Net. Dice coefficient and loss functions were defined to validate
the performance of the experimented approach-predicted segmented brain tumor region.
Several python libraries were used to implement the process and validate the perfor-
mance. Some libraries/packages used are as follows: Pip package, OpenCV, Glob, Mahotas,
Numpy-1.14.1, Random, Keras, Tensorflow, Scikit-image, Matplotlib, and Scikit-learn, etc.

5.1. Performance Evaluation Measures

Performance evaluations were used to measure the learning model efficiency on the
training and test set for the supervised learning prediction. The output of the U-net deep
learning-based detection model was an image that depicts the localized tumor. The com-
parison in the output image with the original growth truth image was computed to define
the difference between the original and predicted tumor region. The dice coefficient was
considered more intuitive to measure the output effectiveness of the image segmentation
problem [42]. It was used to compute the percentage of overlap between the two images’
ranges, from 0 to 1. A dice coefficient value of 1 denotes perfect and complete overlap.
Usually, the dice coefficient has been used in existing medical imaging problems to evaluate
the model. Hence, the dice score/coefficient was used to quantify the performance of image
segmentation. Dice score is an evaluation measure to know the similarity of the objects. It
is defined as the size of the overlap of the two segmentations divided by the total size of
the two objects, i.e., the score for a particular class C is the size of the overlap between the
predicted region and its true counterpart. The dice coefficient determines the amount of
spatial overlap between the ground truth segmentation (X) and the predicted segmentation
(Y). The formula to obtain the dice score/coefficient is defined as Equation (2),

Dice Coe f f icient Score =
2 ∗ |X ∩ Y|
|X|+ |Y| (2)

where |X| defines the cardinality of the ground truth set X. In medical volumes, it is
common that the anatomy of interest is present in only a very small space in the scan. In
the task of brain tumor segmentation, the tumor is present in a very compact area. This
results in the training procedure getting caught in the local minima of the loss function
and causes the predictions to be strongly biased towards the background. Consequently,
the foreground region is only partially detected or in some cases, even missing. Several
previous approaches made use of loss functions, which use sample re-weighting wherein
the background area is provided less importance than the foreground area at the time of
training. A novel objective function that is based on the dice coefficient with the intention
to maximize the foreground is implied. This definition of the dice coefficient [43] uses the
squared sum of X and Y in place of the absolute sum. The dice coefficient score between
two binary volumes can then be written as,

Dice Coe f f icient Score =
2 ∗ |X ∩ Y|

X2 + Y2 (3)
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5.2. Model Outcome Observations and Refinement

Before going forward to present our deep learning model outcome, we showcased
various experiments made during the experimentation in order to refine the results of the
deep learning-based model. Table 4 shows some test cases of the deep learning-applied
segmentation model U-Net. Test case one and test case three are failed cases and not able
to identify tumor region appropriately, whereas test case two, test case four, and test case
five are pass test cases as an outcome of the proposed brain tumor detection model.

Table 4. Some Sample Test Cases of U-net Deep Learning-based segmentation. Image from BraTs [44–46] Dataset.

Test Case 1 2 3 4 5

Image
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5 shows the accurately detected test cases after parameter tuning and the proposed meth-
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Result Fail Pass Fail Pass Pass

A brute force debugging strategy was used to refine the model to get the correct
predictions. Various test cases were failing initially, and two samples test cases, one and
three, are shown in Table 4. Henceforth, U-Net network parameter tuning was performed
in order to enhance the dice coefficient accuracy outcome and to reduce loss function.
Table 5 shows the accurately detected test cases after parameter tuning and the proposed
methodology infers the whole tumor (WT), enhancing tumor (ET), and tumor core (TC)
from the segmented regions for clinical application tasks. The model is trained on Google
Colab’s GPU instance for 20 epochs on each subset for two iterations and each epoch took
approximately three minutes.

