
Citation: ElDahshan, K.A.; AlHabshy,

A.A.; Hameed, B.I. Meta-Heuristic

Optimization Algorithm-Based

Hierarchical Intrusion Detection

System. Computers 2022, 11, 170.

https://doi.org/10.3390/

computers11120170

Academic Editor: Leandros

Maglaras

Received: 3 October 2022

Accepted: 21 November 2022

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Meta-Heuristic Optimization Algorithm-Based Hierarchical
Intrusion Detection System
Kamal A. ElDahshan, AbdAllah A. AlHabshy and Bashar I. Hameed *

Mathematics Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
* Correspondence: basharibh78@gmail.com

Abstract: Numerous network cyberattacks have been launched due to inherent weaknesses. Network
intrusion detection is a crucial foundation of the cybersecurity field. Intrusion detection systems
(IDSs) are a type of machine learning (ML) software proposed for making decisions without explicit
programming and with little human intervention. Although ML-based IDS advancements have
surpassed earlier methods, they still struggle to identify attack types with high detection rates (DR)
and low false alarm rates (FAR). This paper proposes a meta-heuristic optimization algorithm-based
hierarchical IDS to identify several types of attack and to secure the computing environment. The
proposed approach comprises three stages: The first stage includes data preprocessing, feature
selection, and the splitting of the dataset into multiple binary balanced datasets. In the second stage,
two novel meta-heuristic optimization algorithms are introduced to optimize the hyperparameters of
the extreme learning machine during the construction of multiple binary models to detect different
attack types. These are combined in the last stage using an aggregated anomaly detection engine in a
hierarchical structure on account of the model’s accuracy. We propose a software machine learning
IDS that enables multi-class classification. It achieved scores of 98.93, 99.63, 99.19, 99.78, and 0.01, with
0.51 for average accuracy, DR, and FAR in the UNSW-NB15 and CICIDS2017 datasets, respectively.

Keywords: intrusion detection system; machine learning; feature selection; grey wolf optimization;
extreme learning machine; Archimedes optimization algorithm; honey badger algorithm

1. Introduction

Recent statistics from DataReportal state that the number of internet users worldwide
has quadrupled over the past ten years, rising from 2.18 billion to 4.95 billion from 2012
to 2022 [1] as a result of the rapid evolution of online users, apps, services, and devices
in various domains. IoT technology is a trending area in portable information, and it has
great importance in regard to creation, transfer, storage, and deletion sessions. Thus, the
confidentiality, integrity, and availability of information security must be considered in
order to overcome system vulnerabilities and to prevent intruders from damaging the
system by trying to steal, destroy, or alter the information therein [2,3]. The term “intrusion”
is used in an information system to describe any activity that undermines a system’s
security policy. IDS is the process used to discover intrusions [4]. IDS helps to detect,
determine, and identify unauthorized system activities [5]. As shown in Figure 1, IDS
may be software, hardware, or a combination divided into four types. Host-based IDS
checks attacks on its system, in contrast to network-based IDS, which checks the overall
network activities. Signature-based IDS monitors any skewness from the normal behavior
based on rules that require the continuous updating of the databases, while anomaly-
based IDS identifies suspicious threats. Hence, detecting anomalies is a classification (ML)
problem [6,7]. Using feature selection methods (wrapper, filter, and embedded) or learning-
based methods to reduce misclassification and to minimize the data dimensionality of big
data network transactions, choosing the best features is an area of high interest in the ML
community [8,9].

Computers 2022, 11, 170. https://doi.org/10.3390/computers11120170 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11120170
https://doi.org/10.3390/computers11120170
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-5258-6109
https://orcid.org/0000-0003-1139-6533
https://doi.org/10.3390/computers11120170
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11120170?type=check_update&version=1

Computers 2022, 11, 170 2 of 37

Computers 2022, 11, x FOR PEER REVIEW 2 of 34

methods to reduce misclassification and to minimize the data dimensionality of big data
network transactions, choosing the best features is an area of high interest in the ML com-
munity [8,9].

Figure 1. Taxonomy of common IDSs.

There are ML algorithms capable of discovering hidden relationships in data and
making judgments without explicit guidance [10,11]. The majority of these techniques are
based on a back-propagation learning algorithm. Hence, IDS is a real-time system that
requires a high classifier performance speed during the system design planning stage. A
rapid and reliable approach to real-time applications for the detection of attacks is neces-
sary for IDS. As the learning algorithm and architecture of the extreme learning machine
(ELM) are efficient and straightforward, ELM can detect attacks more rapidly and pre-
cisely than conventional identification approaches, such as support vector machines
(SVM) [12,13].

Recently, the use of ELMs has increased in real-time classification applications, as
they outperform their peers in categorization. ELM can improve computational efficiency
by selecting the optimal features and identifying the number of neurons in the hidden
layer. The most effective selection methods are meta-heuristic-based, including evolution-
ary, physics, and swarm algorithms. These methods can select the most ideal data features
and hyperparameter values to construct an efficient ML-model-based IDS [12].

