
computers

Article

Assessment of Gradient Descent Trained Rule-Fact Network
Expert System Multi-Path Training Technique Performance

Jeremy Straub

����������
�������

Citation: Straub, J. Assessment of

Gradient Descent Trained Rule-Fact

Network Expert System Multi-Path

Training Technique Performance.

Computers 2021, 10, 103. https://

doi.org/10.3390/computers10080103

Academic Editor: Paolo Bellavista

Received: 13 July 2021

Accepted: 18 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, North Dakota State University, Fargo, ND 58108, USA;
jeremy.straub@ndsu.edu; Tel.: +1-701-231-8196

Abstract: The use of gradient descent training to optimize the performance of a rule-fact network
expert system via updating the network’s rule weightings was previously demonstrated. Along with
this, four training techniques were proposed: two used a single path for optimization and two use
multiple paths. The performance of the single path techniques was previously evaluated under a
variety of experimental conditions. The multiple path techniques, when compared, outperformed the
single path ones; however, these techniques were not evaluated with different network types, training
velocities or training levels. This paper considers the multi-path techniques under a similar variety
of experimental conditions to the prior assessment of the single-path techniques and demonstrates
their effectiveness under multiple operating conditions.

Keywords: artificial intelligence; machine learning; gradient descent; expert system; training; single-
path; multi-path

1. Introduction

In [1], the use of gradient descent training to optimize the performance of a rule-fact
network expert system was proposed. This work builds off of prior approaches which
optimized neural network-based [2] recommender systems. However, unlike these prior
systems, this technique conceptually combines the storage mechanism of an expert system
with the machine learning capabilities of a neural network thereby constraining learning to
prevent learning non-causal and potentially problematic associations. The optimization
process updates the rule weightings in the expert system rule-fact network similarly to
how neural network weightings are updated through training.

Four training approaches were proposed in [1]. The single-path, same facts technique
was thoroughly investigated. Two additional techniques, which used multiple paths,
were shown to outperform the single-path, same facts technique under the experimental
condition that they were tested under. However, they were not further evaluated with
different network types, training levels or training velocity settings, in the manner that the
single-path, same facts technique was.

While the multi-path techniques may have greater logistical requirements, as the fact
values needed to evaluate multiple paths through the rule-fact network must be known
(and, thus, must be collected or obtained somehow), these techniques have been shown to
outperform the single path techniques in terms of accuracy. Given this, for applications
where the needed additional data collection is feasible, the use of a multi-path technique
may be desirable.

The research goal of this paper is to evaluate the performance and efficacy of the
two multiple path techniques—multiple paths, same facts and multiple paths, random
facts—for multiple network types, using different levels of training and with different
training velocity settings. Based on this analysis, outperforming operational conditions
are identified. These results support those implementing gradient descent trained expert
systems in the future by providing key knowledge regarding the performance of system

Computers 2021, 10, 103. https://doi.org/10.3390/computers10080103 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://doi.org/10.3390/computers10080103
https://doi.org/10.3390/computers10080103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10080103
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10080103?type=check_update&version=2

Computers 2021, 10, 103 2 of 25

optimization algorithms under multiple operating conditions to allow them to select the
algorithm most appropriate for their application’s characteristics.

This paper continues with a review of prior work in expert systems and machine
learning, as well as an overview of the gradient descent trained expert system technique.
In Section 3, the experimental procedures are described. Then, the performance of the
two training techniques for different rule-fact network types is evaluated. Next, the
performance of the two techniques with different levels of training is assessed. After this,
technique performance with different training velocity settings is assessed. Finally, the
computational speed of all four algorithms is compared, before the paper concludes and
discusses key areas of potential future work.

2. Background

This paper builds on a technique, recently introduced in [1], which uses neural network
techniques to train a rule-fact network-based expert system. Thus, this section begins
by reviewing prior work in two areas that were brought together by [1] and provide a
foundation for the current work: expert systems and machine learning. Following this,
in Section 2.3, the gradient descent trained expert system technique is presented. Finally,
in Section 2.4, neural networks and their explain-ability-related limitations (which the
proposed technique is responsive to) are discussed.

2.1. Expert Systems

Expert systems were introduced in the 1960s and 1970s with the introduction of the
Dendral [3] and Mycin [4] systems. Dendral introduced separated storage of knowledge
and the use of a rule-based engine with a knowledge base for problem solving [4]. In the
intervening time, expert systems have expanded in form somewhat and been used in a
variety of fields including power systems [5], agriculture [6], education [7] and geographic
information systems [8].

Classical expert systems used a rule-fact network [9] with Boolean facts and an infer-
ence engine; however, a variety of enhancements and changes from classical architectures
have been proposed. Key advancements have included the development of new optimiza-
tion techniques [10] and a variety of hybrid system forms [11]. Changes to the knowledge
storage format have also been proposed, including the development of systems that employ
fuzzy set concepts [12].

Mitra and Pal [2] proposed a taxonomy for fuzzy logic-based expert systems. Within
this taxonomy, “fuzzy expert systems” are defined as when fuzzy sets are used as part of a
normal expert systems [2]. “Fuzzy neural network[s]”, on the other hand, use fuzzy sets
and a neural network [2]. Systems that use a neural network’s connection weights to gener-
ate rules (replacing a human knowledge engineer) are “connectionist expert system[s]” [2].
Systems called “neuro-fuzzy expert systems” add to this by storing knowledge in fuzzy
neural networks. Several systems of the “neuro-fuzzy” type have been developed. Exam-
ple applications include obstacle avoidance [13], medical purposes [14–16] and software
architecture evaluation [17].

Mitra and Pal [2] also defined a final classification called a “knowledge-based con-
nectionist expert system” which was to start with “crude rules” that were to be stored as
neural network connection weights. Training was to be used to refine these rules. While
it does not seem that this type of system was developed [1], such a system could have
been predisposed towards building valid associations, because of its original “crude rules”;
however, the training process could still have caused it to learn invalid relationships.

The current work is based off the system presented in [1] (and described in Section 2.3),
which builds on the foundations of classical expert systems and goes beyond the taxonomy
proposed by Mitra and Pal.

Computers 2021, 10, 103 3 of 25

2.2. Machine Learning Training and Gradient Descent

Gradient descent techniques are well known and frequently used with neural net-
works. They are used to optimize iteratively, in many cases to reduce system error. Back-
propagation [18] is a gradient descent technique that is used to change weights in a neural
network, using an iterative process, based on supplied input and output values.

As would be expected for well-established techniques, numerous enhancements
have been developed. Examples of these include modifications that enhance system
speed [19] using approaches such as noise introduction [20] and the use of evolutionary
algorithms [21]. Enhancements have also been proposed to reduce system bias [22,23]
and systems’ sensitivity to initial conditions [24]. Techniques that increase resilience to
attacks [25,26] have also been proposed.

A number of studies have substituted other artificial intelligence techniques as the
learning mechanism. Examples of this include the use of particle swarm optimization [27],
simulated annealing [27], genetic algorithms [28] and Levenberg–Marquardt algorithms [29].
Techniques for training neural networks that specifically avoid backpropagation have also
been proposed [30,31]. Other techniques, such as speculative algorithms [32] and ‘spiking’
concept-based algorithms [33,34], have also been suggested; however, most are largely
designed for a particular neural network structure, making them informative but not
directly applicable to the technique proposed in [1], which the current work builds upon.

2.3. Gradient Descent Trained Expert Systems

This paper builds on the work and system proposed in [1], which introduced a
gradient descent trained expert system. This system has two components. The first is a
classical expert system engine, which processes rules in a forward fashion. It also includes a
training module which operates largely independent of the expert system engine; however,
the expert system engine is used to determine the output of the rule-fact network during
training. The training module optimizes the rule weightings within the expert system
rule-fact network.

To allow optimization and provide extended reasoning capabilities beyond what
would be possible with a Boolean expert system, the rule-fact network used was designed
around the concepts of partial membership and ambiguity. Under this approach, facts
can have a value between zero and one (instead of a value of true or false). Rules utilize
weighting values that define the contribution of each of the rule’s input facts to the value
of its the output fact. Each weighting value is between zero and one and the sum of the
two must be equal to one.

To support the training aspect of a gradient descent trained expert system, an algo-
rithm was proposed in [1], as the expert system network differs significantly from the
neural networks that backpropagation is typically used with. Gradient descent trained ex-
pert systems will typically be sparsely connected and non-layered networks, as compared
to the rigid layer structure of a neural network, where every node on a layer is connected
to every node on the adjacent layers. Because of this, the linear algebra typically used for
neural networks will not work for the gradient descent trained expert system.

An approach, based on the identification of rules that directly or indirectly contribute
to the target output fact, was proposed in [1] and is depicted in Figures 1 and A1 (in
Appendix A). Once the contributing rules are identified, a portion of the error between the
target system-under-training’s output and the actual output, which is based on the rule’s
level of contribution and a user-specified velocity value, is distributed to each contributing
rule.

Computers 2021, 10, 103 4 of 25Computers 2021, 10, x FOR PEER REVIEW 4 of 25

Perfect Network
Network Under

Training

Set Initial Rule
Values

Run Network Run Network

Result Result

Compare Results

Difference
Value

Apply Portion of Different
to Network Under Training

Epoch Count
Reached?

No

Training Epoch

End

Yes

Request Ideal
Result

Figure 1. Training Process [1].

The training process, shown in Figure 1, starts with the network under training hav-

ing initially set rule values (which are independent from the actual rule values of the per-

fect network, when using the perfect network testing approach presented in [35]) and its

rule-fact network structure. The rule fact network structure that the network under train-

ing has is, excluding the random network case, based on the perfect network and may

include network perturbations, based on the experimental condition being tested.

As part of the training process, both networks (the network under training and the

perfect network) are run and the results of the two are compared to calculate a difference

value, which is distributed to contributing rules using the algorithm depicted in Figure

A1. The training process, which is described in more detail in Appendix A, is repeated for

the user-specified number of training epochs.

In addition to the number epochs of training, the network configuration, the number

of facts and rules, and the type of training used are also configurable. The four approaches

to training used differ in the two ‘run network’ steps depicted in Figure 1. The approaches

use different selection of initial and final rules for training.

The same-path techniques use the same initial and final node for all training while

the multi-path techniques select a different starting and ending node for each training

epoch. The same facts techniques utilize the same fact values, simulating an unchanging

network, while the random facts techniques use different (randomly generated) facts to

simulate a network with new data being collected for each training iteration. Note that the

network weightings, which are what is being trained, are changed only by the training

Figure 1. Training Process [1].

The training process, shown in Figure 1, starts with the network under training having
initially set rule values (which are independent from the actual rule values of the perfect
network, when using the perfect network testing approach presented in [35]) and its rule-
fact network structure. The rule fact network structure that the network under training
has is, excluding the random network case, based on the perfect network and may include
network perturbations, based on the experimental condition being tested.