5.3. U-Net Deep Learning Model Outcome for Brain Tumor Detection

In addition, to analyze the best performing deep learning model, we also monitored
how the model performance is gradually improved with epochs for training and validation
datasets. The model was then tested on random test images and the output was compared
to the Ground Truth. To quantify the performance of our image segmentation, a Dice
score was used. The proposed methodology, where the U-Net deep learning model is used
after applying pre-learning techniques, was able to produce a competent outcome. The
Dice coefficient outcome of the proposed approach on training, validation, and test set is
tabulated in Table 6. After training the network with the U-Net model, the dice coefficients
were 0.9955, 0.9965, 0.9962, and 0.9954, obtained for HGG-1, HGG-2, HGG-3, and LGG-1,
respectively. The examined validation set and test set dice coefficient is listed in Table 4,
which is also efficacious.
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Table 5. Sample successful test case after parameter tuning in U-Net architecture.
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Table 6. Performance measure Dice coefficient of training, validation, and test sets. 

Set Training Validation Test 
HGG-1 0.9955 0.9953 0.9815 
HGG-2 0.9965 0.9964 0.9844 
HGG-3 0.9962 0.9957 0.9804 
LGG-1 0.9954 0.9951 0.9854 

The Dice coefficient scores and loss curves of training and validation set for all the sub-
sets (HGG-1, HGG-2, HGG-3, and LGG-1) used in this study are shown in Figure 5. In Fig-
ure 5, the model score represents the performance curve of the U-Net-based tumor seg-
mentation model, where the vertical axis indicates the dice coefficient, while the horizon-
tal axis is the number of epochs. The model loss plot is also shown in Figure 5, which 
shows the gradually decreasing loss with each epoch for both the training set and the 
validation set. Therefore, the results shown suggest that the proposed methodology is 
likely to obtain remarkable results in a lesser number of training epochs. 
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The Dice coefficient scores and loss curves of training and validation set for all the
subsets (HGG-1, HGG-2, HGG-3, and LGG-1) used in this study are shown in Figure 5. In
Figure 5, the model score represents the performance curve of the U-Net-based tumor seg-
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remarkable results in a lesser number of training epochs.
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6. Conclusions

A challenging problem of pixel label segmentation of brain tumors using MRI data,
which is required for brain tumor diagnostic procedures, was tackled in the present work.
The proposed model initially used diverse image processing steps to upgrade the brain
image and images provided in sub-regions in a well-defined manner. Undoubtedly, accu-
rate segmentation of a brain tumor into its sub-regions provides a deeper insight into the
condition of the tumor. Hence, in the proposed work, image data transformation, image
slicing for the refined region (category brain slicing, subset division, and narrow object
region), initial level image segmentation (watershed algorithm), and feature scaling were
experimented with before inputting in the deep learning model. The U-Net deep learning
model was used to localize the tumor region; the contracting part of U-Net captures the
context from the compact feature representation and expansion path and performed accu-
rate localization. Parameter tuning of contracting and expansion path layers in a symmetric
manner was applied in order to achieve high accuracy. The proposed work achieved high
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accuracy on approximately 0.99 for the training and validation set and 0.98 for the test set,
which is a remarkable performance for brain tumor detection. High dice scores, accuracy,
and speed of this network allow for large-scale application in brain tumor segmentation.
This method can be implemented in the clinical workflow for reliable tumor segmentation
and for providing clinical guidance in diagnosis, surgical planning, and follow-up assess-
ments. Although improvement and future research directions are opened in this as well,
some are as follows:

• Developing a reliable system with an easy-to-use user interface for the proposed
model. The interface would allow doctors to upload an image and get results on the
location of the tumor and its class.

• The model can be enhanced to predict the survivability of patients suffering from
a brain tumor.

• Explore a more vigorous system for the huge database of clinical images which could
be noisy, be affected by external factors, and have reduced quality.

• Implement the model for the discovery and segmentation of tumors in different parts
of the body.
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