As part of the training process, both networks (the network under training and the
perfect network) are run and the results of the two are compared to calculate a difference
value, which is distributed to contributing rules using the algorithm depicted in Figure A1.
The training process, which is described in more detail in Appendix A, is repeated for the
user-specified number of training epochs.

Computers 2021, 10, 103 5 of 25

In addition to the number epochs of training, the network configuration, the number
of facts and rules, and the type of training used are also configurable. The four approaches
to training used differ in the two ‘run network’ steps depicted in Figure 1. The approaches
use different selection of initial and final rules for training.

The same-path techniques use the same initial and final node for all training while
the multi-path techniques select a different starting and ending node for each training
epoch. The same facts techniques utilize the same fact values, simulating an unchanging
network, while the random facts techniques use different (randomly generated) facts to
simulate a network with new data being collected for each training iteration. Note that
the network weightings, which are what is being trained, are changed only by the training
process. Because the network weightings of the ‘perfect’ network are applied to the fact
data, phenomena-appropriate outputs (which are suitable for training use) are generated
irrespective of whether the same or different fact values are used.

The training process and four training techniques are described in more detail in
Appendix A. Section 3 describes the procedure that is used in Sections 4–6, where these
parameters are used to define experimental conditions for this study.

2.4. Neural Networks and their Explainability Issues

The expert system rule-fact network training technique presented in Section 2.3 is
responsive to key deficiencies of neural networks. These deficiencies and the explainable
artificial intelligence (XAI) development effort that has developed in response to them are
discussed in this section.

Neural networks have been shown to have issues with transparency, bias and the
potential for learning non-causal relationships [36]. Many lack the ability to “explain their
autonomous decisions to human users” [37] and some researchers have even suggested that
there is an inverse relationship between system prediction quality and explainability [37].
Cyber-attackers have leveraged these weaknesses and neural networks’ lack of context
knowledge to develop adversarial neural network attacks [38] against systems providing
services such as voice [39] and facial recognition [40], among others. Neural network
algorithms are among those identified by Doyle [41] as “weapons of math destruction” and
by Noble [42] as “algorithms of oppression”.

XAI attempts to mitigate these problems by allowing human developers and users
to understand how autonomous systems are making their decisions [37]. By advancing
artificial intelligence from being “alchemy” within an opaque box, to a fully transparent
“glass box” [43], it is thought that humans will be better able to assess whether systems
are performing correctly and take appropriate actions. Arrieta, et al. [44] has suggested
that XAI systems fall into two categories: there are techniques that provide a “degree of
transparency” and others which are “interpretable to an extent by themselves”. Some
techniques also exist to try to explain pre-existing opaque systems [44].

At present, XAI is a burgeoning area of work. XAI systems have been used for cyber
intrusion [45] and fraud detection [46], lending [46], sales [46] and making recommen-
dations [46], as well as mining and modeling [47] and command decision making for
“small-unit tactical behavior” [48]. While XAI systems are a demonstrable advancement
from opaque ones, Buhmann and Fieseler note that “simply the right to transparency will
not create fairness” [49]. The defensible systems being studied in this paper seek to advance
beyond XAI (while still being fully human understandable) to prevent—instead of just
being able to explain and allow humans to prevent—erroneous decision making.

3. Experimental Design

This section discusses the experimental procedure and experimental system used for
this work. First, the experimental system is discussed in Section 3.1. Then, in Section 3.2,
the experimental procedure is presented.

Computers 2021, 10, 103 6 of 25

3.1. Experimental System

The experimentation that is described in this paper was performed on a custom-
implemented software application for developing and working with gradient descent
trained expert system networks. This system has three key components. The first is
a network module which performs all of the core functionality of the gradient descent
trained expert system. It accepts commands to create the rule-fact network, stores the net-
work, performs experimental network runs and implements the gradient descent training
procedure.

The second is a network creation module. This module develops the random networks,
based on specified parameters, which are used for experimentation. This module provides
the network details to the first module which instantiates and stores these networks.

The third module is the experimental module. This module commands the testing. It
starts individual test runs, collects run time data and collects the network output results to
make them available for analysis.

This system was initially developed for the experimentation performed for [1].

3.2. Experimental Procedure

The procedure used for data collection in this study is based on the procedure used
in [1] and is described in detail in [35]. The system is tested using a perfect network to
provide inputs to the network that is being trained and tested under a given experimental
condition. In [1], network size, network perturbation, training level and training velocity
served as the independent variables that defined each experimental condition. For this
study, network perturbation, training level and training velocity serve as the independent
experimental condition-defining variables. Combinations of these variables are also used
to define experimental conditions where the impact of different values for two or even all
three concurrently are considered. In each section, and for each data table, the independent
variables that are used to define the condition are identified. Table 1 presents a list of all
possible parameter values.

Table 1. Experimental hyperparameters.

Model
Hyperparameters

Experimental
Parameters Algorithm Hyperparameters

Facts Rules Network
Perturbation

Training
Epochs Velocity Training Approach

100 100

Base
Random

Augmented 1%
Augmented 5%
Augmented 10%
Augmented 25%
Augmented 50%

Error 10%
Error 25%
Error 50%

1
10
25
50

100
250
500

1000

0.01
0.05
0.10
0.15
0.25
0.50

Multiple
Paths—Same Facts

Multiple
Paths—Random

Facts

For each experimental condition, which is defined by a selection of parameters from
Table 1, 1000 runs were performed. For each run, a new randomly generated network was
created, based on the parameters defining the experimental condition. In all cases, for this
study, a 100-rule, 100-fact network was utilized. To make the network to be trained and
evaluated, the perfect network was duplicated and the rule values reset. In cases where
perturbation of the network is included, in the experimental condition definition, the newly
created network would be altered, as indicated, before training commenced.

In some cases, generated networks would begin in a completed condition; in others,
networks (due to their random construction) would not be completable. Networks which

Computers 2021, 10, 103 7 of 25

started completed or could not complete were excluded from the data presented in this
study.

4. Network Types and System Performance

The assessment of the impact of different parameters on the two multi-path training
techniques begins with consideration of the impact of network types on the techniques.
Network impact bears consideration for two reasons. First, by assessing the performance
of the training techniques under error and augmented networks, the robustness of the
techniques to different levels of discrepancy between a phenomenon and its rule-fact net-
work modeling is assessed. Second, networks could prospectively be altered to introduce
augmentation or error, if this is found to be beneficial. The use of error and noise to aid
training was briefly discussed in Section 2.2.

Figure 2 presents the performance of the multi-path, same facts training technique
for different network-under-training network configurations and Figure 3 presents the
performance of the multi-path, random facts training technique for different network
configurations. The underlying data for these two figures is presented in Tables A2 and A3
(in Appendix B), respectively.

Computers 2021, 10, x FOR PEER REVIEW 7 of 25

4. Network Types and System Performance

The assessment of the impact of different parameters on the two multi-path training

techniques begins with consideration of the impact of network types on the techniques.

Network impact bears consideration for two reasons. First, by assessing the performance

of the training techniques under error and augmented networks, the robustness of the

techniques to different levels of discrepancy between a phenomenon and its rule-fact net-

work modeling is assessed. Second, networks could prospectively be altered to introduce

augmentation or error, if this is found to be beneficial. The use of error and noise to aid

training was briefly discussed in Section 2.2.

Figure 2 presents the performance of the multi-path, same facts training technique

for different network-under-training network configurations and Figure 3 presents the

performance of the multi-path, random facts training technique for different network con-

figurations. The underlying data for these two figures is presented in Tables A2 and A3

(in Appendix B), respectively.

Figure 2. Error level box plots for multi-path, same facts training technique for base, error-present,

augmented and random networks: 1—base, 2–10% error, 3–25% error, 4–50% error, 5—random, 6–

1% augmented, 7–5% augmented, 8–10% augmented, 9–25% augmented, 10–50% augmented.

Figure 3. Error levels for multi-path, random facts training technique for base, error-present, aug-

mented and random networks: 1—base, 2–10% error, 3–25% error, 4–50% error, 5—random, 6–1%

augmented, 7–5% augmented, 8–10% augmented, 9–25% augmented, 10–50% augmented.

Figure 2. Error level box plots for multi-path, same facts training technique for base, error-present,
augmented and random networks: 1—base, 2—10% error, 3—25% error, 4—50% error, 5—random,
6—1% augmented, 7—5% augmented, 8—10% augmented, 9—25% augmented, 10—50% augmented.

Computers 2021, 10, x FOR PEER REVIEW 7 of 25

4. Network Types and System Performance

The assessment of the impact of different parameters on the two multi-path training

techniques begins with consideration of the impact of network types on the techniques.

Network impact bears consideration for two reasons. First, by assessing the performance

of the training techniques under error and augmented networks, the robustness of the

techniques to different levels of discrepancy between a phenomenon and its rule-fact net-

work modeling is assessed. Second, networks could prospectively be altered to introduce

augmentation or error, if this is found to be beneficial. The use of error and noise to aid

training was briefly discussed in Section 2.2.

Figure 2 presents the performance of the multi-path, same facts training technique

for different network-under-training network configurations and Figure 3 presents the

performance of the multi-path, random facts training technique for different network con-

figurations. The underlying data for these two figures is presented in Tables A2 and A3

(in Appendix B), respectively.

Figure 2. Error level box plots for multi-path, same facts training technique for base, error-present,

augmented and random networks: 1—base, 2–10% error, 3–25% error, 4–50% error, 5—random, 6–

1% augmented, 7–5% augmented, 8–10% augmented, 9–25% augmented, 10–50% augmented.

Figure 3. Error levels for multi-path, random facts training technique for base, error-present, aug-

mented and random networks: 1—base, 2–10% error, 3–25% error, 4–50% error, 5—random, 6–1%

augmented, 7–5% augmented, 8–10% augmented, 9–25% augmented, 10–50% augmented.

Figure 3. Error levels for multi-path, random facts training technique for base, error-present, aug-
mented and random networks: 1—base, 2—10% error, 3—25% error, 4—50% error, 5—random, 6—
1% augmented, 7—5% augmented, 8—10% augmented, 9—25% augmented, 10—50% augmented.

Computers 2021, 10, 103 8 of 25

Both techniques perform similarly for the base and the error-introduced and aug-
mented networks. The lowest mean error level for both is actually generated by an
augmented network (10% augmented for the multi-path, same facts technique and 1% aug-
mented for the multi-path, random facts technique). The lowest median error level for the
multi-path, same facts technique is also generated by the 10% augmented network, while
the 1% augmented network and base network tie for performing best for the multi-path,
random facts training technique, in terms of median error.

The random networks significantly underperform in all cases, except that random
networks have the lowest mean value for the low-error networks for the multi-path, same
facts technique; however, since random networks produce far less completions than other
network types, this is not an indication of effective performance. Notably, both training
approaches seem to not perform well with a small amount of error, as the 10% error
networks are the second worst performing for both training types (random networks
perform the worst for both mean and median error for both). However, for larger levels of
error and augmentation, the mean and median error levels fluctuate between approximately
5.5% and 6%, with various configurations both outperforming and underperforming the
base configuration.

The notched box plots in Figures 2 and 3 show several statistically significant differ-
ences between the performances of different error and augmentation conditions. From
this data, it is clear that the network structure is very important to the efficacy of gradient
descent trained expert systems and to both multi-path training techniques. The nearly
three-times greater error of the random network demonstrates this importance. However,
it is also clear that both techniques are robust to small amounts of network error and aug-
mentation. This is important, as it means that minor inaccuracies, omissions or additions
in network design will not dramatically impact system performance. In fact, the results
suggest that small levels of network augmentation, in particular, may even be slightly
beneficial to system performance.

5. Training and System Performance

The assessment of the impact of different parameters on the two multi-path training
techniques next considers the impact of different levels of training epochs on each training
technique’s efficacy. Figures 4 and 5 present data characterizing the performance of the
multi-path, same facts and multi-path, random facts training techniques, respectively, with
different levels of training epochs. The underlying data for these two figures is presented
in Tables A4 and A5 in Appendix B.

Computers 2021, 10, x FOR PEER REVIEW 8 of 25

Both techniques perform similarly for the base and the error-introduced and aug-

mented networks. The lowest mean error level for both is actually generated by an aug-

mented network (10% augmented for the multi-path, same facts technique and 1% aug-

mented for the multi-path, random facts technique). The lowest median error level for the

multi-path, same facts technique is also generated by the 10% augmented network, while

the 1% augmented network and base network tie for performing best for the multi-path,

random facts training technique, in terms of median error.

The random networks significantly underperform in all cases, except that random

networks have the lowest mean value for the low-error networks for the multi-path, same

facts technique; however, since random networks produce far less completions than other

network types, this is not an indication of effective performance. Notably, both training

approaches seem to not perform well with a small amount of error, as the 10% error net-

works are the second worst performing for both training types (random networks perform

the worst for both mean and median error for both). However, for larger levels of error

and augmentation, the mean and median error levels fluctuate between approximately

5.5% and 6%, with various configurations both outperforming and underperforming the

base configuration.

The notched box plots in Figures 2 and 3 show several statistically significant differ-

ences between the performances of different error and augmentation conditions. From

this data, it is clear that the network structure is very important to the efficacy of gradient

descent trained expert systems and to both multi-path training techniques. The nearly

three-times greater error of the random network demonstrates this importance. However,

it is also clear that both techniques are robust to small amounts of network error and aug-

mentation. This is important, as it means that minor inaccuracies, omissions or additions

in network design will not dramatically impact system performance. In fact, the results

suggest that small levels of network augmentation, in particular, may even be slightly

beneficial to system performance.

5. Training and System Performance

The assessment of the impact of different parameters on the two multi-path training

techniques next considers the impact of different levels of training epochs on each training

technique’s efficacy. Figures 4 and 5 present data characterizing the performance of the

multi-path, same facts and multi-path, random facts training techniques, respectively,

with different levels of training epochs. The underlying data for these two figures is pre-

sented in Tables A4 and A5 in Appendix B.

Figure 4. Error levels for multi-path, same facts training technique under different levels of train-

ing: 1—base, 2–10% error, 3–25% error, 4–50% error, 5—random, 6–1% augmented, 7–5% aug-

mented, 8–10% augmented, 9–25% augmented, 10–50% augmented.

Figure 4. Error levels for multi-path, same facts training technique under different levels of training:
1—base, 2—10% error, 3—25% error, 4—50% error, 5—random, 6—1% augmented, 7—5% augmented,
8—10% augmented, 9—25% augmented, 10—50% augmented.

Computers 2021, 10, 103 9 of 25Computers 2021, 10, x FOR PEER REVIEW 9 of 25

Figure 5. Error levels for multi-path, random facts training technique under different levels of

Table 1. —base, 2–10% error, 3–25% error, 4–50% error, 5—random, 6–1% augmented, 7–5% aug-

mented, 8–10% augmented, 9–25% augmented, 10–50% augmented.

For the multi-path, same facts technique, the lowest mean error is produced by 1000

epochs of training. Given that the highest mean error is produced by 500 epochs of train-

ing, this is an ambiguous result. The second-best mean error is produced by 25 epochs of

training. The use of 1000 epochs of training produces the lowest median error as well.

Given the fluctuation present, it appears that there is no particular trend of more (or less)

training enhancing network performance. This suggests that much of the efficacy of the

system is produced by the rule-fact network, while at least a minimal amount of training

is required.

A somewhat different result is apparent with the multi-path, random facts technique,

from the data presented in Figure 5 and Table A5. The lowest mean error is produced by

25 training epochs and the lowest median error is produced by 100 training epochs. How-

ever, 250 training epochs underperforms 25 epochs, for mean error, by only 0.1%. Notably,

at both the lowest and highest levels of training, the system has the lowest performance,

in terms of mean error. A clear trend is present in both, with error dropping from 6.5% at

one epoch of training to 5.4% at 10 epochs of training to 5.1% at 25 epochs of training and

error rising from 5.2% at 250 epochs of training to 6.1% at 500 epochs of training to 6.5%

at 1000 epochs of training. This suggests that the multi-path, random facts technique may

benefit from additional training, up to a point, and may also suffer from over-training

beyond a certain point. A similar, though less pronounced, trend is also present in the

median error, which drops between the one and ten epochs training levels and rises be-

tween the 250 epochs and 500/1000 epochs training levels. Notably, when reviewing the

notched box plots in Figures 4 and 5, multiple statistically significant differences are pre-

sent.

To assess whether different levels of training change system efficacy for different net-

work configurations, Tables 2 and 3 present data for evaluating the performance of the

multi-path, same facts and multi-path, random facts training techniques, respectively, for

different combinations of training epoch levels and network configuration.

Table 2. Error levels for multi-path, same facts training technique for base, error-present, augmented and random net-

works under different levels of training.

Network Training Mean Median Mean—High Err Mean—Low Err

Base 1 0.051 0.010 0.204 0.018
 25 0.061 0.023 0.197 0.023
 100 0.058 0.025 0.183 0.023
 250 0.057 0.023 0.176 0.023

10% Error 1 0.051 0.017 0.168 0.017
 25 0.057 0.019 0.179 0.020
 100 0.067 0.032 0.186 0.025

Figure 5. Error levels for multi-path, random facts training technique under different levels of Table 1.
1—base, 2—10% error, 3—25% error, 4—50% error, 5—random, 6—1% augmented, 7—5% augmented,
8—10% augmented, 9—25% augmented, 10—50% augmented.

For the multi-path, same facts technique, the lowest mean error is produced by 1000
epochs of training. Given that the highest mean error is produced by 500 epochs of training,
this is an ambiguous result. The second-best mean error is produced by 25 epochs of
training. The use of 1000 epochs of training produces the lowest median error as well.
Given the fluctuation present, it appears that there is no particular trend of more (or less)
training enhancing network performance. This suggests that much of the efficacy of the
system is produced by the rule-fact network, while at least a minimal amount of training is
required.

A somewhat different result is apparent with the multi-path, random facts technique,
from the data presented in Figure 5 and Table A5. The lowest mean error is produced by
25 training epochs and the lowest median error is produced by 100 training epochs. How-
ever, 250 training epochs underperforms 25 epochs, for mean error, by only 0.1%. Notably,
at both the lowest and highest levels of training, the system has the lowest performance,
in terms of mean error. A clear trend is present in both, with error dropping from 6.5% at
one epoch of training to 5.4% at 10 epochs of training to 5.1% at 25 epochs of training and
error rising from 5.2% at 250 epochs of training to 6.1% at 500 epochs of training to 6.5% at
1000 epochs of training. This suggests that the multi-path, random facts technique may
benefit from additional training, up to a point, and may also suffer from over-training be-
yond a certain point. A similar, though less pronounced, trend is also present in the median
error, which drops between the one and ten epochs training levels and rises between the
250 epochs and 500/1000 epochs training levels. Notably, when reviewing the notched box
plots in Figures 4 and 5, multiple statistically significant differences are present.

To assess whether different levels of training change system efficacy for different
network configurations, Tables 2 and 3 present data for evaluating the performance of the
multi-path, same facts and multi-path, random facts training techniques, respectively, for
different combinations of training epoch levels and network configuration.

Computers 2021, 10, 103 10 of 25

Table 2. Error levels for multi-path, same facts training technique for base, error-present, augmented
and random networks under different levels of training.

Network Training Mean Median Mean—High Err Mean—Low Err

Base 1 0.051 0.010 0.204 0.018
25 0.061 0.023 0.197 0.023
100 0.058 0.025 0.183 0.023
250 0.057 0.023 0.176 0.023

10% Error 1 0.051 0.017 0.168 0.017
25 0.057 0.019 0.179 0.020
100 0.067 0.032 0.186 0.025
250 0.049 0.018 0.165 0.022

25% Error 1 0.048 0.017 0.165 0.020
25 0.058 0.029 0.175 0.026
100 0.059 0.018 0.184 0.018
250 0.057 0.025 0.175 0.023

10% Augmented 1 0.060 0.030 0.184 0.024
25 0.050 0.021 0.165 0.021
100 0.051 0.017 0.170 0.022
250 0.057 0.023 0.179 0.021

25% Augmented 1 0.058 0.021 0.168 0.018
25 0.061 0.032 0.177 0.025
100 0.059 0.031 0.175 0.025
250 0.058 0.027 0.171 0.023

Random 1 0.191 0.161 0.293 0.019
25 0.182 0.111 0.341 0.015
100 0.178 0.118 0.322 0.016
250 0.197 0.148 0.342 0.016

Table 3. Error levels for multi-path, random facts training technique for base, error-present, aug-
mented and random networks under different levels of training.

Network Training Mean Median Mean—High Err Mean—Low Err

Base 1 0.052 0.031 0.162 0.027
25 0.058 0.017 0.190 0.020
100 0.059 0.017 0.190 0.019
250 0.057 0.021 0.179 0.021

10% Error 1 0.059 0.025 0.165 0.019
25 0.054 0.021 0.186 0.023
100 0.065 0.030 0.177 0.024
250 0.064 0.029 0.193 0.024

25% Error 1 0.059 0.022 0.179 0.019
25 0.054 0.023 0.169 0.022
100 0.054 0.018 0.161 0.019
250 0.056 0.021 0.175 0.024

10% Augmented 1 0.063 0.019 0.193 0.017
25 0.062 0.027 0.181 0.022
100 0.058 0.025 0.196 0.023
250 0.058 0.025 0.178 0.024

25% Augmented 1 0.058 0.031 0.172 0.025
25 0.054 0.021 0.167 0.023
100 0.059 0.020 0.184 0.021
250 0.054 0.021 0.179 0.023

Random 1 0.152 0.067 0.317 0.016
25 0.181 0.105 0.335 0.019
100 0.170 0.095 0.322 0.023
250 0.191 0.138 0.343 0.013

For the multi-path, same facts technique, overall, the best performance, in terms of
lowest mean error, is produced under the 25% error network with one training epoch. The

Computers 2021, 10, 103 11 of 25

base network, also with one training epoch, produces the best performance, in terms of the
lowest median error.

For the base, 25% and 50% error networks, and the 25% augmented networks, one
training epoch outperforms, in terms of both providing the lowest mean and median
error levels (tying with 250 training epochs for the 25% augmented networks). For 10%
augmented and random networks, the 100 epochs training level performs best, in terms of
the lowest mean error level. For the 10% augmented networks, the lowest mean error is
also produced by 100 epochs of training. The lowest median error value for the random
networks was produced by 25 epochs of training. Given the foregoing, there are clear
differences in the amount of training that is beneficial for different network types; however,
overall less training seems to outperform additional training, suggesting that overtraining
may be occurring, in at least some cases, at higher training epoch levels.

For the multi-path, random facts technique, the base network produces the best overall
results. The lowest average mean value waws produced by one training epoch and the best
median value was produced by 25 and 100 training epochs, all under the base network
configuration.

Beyond this, the results are inconsistent across the different network types. The base
and random networks have their lowest mean error with one training epoch. For the
random networks, one training epoch also produces the lowest median error.

The 25-epoch level produces the best mean values for the 10% error, 25% error and 25%
augmented networks (tying with 100 training epochs, in the case of the 25% error networks,
and with 250 epochs, in the case of the 25% augmented networks). The 25 epoch training
level also produces the lowest median error levels for the base (tying with 100 epochs) and
10% error networks. The 100-epoch training level produces the best results for the 25%
error and 10% augmented networks, in terms of lowest mean error (tying with 250 epochs,
in the case of the 10% augmented networks). The 100-epoch training level also produces
the lowest mean value for the 25% error, 10% augmented and 25% augmented networks.
Finally, the 250-epoch training level produces the best mean error level for both the 10%
and 25% augmented networks (tying with 100 epochs, in the case of the 10% augmented
networks). The 250-epoch training level also produces the lowest average median result
for the 10% augmented networks (tying with the 100-epoch training level).

Given the foregoing, there is no clear level of training the works best, across the board,
for all network types. Correlations between network type and training levels clearly exist.
Practically, however, the implications of the differences between different levels of training
may be limited. Excluding the random networks (which consistently have higher error
levels), the range of average mean error values for each network type is between 0.5% and
1.1% and the range of average median values is between 0.5% and 1.4% across the different
network types.

6. Velocity Levels and System Performance

In continuing the assessment of the impact of different parameters on the two multi-
path training techniques, the impact of training velocity on the performance of the two
techniques is now assessed. Figures 6 and 7 present results that characterize the impact
of velocity on system performance for the multi-path, same facts and multi-path random
facts techniques, respectively. The underlying data for these comparisons is also presented
in Tables A6 and A7, in Appendix B.

Computers 2021, 10, 103 12 of 25Computers 2021, 10, x FOR PEER REVIEW 12 of 25

Figure 6. Error levels for multi-path, same facts training technique with different velocity levels:

1—base, 2–10% error, 3–25% error, 4–50% error, 5–random, 6–1% augmented, 7–5% augmented, 8–

10% augmented, 9–25% augmented, 10–50% augmented.

Figure 7. Error levels for multi-path, random facts training technique with different velocity levels:

1—base, 2–10% error, 3–25% error, 4–50% error, 5—random, 6–1% augmented, 7–5% augmented,

8–10% augmented, 9–25% augmented, 10–50% augmented.

For the multi-path, same facts technique, the base setting of a velocity of 0.01 outper-

forms other techniques in terms of the mean error level. The 0.5 setting outperforms in

terms of the median error level.

The 0.5 velocity performs the best for the mean and median error levels for the multi-

path, random facts training technique. Notably, this puts a significant amount of weight

on the most recent training epochs. This is, interestingly, consistent with the multi-path,

random facts performing well, in terms of median and mean of the low-error networks,

at lower training levels, as discussed in Section 5 and shown in Table A5. Notably, no

practical and statistically significant differences are present for the multi-path, same facts

technique, while several statistically significant differences are present for the multi-path

random facts technique.

The impact of different velocity levels on the performance of the multi-path, same

facts and multi-path, random facts techniques for different network configurations is now

considered. Data is presented in Tables 4–7 for the two techniques comparing their per-

formance with 0.01 and 0.25 velocity levels (Tables A2 and A3 present data for the base

0.10 velocity level) for different network configurations.

Table 4. Error levels for multi-path, same facts training technique for base, error-present, aug-

mented and random networks with a 0.01 velocity level.

Network Velocity Mean Median Mean—High Err Mean—Low Err

Base 0.01 0.057 0.021 0.183 0.022

10% Error 0.01 0.060 0.026 0.177 0.022

25% Error 0.01 0.066 0.029 0.186 0.023

10% Augmented 0.01 0.055 0.019 0.195 0.021

25% Augmented 0.01 0.053 0.020 0.170 0.021

Random 0.01 0.188 0.129 0.336 0.014

Figure 6. Error levels for multi-path, same facts training technique with different velocity levels:
1—base, 2—10% error, 3—25% error, 4—50% error, 5—random, 6—1% augmented, 7—5% augmented,
8—10% augmented, 9—25% augmented, 10—50% augmented.

Computers 2021, 10, x FOR PEER REVIEW 12 of 25

Figure 6. Error levels for multi-path, same facts training technique with different velocity levels:

1—base, 2–10% error, 3–25% error, 4–50% error, 5–random, 6–1% augmented, 7–5% augmented, 8–

10% augmented, 9–25% augmented, 10–50% augmented.

Figure 7. Error levels for multi-path, random facts training technique with different velocity levels:

1—base, 2–10% error, 3–25% error, 4–50% error, 5—random, 6–1% augmented, 7–5% augmented,

8–10% augmented, 9–25% augmented, 10–50% augmented.

For the multi-path, same facts technique, the base setting of a velocity of 0.01 outper-

forms other techniques in terms of the mean error level. The 0.5 setting outperforms in

terms of the median error level.

The 0.5 velocity performs the best for the mean and median error levels for the multi-

path, random facts training technique. Notably, this puts a significant amount of weight

on the most recent training epochs. This is, interestingly, consistent with the multi-path,

random facts performing well, in terms of median and mean of the low-error networks,

at lower training levels, as discussed in Section 5 and shown in Table A5. Notably, no

practical and statistically significant differences are present for the multi-path, same facts

technique, while several statistically significant differences are present for the multi-path

random facts technique.

The impact of different velocity levels on the performance of the multi-path, same

facts and multi-path, random facts techniques for different network configurations is now

considered. Data is presented in Tables 4–7 for the two techniques comparing their per-

formance with 0.01 and 0.25 velocity levels (Tables A2 and A3 present data for the base

0.10 velocity level) for different network configurations.

Table 4. Error levels for multi-path, same facts training technique for base, error-present, aug-

mented and random networks with a 0.01 velocity level.

Network Velocity Mean Median Mean—High Err Mean—Low Err

Base 0.01 0.057 0.021 0.183 0.022

10% Error 0.01 0.060 0.026 0.177 0.022

25% Error 0.01 0.066 0.029 0.186 0.023

10% Augmented 0.01 0.055 0.019 0.195 0.021

25% Augmented 0.01 0.053 0.020 0.170 0.021

Random 0.01 0.188 0.129 0.336 0.014

Figure 7. Error levels for multi-path, random facts training technique with different velocity levels:
1—base, 2—10% error, 3—25% error, 4—50% error, 5—random, 6—1% augmented, 7—5% augmented,
8—10% augmented, 9—25% augmented, 10—50% augmented.

For the multi-path, same facts technique, the base setting of a velocity of 0.01 outper-
forms other techniques in terms of the mean error level. The 0.5 setting outperforms in
terms of the median error level.

The 0.5 velocity performs the best for the mean and median error levels for the multi-
path, random facts training technique. Notably, this puts a significant amount of weight
on the most recent training epochs. This is, interestingly, consistent with the multi-path,
random facts performing well, in terms of median and mean of the low-error networks,
at lower training levels, as discussed in Section 5 and shown in Table A5. Notably, no
practical and statistically significant differences are present for the multi-path, same facts
technique, while several statistically significant differences are present for the multi-path
random facts technique.

The impact of different velocity levels on the performance of the multi-path, same
facts and multi-path, random facts techniques for different network configurations is
now considered. Data is presented in Tables 4–7 for the two techniques comparing their
performance with 0.01 and 0.25 velocity levels (Tables A2 and A3 present data for the base
0.10 velocity level) for different network configurations.

Table 4. Error levels for multi-path, same facts training technique for base, error-present, augmented
and random networks with a 0.01 velocity level.

Network Velocity Mean Median Mean—High Err Mean—Low Err

Base 0.01 0.057 0.021 0.183 0.022
10% Error 0.01 0.060 0.026 0.177 0.022
25% Error 0.01 0.066 0.029 0.186 0.023

10% Augmented 0.01 0.055 0.019 0.195 0.021
25% Augmented 0.01 0.053 0.020 0.170 0.021

Random 0.01 0.188 0.129 0.336 0.014

Computers 2021, 10, 103 13 of 25

Table 5. Error levels for multi-path, same facts training technique for base, error-present, augmented
and random networks with a 0.25 velocity level.

Network Velocity Mean Median Mean—High Err Mean—Low Err

Base 0.25 0.056 0.024 0.176 0.021
10% Error 0.25 0.053 0.020 0.185 0.023
25% Error 0.25 0.057 0.019 0.195 0.020

10% Augmented 0.25 0.050 0.015 0.175 0.021
25% Augmented 0.25 0.055 0.023 0.178 0.023

Random 0.25 0.175 0.106 0.334 0.013

Table 6. Error levels for multi-path, random facts training technique for base, error-present, aug-
mented and random networks with a 0.01 velocity level.

Training Velocity Mean Median Mean—High Err Mean—Low Err

Base 0.01 0.058 0.028 0.175 0.024
10% Error 0.01 0.061 0.025 0.189 0.022
25% Error 0.01 0.053 0.027 0.164 0.023

10% Augmented 0.01 0.053 0.020 0.173 0.020
25% Augmented 0.01 0.057 0.019 0.177 0.020

Random 0.01 0.185 0.132 0.328 0.020

Table 7. Error levels for multi-path, random facts training technique for base, error-present, aug-
mented and random networks with a 0.25 velocity level.

Training Velocity Mean Median Mean—High Err Mean—Low Err

Base 0.25 0.062 0.029 0.183 0.025
10% Error 0.25 0.057 0.025 0.178 0.025
25% Error 0.25 0.057 0.023 0.178 0.023

10% Augmented 0.25 0.063 0.028 0.194 0.023
25% Augmented 0.25 0.059 0.024 0.174 0.024

Random 0.25 0.187 0.130 0.332 0.015

The performance of the multi-path, same facts technique is somewhat similar between
the three velocity levels for which data is presented in Tables 4, 5 and A2. In each case the
lowest mean error occurs under one of the augmented network types: for 0.01 velocity,
it is in the 25% augmented networks, for 0.10 velocity, the best performance is with the
10% augmented networks and for velocity of 0.25, the best performance is also in the 10%
augmented networks. For all three velocity levels, the lowest median error also occurred in
these network types. Clearly, the training method is robust to all velocity settings across all
network types.

In comparing the performance of the different velocities for each network type for the
multi-path, same facts technique, the 0.25 velocity performs the best, outperforming others
for the lowest mean error value for the base, 10% error, 25% error, 10% augmented and
random networks. The 0.25 velocity performs best for the lowest median error for the 10%
error, 10% augmented and random networks. The 0.01 velocity outperforms others for the
lowest median error for the base networks and the 25% augmented networks for both the
lowest mean error and lowest median error. The 0.10 velocity outperforms for the lowest
median error for the 25% error networks.

For the multi-path, random facts training technique, the data in Tables 6 and 7 shows
that the technique is robust across all error and augmentation levels at all three velocity
levels. The 25% error and 10% augmented networks produce the best performance, in
terms of lowest mean error, at the 0.01 velocity level, while the 10% and 25% error networks
produce the best performance, in terms of lowest mean error, at the 0.25 velocity level. In
terms of lowest median error, the 25% augmented network produces the lowest error at the

Computers 2021, 10, 103 14 of 25

0.01 velocity level and the 25% error produces the lowest median error at the 0.25 velocity
level.

In comparing the performance of the different velocity values for each of the network
types, the 0.01 velocity performs the strongest. It produces the lowest mean error values for
the base, 25% error, 10% augmented and 25% augmented networks and the lowest median
error for the 10% error, 10% augmented and 25% augmented networks. The 0.25 velocity
setting performs best for both lowest mean and median error for the 10% error networks
(tying with the 0.01 velocity’s median value). The 0.10 velocity outperforms in terms of
lowest median error for the base and 25% error networks, and for both lowest mean and
median error for the random networks.

The performance of the two techniques is now assessed for combinations of training
epoch levels and velocity. Tables 8 and 9 present this data for the 0.05 and 0.25 velocity
levels. These can be compared to the data in Tables A4 and A5 for the 0.10 velocity level.

Table 8. Error levels for multi-path, same facts training technique for different training levels with
0.05 and 0.25 velocity levels.

Training Velocity Mean Median Mean—High Err Mean—Low Err

1 0.05 0.057 0.030 0.189 0.025
1 0.25 0.056 0.022 0.156 0.022

25 0.05 0.060 0.021 0.188 0.022
25 0.25 0.057 0.024 0.171 0.022
100 0.05 0.060 0.027 0.187 0.023
100 0.25 0.056 0.024 0.176 0.021
250 0.05 0.056 0.026 0.174 0.024
250 0.25 0.058 0.023 0.186 0.022

Table 9. Error levels for multi-path, random facts training technique for different training levels with
0.05 and 0.25 velocity levels.

Training Velocity Mean Median Mean—High Err Mean—Low Err

1 0.05 0.046 0.014 0.163 0.025
1 0.25 0.057 0.021 0.157 0.016

25 0.05 0.060 0.025 0.175 0.024
25 0.25 0.057 0.023 0.171 0.022
100 0.05 0.056 0.025 0.171 0.023
100 0.25 0.062 0.029 0.183 0.025
250 0.05 0.051 0.016 0.181 0.020
250 0.25 0.059 0.023 0.188 0.022

For the multi-path, same facts technique, the best performance, in terms of lowest
mean error, occurs with 1000 training epochs and 0.10 velocity. Not considering this data
point, which is inconsistent with the data trends for the 0.10 velocity data, the 25 epochs
and 0.10 velocity combination preforms best for lowest mean error. The lowest median
error occurs at the 1000 training epoch level with 0.10 velocity.

Comparing the performance of the different training velocities for different levels
of training epochs also shows the 0.10 velocity outperforming, in many cases. The 0.10
velocity performs the best for lowest median error for all training levels except for 100
epochs, where the 0.25 velocity outperforms by 0.1%, and, in terms of lowest mean error,
for the 25 epochs training level. The 0.25 velocity performs best, in terms of mean error, for
1 and 100 training epochs and the 0.05 velocity performs best, in terms of mean error, for
the 250 training epochs level. While there is no across-the-board best velocity or training
epochs setting, smaller levels of training and mid-range velocity values appear to be,
generally, outperforming other settings for the multi-path, same facts technique.

For the multi-path, random facts technique, the lowest mean error and lowest median
error both were obtained from the 0.05 velocity with 1 epoch of training. The 0.05 velocity

Computers 2021, 10, 103 15 of 25

produced the lowest mean and median error levels for both 1 and 250 training epochs and
the lowest mean for 100 epochs. The 0.10 velocity produced the lowest median error levels
for the 25 and 100 training epoch levels and the lowest mean error for the 25 epochs training
level. Like with the multi-path same facts technique, there is no across-the-board best
velocity or training epochs setting; however, smaller levels of training and smaller velocity
values appear to be, generally, outperforming larger ones for the multi-path, random facts
technique.

Now, all four experimental condition parameters are considered together. For the
multi-path, same facts networks, data in Tables 4, 5, 10 and A2 is compared. For the
multi-path, random facts networks, data in Tables 6, 7, 11 and A3 is compared.

Table 10. Error levels for multi-path, same facts training technique for base, error-present, augmented and random networks
with different velocity levels and 25 epochs of training.

Training Network Velocity Mean Median Mean—High Err Mean—Low Err

25 Epoch Base 0.01 0.055 0.020 0.177 0.021
25 Epoch Base 0.1 0.061 0.023 0.197 0.023
25 Epoch Base 0.25 0.060 0.025 0.184 0.022
25 Epoch 10% Error 0.01 0.059 0.026 0.180 0.024
25 Epoch 10% Error 0.1 0.057 0.019 0.179 0.020
25 Epoch 10% Error 0.25 0.061 0.026 0.177 0.024
25 Epoch 25% Error 0.01 0.058 0.023 0.190 0.023
25 Epoch 25% Error 0.1 0.058 0.029 0.175 0.026
25 Epoch 25% Error 0.25 0.048 0.006 0.189 0.017
25 Epoch 10% Augmented 0.01 0.046 0.013 0.164 0.020
25 Epoch 10% Augmented 0.1 0.050 0.021 0.165 0.021
25 Epoch 10% Augmented 0.25 0.061 0.025 0.183 0.023
25 Epoch 25% Augmented 0.01 0.059 0.026 0.185 0.023
25 Epoch 25% Augmented 0.1 0.061 0.032 0.177 0.025
25 Epoch 25% Augmented 0.25 0.055 0.024 0.181 0.024
25 Epoch Random 0.01 0.173 0.135 0.315 0.016
25 Epoch Random 0.1 0.182 0.111 0.341 0.015
25 Epoch Random 0.25 0.186 0.121 0.331 0.015

Table 11. Error levels for multi-path, random facts training technique for base, error-present, augmented and random
networks with different velocity levels and 25 epochs of training.

Training Network Velocity Mean Median Mea—High Err Mean—Low Err

25 Epoch Base 0.01 0.055 0.021 0.172 0.023
25 Epoch Base 0.1 0.058 0.017 0.190 0.020
25 Epoch Base 0.25 0.066 0.030 0.185 0.024
25 Epoch 10% Error 0.01 0.057 0.024 0.183 0.021
25 Epoch 10% Error 0.1 0.054 0.021 0.186 0.023
25 Epoch 10% Error 0.25 0.062 0.026 0.179 0.022
25 Epoch 25% Error 0.01 0.053 0.014 0.180 0.018
25 Epoch 25% Error 0.1 0.054 0.023 0.169 0.022
25 Epoch 25% Error 0.25 0.056 0.022 0.173 0.022
25 Epoch 10% Augmented 0.01 0.057 0.024 0.182 0.022
25 Epoch 10% Augmented 0.1 0.062 0.027 0.181 0.022
25 Epoch 10% Augmented 0.25 0.059 0.026 0.178 0.023
25 Epoch 25% Augmented 0.01 0.058 0.021 0.189 0.021
25 Epoch 25% Augmented 0.1 0.054 0.021 0.167 0.023
25 Epoch 25% Augmented 0.25 0.055 0.017 0.170 0.019
25 Epoch Random 0.01 0.156 0.076 0.315 0.015
25 Epoch Random 0.1 0.181 0.105 0.335 0.019
25 Epoch Random 0.25 0.184 0.117 0.330 0.016

Computers 2021, 10, 103 16 of 25

For the multi-path, same facts training technique, the best overall results are produced
under the 10% augmented network using a velocity of 0.01 and 25 epochs of training. This
condition produces both the lowest mean and lowest median error levels of any considered.

For the base network type, the best results were produced with a velocity of 0.01 and
25 epochs of training. For the 10% error networks, the lowest mean error was produced
with a velocity of 0.25 and 100 epochs of training. The lowest median error was produced
with a velocity of 0.1 and 25 epochs of training. For the 25% error networks, the lowest
mean and median error were produced using a velocity of 0.25 and 25 epochs of training.
For the 10% augmented networks, a velocity of 0.01 and 25 epochs of training produces
both the lowest mean and median error levels. For the 25% augmented networks, the
lowest mean and median error levels are produced using a velocity of 0.01 and 100 epochs
of training. For the random networks, the lowest mean error is produced with a velocity
of 0.01 and 25 epochs of training and the lowest median error level is produced using
a velocity of 0.25 with 100 epochs of training. Given the foregoing, there is not a single
technique that performs best across-the-board, though some seem to perform well more
consistently than others.

For the multi-path, random facts technique, the best overall results are produced by
the 1% augmented network, 100 training epochs and a velocity of 0.1, for lowest mean
error, and 25 training epochs and a velocity of 0.01, for lowest median error.

For the base network, the lowest mean error was produced with 25 epochs of training
and a velocity of 0.1 and the lowest median error was produced by both 25 epochs of
training and a velocity of 0.01 and 100 epochs of training and a velocity of 0.1. For the 10%
error networks, the lowest mean and median error levels are both produced with 25 epochs
of training and a velocity of 0.1. For the 25% error networks, the lowest mean error value is
produced by both a velocity of 0.01 and 100 epochs of training and a velocity of 0.01 and
25 epochs of training. The lowest median error is produced with 25 epochs of training and
a velocity of 0.01.

For the 10% augmented networks, the lowest mean and median error levels are
produced using a velocity of 0.01 and 100 epochs of training. For the 25% augmented
networks, both the lowest mean and median error levels are produced using a velocity of
0.25 and 25 epochs of training. Finally, for the random networks, both the best mean and
median error values are produced with a velocity of 0.01 and 25 epochs of training. While
there is no single best set of settings, again lower velocity and lower training levels seem to
be, generally, outperforming.

7. Comparative Performance of the Single-Path and Multi-Path Techniques

In [1], two multi-path techniques were introduced and the single- and multi-path tech-
niques were briefly compared. Through this limited comparison, the multi-path techniques
were shown to outperform the single-path techniques under the base (100 rules/100 facts,
100 training epochs, 0.1 velocity and non-perturbed network) configuration. However,
further analysis was not conducted, in that study, on the multi-path techniques and their
performance under other experimental conditions was not assessed. The single- and multi-
path techniques were also not compared under any experimental conditions other than the
base one.

Sections 4–6 have assessed the performance of the two multi-path techniques and
compared the performance of the two techniques under different network perturbations,
training epoch levels and with different training velocity settings. This section compares the
performance of the multi-path techniques to the performance of the single path techniques,
as presented in [1]. This analysis makes use of data presented in Tables A2–A7, and
discussed previously in this article.

7.1. Network Perturbation

In comparing the single-path and multi-path techniques under networks with different
perturbation levels, there are a number of similarities. Both multi-path techniques perform

Computers 2021, 10, 103 17 of 25

best, in terms of lowest mean error, with the augmented networks. The multi-path, random
facts technique performs best with the 1% augmented networks. The multi-path, same
facts technique performs best with the 10% augmented networks. The single-path, same
facts technique performs best with the 10% error technique, in terms of lowest mean error;
however, this performance is only 0.001 better than its performance with the 1% augmented
technique.

Though the performance levels are quite similar (only 0.001 to 0.003 different), the
single path, same facts technique performs best, in terms of median error, with the 25% error
networks. The multi-path same facts technique performs best with the 10% augmented
networks while the multi-path random facts technique performs best with the base and 1%
augmented networks.

In addition to outperforming for the base experimental condition, both the multi-path
techniques outperform the single path, same facts technique across all of the different
error and augmentation levels, both in terms of mean error and median error values. The
multi-path techniques perform up to nearly twice as well, in some instances, in terms
of mean error and up to slightly over three times as well, in some instances, in terms
of median error. Both multi-path techniques also outperform on the random networks.
For mean error levels, they outperform by approximately 30%. For median error, they
outperform by 70% and 110% for the multi-path, same facts and random facts techniques,
respectively.

7.2. Training Epochs

The performance of the single path, same facts technique and multi-path same facts
technique were quite similar across different training epoch levels. Both performed best,
in terms of mean error, at 25 epochs (tied with 100 epochs in the case of the single path,
same facts technique). Both also performed best, in terms of median error, at 1000 training
epochs. The multi-path, same facts technique also had a tied best performance, in terms of
median error, at 100 epochs.

The multi-path, random facts technique also had its best performance, in terms of
mean error, at 25 training epochs. Its lowest median error levels occurred at 10 and
250 epochs, however.

Like with the analysis across different network perturbation configurations, both
multi-path techniques outperformed the single-path, same facts technique at all levels of
training in terms of both mean and median error. Notably, not only did they outperform
when comparing each respective level, all training levels of both multi-path techniques
outperformed the best performing level of the single-path, same facts technique.

7.3. Training Velocity Levels

The performance of the single-path, same facts and the multi-path techniques, again,
had similar patterns—in this case, across different velocity levels. While the single-path,
same facts technique had its best performance at a velocity of 0.15, the multi-path techniques
performed the best at the levels of 0.01 and 0.5, in terms of mean error, for the same and
random facts versions, respectively. The multi-path, same facts technique, the same-path,
single facts technique and the multi-path, random facts technique performed best, in terms
of median error, at 0.5 velocity.

Like with the performance under the different training epoch levels, both multi-
path techniques outperformed the single-path, same facts technique at each respective
level. Additionally, all velocity levels of both multi-path techniques outperformed the best
performing level of the single path, same facts technique.

8. Algorithm Speed Assessment

While accuracy is a key consideration, the computational cost of different training
algorithms also needs to be considered. These costs are compared in this section. Table 12
presents the average training operating time for each of the four algorithms in units of

Computers 2021, 10, 103 18 of 25

timer ticks. Notably, the train path—same facts, the most basic technique, has the lowest
computational cost. The train multiple paths—same facts technique has approximately
double the cost of the train path—same facts techniques. Both of the random facts tech-
niques are more computationally expensive. In both cases, the technique requires nearly
1,000,000 timer ticks to complete.

Table 12. Comparison of the performance of the different training techniques.

Training Technique Average Time

Train Path—Same Facts 170,921.0
Train Path—Random Facts 995,436.0

Train Multiple Paths—Same Facts 376,210.8
Train Multiple Paths—Random Facts 925,475.3

Figure 8 presents notched box plots for the training time data, demonstrating that the
performance time differences are statistically significant in all cases. The computational
speed is another key parameter into algorithm selection decision-making (along with
accuracy level and data collection cost considerations). While the optimal selection will
be driven by application needs, the comparatively high computational cost will serve as
another factor in the train multiple paths—random facts technique not being preferred in
most circumstances. The comparative computational costs of other techniques may be of
limited concern in some applications (particularly where a network is trained once and
used repeatedly); however, if training must be performed on a recurrent basis, for a time
sensitive application or using limited computational capability hardware, this may not be
the case.

Computers 2021, 10, x FOR PEER REVIEW 18 of 25

same facts technique had its best performance at a velocity of 0.15, the multi-path tech-

niques performed the best at the levels of 0.01 and 0.5, in terms of mean error, for the same

and random facts versions, respectively. The multi-path, same facts technique, the same-

path, single facts technique and the multi-path, random facts technique performed best,

in terms of median error, at 0.5 velocity.

Like with the performance under the different training epoch levels, both multi-path

techniques outperformed the single-path, same facts technique at each respective level.

Additionally, all velocity levels of both multi-path techniques outperformed the best per-

forming level of the single path, same facts technique.

8. Algorithm Speed Assessment

While accuracy is a key consideration, the computational cost of different training

algorithms also needs to be considered. These costs are compared in this section. Table 12

presents the average training operating time for each of the four algorithms in units of

timer ticks. Notably, the train path—same facts, the most basic technique, has the lowest

computational cost. The train multiple paths—same facts technique has approximately

double the cost of the train path—same facts techniques. Both of the random facts tech-

niques are more computationally expensive. In both cases, the technique requires nearly

1,000,000 timer ticks to complete.

Table 12. Comparison of the performance of the different training techniques.

Training Technique Average Time

Train Path—Same Facts 170,921.0

Train Path—Random Facts 995,436.0

Train Multiple Paths—Same Facts 376,210.8

Train Multiple Paths—Random Facts 925,475.3

Figure 8 presents notched box plots for the training time data, demonstrating that the

performance time differences are statistically significant in all cases. The computational

speed is another key parameter into algorithm selection decision-making (along with ac-

curacy level and data collection cost considerations). While the optimal selection will be

driven by application needs, the comparatively high computational cost will serve as an-

other factor in the train multiple paths—random facts technique not being preferred in

most circumstances. The comparative computational costs of other techniques may be of

limited concern in some applications (particularly where a network is trained once and

used repeatedly); however, if training must be performed on a recurrent basis, for a time

sensitive application or using limited computational capability hardware, this may not be

the case.

Figure 8. Notched box plot comparison of speed performance of the training techniques (scale
values are on ×106 scale): 1—train path—same facts, 2—train path—random facts, 3—train multiple
paths—same facts, 4—train multiple paths—random facts.

9. Conclusions and Future Work

This paper has built on the work presented in [1] and assessed the performance of
two multi-path techniques across a number of experimental conditions. Both techniques
were shown to be robust to different network perturbations, training levels and training
velocities. As would be expected, differences in performance were shown between different
configurations and conditions; however, no catastrophic failure conditions or configura-
tions were shown to exist, nor were any areas of comparatively exceptional performance
identified. Unlike [1], this paper also analyzed combinations of two of the three indepen-
dent variables and all three independent variables being varied together and showed that
the multi-path techniques were robust to these configurations. Similar to the analysis of
individual variable conditions, no catastrophic failure conditions or comparatively excep-
tional performance were identified from these multi-variable combination conditions. The

Computers 2021, 10, 103 19 of 25

techniques, thus, can be optimized for use in various applications based on the parameters
of the particular application, informed by the data presented herein.

The techniques were also shown to consistently outperform the single-path, same
facts technique evaluated in [1]. While the two multi-path techniques showed variation (in
some cases correlating strongly with the variation of the single-path, same facts technique),
no configurations where the same-path, same facts technique would outperform were
identified. Given this, the multi-path techniques would be preferable to use, if ignoring
the comparative cost of data collection. As the multi-path techniques utilize numerous
input and output points across the network, this may drive a need for a larger scale of data
collection and incur a correspondingly larger cost. This cost–benefit analysis is inherently
an application specific consideration which is informed by the comparative performance
comparison presented herein.

While the multi-path techniques consistently outperform the single-path, same facts
technique, neither multi-path technique outperforms the other one across-the-board. In
many cases, the difference between the performance of the two may be practically insignif-
icant. Given this, there is minimal value to collecting the level of additional data that
would be required to operate training of the multi-path, random facts style for a real-world
application. While additional training data can be easily generated from a perfect network
for simulation, in the real world the collection of this additional training data has an associ-
ated cost. Thus, for most applications, the multi-path, same facts approach will be a clear
cost-benefit comparison winner as compared to the multi-path, random facts approach
(which also has a higher computational cost, in addition to higher data collection costs).
The data presented herein can inform this calculation for any given application area.

Overall, the data presented herein have demonstrated the efficacy of the multi-path
techniques for use with the gradient descent trained expert system, initially presented
in [1] and showed that the multi-path, same facts technique may be preferable for use for
many applications. Future work will include the exploration of the techniques’ specific
utility in various application areas as well as additional enhancements to and assessment
of the gradient descent trained expert system concept. The assessment of other pre-existing
optimization techniques (and gradient descent variants) to train rule-fact expert system
networks and the development of new techniques for this purpose are also planned.

Funding: This research received no external funding.

Data Availability Statement: The author confirms that all relevant results data are included in the
article. Underlying data is available from the author upon reasonable request.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Gradient Descent Rule-Fact Network Training Technique

This appendix describes the gradient descent technique that was proposed in [1],
which introduced gradient descent trained expert systems. The system is comprised of
two parts: a classical forward-chaining expert system engine and the training module,
which is now described, which optimizes the rule weightings within the expert system
rule-fact network. In this system, each fact has a value between zero and one and rules
have weighting values that define the contribution of each input facts to the output fact.
Weighting values must be between zero and one and sum to one.

The system uses an approach that distributes a portion of the error, between the
system-under-training’s output and the actual output, to rules which are identified as
directly or indirectly contributing to the target output fact.

The training process, depicted in Figure 1 and outlined in pseudocode in Listing A1,
starts with the network under training having rule values independent from the actual
(perfect) network’s. However, the rule fact network structure that the network under
training has, excluding the random network case, is based on the perfect network (possibly
including network perturbations, for certain experimental conditions).

Computers 2021, 10, 103 20 of 25

During training, the network under training and the perfect network are both run
and the results of the two are used to calculate a difference value. The algorithm depicted
in Figure A1 is used to distribute a portion of this, based on the velocity value and rule
contributions, to the contributing rules. This training process is repeated for the user-
specified number of training epochs.

The algorithm for determining the error-based difference value, shown in Figure A1,
begins by identifying all nodes that impact the target fact directly. Then, all of the nodes that
impact these nodes are iteratively identified and their indirect contributions are calculated.
As each node is identified, it is added to the contributions list. The process of identifying
and adding nodes is performed until no nodes are added during an iteration.

To determine the contribution of a rule, Ci in the equation below, to the target fact, the
equation used is [1]:

Ci = Wi × ∏
{APT}

WR(m,h) (A1)

The meaning of the different variables used in Equations (A1) and (A2) are listed in
Table A1. If a rule is part of multiple rule-fact chains to the target fact, it may have multiple
contribution values; however, only the highest value is retained and used for calculating
its contribution.

Table A1. Variable definitions for Equations (A1) and (A2).

Variable Meaning

Wi Weighting for rule i
WR(m,h) Weighting for each rule (m indicates the rule and h indicates which weight value)
{APT} Set of all rules passed through

Ci Contribution of rule i
{AC} Set of all contributing rule nodes
RP Perfect network result
RT Training network result
V Velocity

MAX Function returning the largest value passed to it
Di Difference applied to a given rule weighting

To determine the difference value to be applied to a given rule weighting, Di, the
contribution of the particular rule is divided by the total contribution of all rules, and
multiplied by the velocity parameter and a value based on the difference between the
expected and actual value for the given training run. This is computed by the equation:

Di =
Ci

∑{AC} Ci
×V × |RP − RT |

MAX(RP, RT)
(A2)

Computers 2021, 10, 103 21 of 25

Computers 2021, 10, x FOR PEER REVIEW 21 of 25

multiplied by the velocity parameter and a value based on the difference between the

expected and actual value for the given training run. This is computed by the equation:

�� =
��

∑ ��{��]
× � ×

|�� − ��|

���(��, ��)
 (A2)

Store Contribution
Values for Rules

that Directly
Impact End Fact

Store Contribution
Values for Rules

that Directly
Impact Facts in

Contributions List

Store Contribution
Values for all

Indirect
Contributions of

New List Additions

Contributions
Added?

Yes

Sum all
Contributions For

Final Fact

Determine Each
Rule’s Proportion
of Contribution

Apply Change
Based on Velocity
and Contribution

Proportion

No

Figure A1. Node Change Determination Algorithm [1].

One the level of change required to a node is determined, added or reduced weight

is assigned to the higher and lower values’ input facts’ weightings.

The algorithm provides several parameters for customization. The velocity setting,

as shown in Equation (A2), determines how much of the error-based difference value is

applied and thus how responsive the network is to each training epoch. The number

epochs of training, the network configuration, the number of facts and rules, and the type

of training used are also configurable.

Figure A1. Node Change Determination Algorithm [1].

One the level of change required to a node is determined, added or reduced weight is
assigned to the higher and lower values’ input facts’ weightings.

The algorithm provides several parameters for customization. The velocity setting,
as shown in Equation (A2), determines how much of the error-based difference value
is applied and thus how responsive the network is to each training epoch. The number
epochs of training, the network configuration, the number of facts and rules, and the type
of training used are also configurable.

Computers 2021, 10, 103 22 of 25

Listing A1. Pseudocode for Algorithm.
Perfect Network Generation Using Relevant Parameters
{

Creation of Facts (including setting fact initial values)
Creation of Rules
Selection of Facts to Serve as Rule Inputs and Output

}
Creation of Network to be Trained
{

Copy rules and facts from perfect network
Apply network perturbations, if required for experimental condition
Reset all rule values

}
Training Process
{

For the specified number of training epochs
{

If training type = train path—same facts
{

Select input/output facts during first iteration, reuse throughout training
}
Elseif training type = train path—random facts
{

Select input/output facts during first iteration, reuse throughout training
Reset all fact values to new random values for the training epoch

}
Elseif training type = train multiple paths—same facts
{

Select input/output facts during each iteration
}
Elseif training type = train multiple paths—random facts
{

Select input/output facts during each iteration
Reset all fact values to new random values for the training epoch

}
Identify Contributing Rules
Run ideal network
Run network under training
Compare results of runs to determine error
Apply Part of Error Between Actual and Target Output to Contributing Rules

}
If fact values have been changed during training, reset to original values

}
Run Presentation Transaction to Collect Data

Appendix B. Data Tables

This appendix presents data tables that support the notched box plot figures included
in this paper. Tables A2–A7 provide supporting data for Figures 2–7, respectively.

Computers 2021, 10, 103 23 of 25

Table A2. Error levels for multi-path, same facts training technique for base, error-present, augmented
and random networks.

Mean Median Mean—High Err Mean—Low Err

Base Network 0.058 0.025 0.183 0.023
10% Error Network 0.067 0.032 0.186 0.025
25% Error Network 0.059 0.018 0.184 0.018
50% Error Network 0.060 0.025 0.182 0.021
Random Network 0.178 0.118 0.322 0.016

1% Augmented Network 0.057 0.021 0.176 0.022
5% Augmented Network 0.053 0.022 0.174 0.022
10% Augmented Network 0.051 0.017 0.170 0.022
25% Augmented Network 0.059 0.031 0.175 0.025
50% Augmented Network 0.053 0.020 0.162 0.020

Table A3. Error levels for multi-path, random facts training technique for base, error-present,
augmented and random networks.

Mean Median Mean—High Err Mean—Low Err

Base Network 0.059 0.017 0.190 0.019
10% Error Network 0.065 0.030 0.177 0.024
25% Error Network 0.054 0.018 0.161 0.019
50% Error Network 0.054 0.019 0.182 0.021
Random Network 0.170 0.095 0.322 0.023

1% Augmented Network 0.050 0.017 0.166 0.020
5% Augmented Network 0.056 0.019 0.174 0.019
10% Augmented Network 0.058 0.025 0.196 0.023
25% Augmented Network 0.059 0.020 0.184 0.021
50% Augmented Network 0.062 0.022 0.189 0.021

Table A4. Error levels for multi-path, same facts training technique under different levels of training.

Mean Median Mean—High Err Mean—Low Err

1 Epoch 0.059 0.020 0.184 0.020
10 Epochs 0.062 0.024 0.180 0.020
25 Epochs 0.054 0.019 0.180 0.022
50 Epochs 0.056 0.027 0.167 0.025

100 Epochs 0.058 0.025 0.183 0.023
250 Epochs 0.057 0.019 0.172 0.019
500 Epochs 0.063 0.034 0.188 0.025
1000 Epochs 0.048 0.013 0.181 0.020

Table A5. Error levels for multi-path, random facts training technique under different levels of
training.

Mean Median Mean—High Err Mean—Low Err

1 Epoch 0.065 0.032 0.180 0.026
10 Epochs 0.054 0.021 0.170 0.021
25 Epochs 0.051 0.022 0.171 0.024
50 Epochs 0.057 0.022 0.175 0.021

100 Epochs 0.059 0.017 0.190 0.019
250 Epochs 0.052 0.021 0.170 0.022
500 Epochs 0.061 0.030 0.184 0.023
1000 Epochs 0.065 0.030 0.196 0.025

Computers 2021, 10, 103 24 of 25

Table A6. Error levels for multi-path, same facts training technique with different velocity levels.

Velocity Mean Median Mean—High Err Mean—Low Err

0.01 0.057 0.021 0.183 0.022
0.05 0.060 0.027 0.187 0.023
0.1 0.058 0.025 0.183 0.023

0.15 0.059 0.022 0.181 0.021
0.25 0.056 0.024 0.176 0.021
0.5 0.056 0.020 0.180 0.021

Table A7. Error levels for multi-path, random facts training technique with different velocity levels.

Velocity Mean Median Mean—High Err Mean—Low Err

0.01 0.058 0.028 0.175 0.024
0.05 0.056 0.025 0.171 0.023
0.1 0.059 0.017 0.190 0.019

0.15 0.057 0.029 0.170 0.024
0.25 0.062 0.029 0.183 0.025
0.5 0.055 0.015 0.178 0.019

References
1. Straub, J. Expert system gradient descent style training: Development of a defensible artificial intelligence technique. Knowl.

Based Syst. 2021, 228, 107275. [CrossRef]
2. Mitra, S.; Pal, S.K. Neuro-fuzzy expert systems: Relevance, features and methodologies. IETE J. Res. 1996, 42, 335–347. [CrossRef]
3. Zwass, V. Expert System. Available online: https://www.britannica.com/technology/expert-system (accessed on

24 February 2021).
4. Lindsay, R.K.; Buchanan, B.G.; Feigenbaum, E.A.; Lederberg, J. DENDRAL: A case study of the first expert system for scientific

hypothesis formation. Artif. Intell. 1993, 61, 209–261. [CrossRef]
5. Styvaktakis, E.; Bollen, M.H.J.; Gu, I.Y.H. Expert system for classification and analysis of power system events. IEEE Trans. Power

Deliv. 2002, 17, 423–428. [CrossRef]
6. McKinion, J.M.; Lemmon, H.E. Expert systems for agriculture. Comput. Electron. Agric. 1985, 1, 31–40. [CrossRef]
7. Kuehn, M.; Estad, J.; Straub, J.; Stokke, T.; Kerlin, S. An expert system for the prediction of student performance in an initial

computer science course. In Proceedings of the IEEE International Conference on Electro Information Technology, Lincoln, NE,
USA, 14–17 May 2017.

8. Kalogirou, S. Expert systems and GIS: An application of land suitability evaluation. Comput. Environ. Urban Syst. 2002, 26, 89–112.
[CrossRef]

9. Waterman, D. A Guide to Expert Systems; Addison-Wesley Pub. Co.: Reading, MA, USA, 1986.
10. Renders, J.M.; Themlin, J.M. Optimization of Fuzzy Expert Systems Using Genetic Algorithms and Neural Networks. IEEE Trans.

Fuzzy Syst. 1995, 3, 300–312. [CrossRef]
11. Sahin, S.; Tolun, M.R.; Hassanpour, R. Hybrid expert systems: A survey of current approaches and applications. Expert Syst. Appl.

2012, 39, 4609–4617. [CrossRef]
12. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
13. Chohra, A.; Farah, A.; Belloucif, M. Neuro-fuzzy expert system E_S_CO_V for the obstacle avoidance behavior of intelligent

autonomous vehicles. Adv. Robot. 1997, 12, 629–649. [CrossRef]
14. Sandham, W.A.; Hamilton, D.J.; Japp, A.; Patterson, K. Neural network and neuro-fuzzy systems for improving diabetes therapy.

In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong
Kong, China, 1 November 1998; Institute of Electrical and Electronics Engineers (IEEE): Picataway, NJ, USA, 2002; pp. 1438–1441.

15. Ephzibah, E.P.; Sundarapandian, V. A Neuro Fuzzy Expert System for Heart Disease Diagnosis. Comput. Sci. Eng. Int. J. 2012, 2,
17–23. [CrossRef]

16. Das, S.; Ghosh, P.K.; Kar, S. Hypertension diagnosis: A comparative study using fuzzy expert system and neuro fuzzy system. In
Proceedings of the IEEE International Conference on Fuzzy Systems, Hyderabad, India, 7–10 July 2013.

17. Akinnuwesi, B.A.; Uzoka, F.M.E.; Osamiluyi, A.O. Neuro-Fuzzy Expert System for evaluating the performance of Distributed
Software System Architecture. Expert Syst. Appl. 2013, 40, 3313–3327. [CrossRef]

18. Rojas, R. The Backpropagation Algorithm. In Neural Networks; Springer: Berlin/Heidelberg, Germany, 1996; pp. 149–182.
19. Battiti, R. Accelerated Backpropagation Learning: Two Optimization Methods. Complex Syst. 1989, 3, 331–342.
20. Kosko, B.; Audhkhasi, K.; Osoba, O. Noise can speed backpropagation learning and deep bidirectional pretraining. Neural Netw.

2020, 129, 359–384. [CrossRef] [PubMed]

http://doi.org/10.1016/j.knosys.2021.107275
http://doi.org/10.1080/03772063.1996.11415939
https://www.britannica.com/technology/expert-system
http://doi.org/10.1016/0004-3702(93)90068-M
http://doi.org/10.1109/61.997911
http://doi.org/10.1016/0168-1699(85)90004-3
http://doi.org/10.1016/S0198-9715(01)00031-X
http://doi.org/10.1109/91.413235
http://doi.org/10.1016/j.eswa.2011.08.130
http://doi.org/10.1016/S0019-9958(65)90241-X
http://doi.org/10.1163/156855399X00045
http://doi.org/10.5121/cseij.2012.2103
http://doi.org/10.1016/j.eswa.2012.12.039
http://doi.org/10.1016/j.neunet.2020.04.004
http://www.ncbi.nlm.nih.gov/pubmed/32599541

Computers 2021, 10, 103 25 of 25

21. Abbass, H.A. Speeding Up Backpropagation Using Multiobjective Evolutionary Algorithms. Neural Comput. 2003, 15, 2705–2726.
[CrossRef]

22. Aicher, C.; Foti, N.J.; Fox, E.B. Adaptively Truncating Backpropagation Through Time to Control Gradient Bias. In Proceedings of
the 35th Uncertainty in Artificial Intelligence Conference, Tel Aviv, Israel, 22–25 July 2019; pp. 799–808.

23. Chizat, L.; Bach, F. Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss. Proc.
Mach. Learn. Res. 2020, 125, 1–34.

24. Kolen, J.F.; Pollack, J.B. Backpropagation is Sensitive to Initial Conditions. Complex Syst. 1990, 4, 269–280.
25. Zhao, P.; Chen, P.Y.; Wang, S.; Lin, X. Towards query-efficient black-box adversary with zeroth-order natural gradient descent.

Proc. AAAI Conf. Artif. Intell. 2020, 34, 6909–6916. [CrossRef]
26. Wu, Z.; Ling, Q.; Chen, T.; Giannakis, G.B. Federated Variance-Reduced Stochastic Gradient Descent with Robustness to Byzantine

Attacks. IEEE Trans. Signal Process. 2020, 68, 4583–4596. [CrossRef]
27. Saffaran, A.; Azadi Moghaddam, M.; Kolahan, F. Optimization of backpropagation neural network-based models in EDM process

using particle swarm optimization and simulated annealing algorithms. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 73. [CrossRef]
28. Gupta, J.N.D.; Sexton, R.S. Comparing backpropagation with a genetic algorithm for neural network training. Omega 1999, 27,

679–684. [CrossRef]
29. Basterrech, S.; Mohammed, S.; Rubino, G.; Soliman, M. Levenberg—Marquardt training algorithms for random neural networks.

Comput. J. 2011, 54, 125–135. [CrossRef]
30. Kim, S.; Ko, B.C. Building deep random ferns without backpropagation. IEEE Access 2020, 8, 8533–8542. [CrossRef]
31. Ma, W.D.K.; Lewis, J.P.; Kleijn, W.B. The HSIC bottleneck: Deep learning without back-propagation. In Proceedings of the AAAI

Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 5085–5092.
32. Park, S.; Suh, T. Speculative Backpropagation for CNN Parallel Training. IEEE Access 2020, 8, 215365–215374. [CrossRef]
33. Lee, C.; Sarwar, S.S.; Panda, P.; Srinivasan, G.; Roy, K. Enabling Spike-Based Backpropagation for Training Deep Neural Network

Architectures. Front. Neurosci. 2020, 14, 119. [CrossRef] [PubMed]
34. Mirsadeghi, M.; Shalchian, M.; Kheradpisheh, S.R.; Masquelier, T. STiDi-BP: Spike time displacement based error backpropagation

in multilayer spiking neural networks. Neurocomputing 2021, 427, 131–140. [CrossRef]
35. Straub, J. Machine learning performance validation and training using a ‘perfect’ expert system. MethodsX 2021, 8, 101477.

[CrossRef]
36. Li, J.; Huang, J.S. Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technol. Soc. 2020,

63, 101410. [CrossRef]
37. Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.Z. XAI-Explainable artificial intelligence. Sci. Robot. 2019, 4,

eaay7120. [CrossRef]
38. Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.; Xiao, C.; Prakash, A.; Kohno, T.; Song, D. Robust Physical-World

Attacks on Deep Learning Models. arXiv 2017, arXiv:1707.08945.
39. Gong, Y.; Poellabauer, C. Crafting Adversarial Examples for Speech Paralinguistics Applications. arXiv 2017, arXiv:1711.03280v2.

[CrossRef]
40. Sharif, M.; Bhagavatula, S.; Bauer, L.; Reiter, M.K. Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face

Recognition. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
24–28 October 2016; ACM Press: New York, NY, USA, 2016; pp. 1528–1540.

41. Doyle, T. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Inf. Soc. 2017, 33, 301–302.
[CrossRef]

42. Noble, S.U. Algorithms of Oppression: How Search Engines Reinforce Racism Paperback; NYU Press: New York, NY, USA, 2018.
43. Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; Zhu, J. Explainable AI: A Brief Survey on History, Research Areas, Approaches

and Challenges. In Proceedings of the CCF International Conference on Natural Language Processing and Chinese Computing
2019, Dunhuang, China, 9−14 October 2019.

44. Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.;
Benjamins, R.; et al. Explainable Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges
toward responsible AI. Inf. Fusion 2020, 58, 82–115. [CrossRef]

45. Mahbooba, B.; Timilsina, M.; Sahal, R.; Serrano, M. Explainable Artificial Intelligence (XAI) to Enhance Trust Management in
Intrusion Detection Systems Using Decision Tree Model. Complexity 2021, 2021, 1–11. [CrossRef]

46. Gade, K.; Geyik, S.C.; Kenthapadi, K.; Mithal, V.; Taly, A. Explainable AI in Industry. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019.

47. Mehdiyev, N.; Fettke, P. Explainable Artificial Intelligence for Process Mining: A General Overview and Application of a Novel
Local Explanation Approach for Predictive Process Monitoring. arXiv 2020, arXiv:2009.02098.

48. Van Lent, M.; Fisher, W.; Mancuso, M. An explainable artificial intelligence system for small-unit tactical behavior. In Proceedings
of the 16th Conference on Innovative Applications of Artificial Intelligence, San Jose, CA, USA, 27–29 July 2004.

49. Buhmann, A.; Fieseler, C. Towards a deliberative framework for responsible innovation in artificial intelligence. Technol. Soc.
2021, 64, 101475. [CrossRef]

http://doi.org/10.1162/089976603322385126
http://doi.org/10.1609/aaai.v34i04.6173
http://doi.org/10.1109/TSP.2020.3012952
http://doi.org/10.1007/s40430-019-2149-1
http://doi.org/10.1016/S0305-0483(99)00027-4
http://doi.org/10.1093/comjnl/bxp101
http://doi.org/10.1109/ACCESS.2020.2964842
http://doi.org/10.1109/ACCESS.2020.3040849
http://doi.org/10.3389/fnins.2020.00119
http://www.ncbi.nlm.nih.gov/pubmed/32180697
http://doi.org/10.1016/j.neucom.2020.11.052
http://doi.org/10.1016/j.mex.2021.101477
http://doi.org/10.1016/j.techsoc.2020.101410
http://doi.org/10.1126/scirobotics.aay7120
http://doi.org/10.1145/3306195.3306196
http://doi.org/10.1080/01972243.2017.1354593
http://doi.org/10.1016/j.inffus.2019.12.012
http://doi.org/10.1155/2021/6634811
http://doi.org/10.1016/j.techsoc.2020.101475

	Introduction
	Background
	Expert Systems
	Machine Learning Training and Gradient Descent
	Gradient Descent Trained Expert Systems
	Neural Networks and their Explainability Issues

	Experimental Design
	Experimental System
	Experimental Procedure

	Network Types and System Performance
	Training and System Performance
	Velocity Levels and System Performance
	Comparative Performance of the Single-Path and Multi-Path Techniques
	Network Perturbation
	Training Epochs
	Training Velocity Levels

	Algorithm Speed Assessment
	Conclusions and Future Work
	Gradient Descent Rule-Fact Network Training Technique
	Data Tables
	References