Thus, an ML-based detection strategy that works well in terms of accuracy and FAR
is required to determine how many correct predictions were made and how effective the
classifier was in reducing the number of wrongly classified cases. As such, this paper fo-
cuses on constructing a robust software anomaly-based IDS using the techniques dis-
cussed from a classification point of view. Additionally, it provides information about
performance metrics such as the accuracy, DR, FAR, precision, and F1-score. This paper
makes the following main contributions:
• Proposes a new IDS that uses ML rather than deep learning (DL) to create the classi-

fication system, which has resulted in more efficient and less complicated models;
• Utilizes ELM for the categorization of attacks—ELM has already been utilized for

IDS, but not quite in the manner that is being proposed;
• Calculates the importance of features and chooses the best ones to detect attack types

using efficient meta-heuristic optimization algorithms;
• Selects optimal values of ELM parameters using a novel hybrid meta-heuristic-based

hyperparameter selection method;
• Utilizes an aggregation of ELM binary models, with one for each attack type, and

collects these models via a hierarchical layer to derive an interpretable and highly
accurate output.
The rest of the paper is organized as follows: Section 2 briefly discusses some research

on ML-based IDSs. Section 3 describes the preliminary concepts of some standard meth-
ods for ML classification and meta-heuristic optimization. Section 4 and its subsections

Figure 1. Taxonomy of common IDSs.

There are ML algorithms capable of discovering hidden relationships in data and
making judgments without explicit guidance [10,11]. The majority of these techniques are
based on a back-propagation learning algorithm. Hence, IDS is a real-time system that
requires a high classifier performance speed during the system design planning stage. A
rapid and reliable approach to real-time applications for the detection of attacks is necessary
for IDS. As the learning algorithm and architecture of the extreme learning machine (ELM)
are efficient and straightforward, ELM can detect attacks more rapidly and precisely than
conventional identification approaches, such as support vector machines (SVM) [12,13].

Recently, the use of ELMs has increased in real-time classification applications, as they
outperform their peers in categorization. ELM can improve computational efficiency by
selecting the optimal features and identifying the number of neurons in the hidden layer.
The most effective selection methods are meta-heuristic-based, including evolutionary,
physics, and swarm algorithms. These methods can select the most ideal data features and
hyperparameter values to construct an efficient ML-model-based IDS [12].

Thus, an ML-based detection strategy that works well in terms of accuracy and FAR is
required to determine how many correct predictions were made and how effective the clas-
sifier was in reducing the number of wrongly classified cases. As such, this paper focuses
on constructing a robust software anomaly-based IDS using the techniques discussed from
a classification point of view. Additionally, it provides information about performance
metrics such as the accuracy, DR, FAR, precision, and F1-score. This paper makes the
following main contributions:

• Proposes a new IDS that uses ML rather than deep learning (DL) to create the classifi-
cation system, which has resulted in more efficient and less complicated models;

• Utilizes ELM for the categorization of attacks—ELM has already been utilized for IDS,
but not quite in the manner that is being proposed;

• Calculates the importance of features and chooses the best ones to detect attack types
using efficient meta-heuristic optimization algorithms;

• Selects optimal values of ELM parameters using a novel hybrid meta-heuristic-based
hyperparameter selection method;

• Utilizes an aggregation of ELM binary models, with one for each attack type, and
collects these models via a hierarchical layer to derive an interpretable and highly
accurate output.

The rest of the paper is organized as follows: Section 2 briefly discusses some research
on ML-based IDSs. Section 3 describes the preliminary concepts of some standard methods
for ML classification and meta-heuristic optimization. Section 4 and its subsections describe
the detailed stages of the proposed system. The experimental analytic procedures, the
UNSW-NB15 and CICIDS2017 dataset specifications, a demonstration of the performance
metrics, and a discussion of the results are presented in Section 5. Section 6 concludes
the paper.

Computers 2022, 11, 170 3 of 37

2. Literature Review

In this section, the state of the art is presented as regards the use of ML anomaly-based
IDSs for networks and the key theoretical approaches that use one or more of the important
datasets that are available for training the ML models.

Some researchers have presented overviews of various approaches to network in-
trusion detection that focus on improving the overall performance. These include ELM,
SVM, Random Forests (RF), Decision Trees (DT), Deep Neural Networks (DNN), Mul-
tilayer Perceptron (MLP), etc. Some researchers also focus on feature selection and hy-
perparameter optimization, representing two more common areas of study. This section
concentrates on the state of the art of multi-class classification using the selected benchmark
malware datasets.

Moualla et al. [12] suggested a network IDS based on multi-class ML that is dynami-
cally scalable. Structured based on supervised ML, the approach comprises many steps.
The dataset’s unbalanced classes are addressed with the synthetic minority oversampling
technique (SMOTE), which then extracts relevant features from the dataset for each class
using the extra trees classifier. In the next step, the ELM model acts as a binary classifier for
each type of attack (i.e., “One-Versus-All”) for its identification. Finally, a fully connected
layer is used to learn from all the possible permutations of the ELM classifier’s outputs. A
logistic regression layer is then used to make soft judgments across all classes.

Ren et al. [14] proposed an efficient IDS that combines data sampling and feature
selection in a single hybrid data optimization process. To obtain the best training dataset,
they utilized the RF classifier as the evaluation criterion, the Genetic Algorithm (GA)
to improve the sampling ratio, and the Isolation Forest (iForest) to filter out irrelevant
data. Once again, GA and RF were employed for feature selection to determine the best
possible subset of features to use. Finally, the best training dataset was collected via data
sampling, the best features were chosen through feature selection, and an RF-based IDS
was developed.

Gu and Lu. [15] suggested a naive Bayes feature embedding system based on SVM
for intrusion detection. In order to create new high-quality data, their system applies the
naive Bayes feature transformation approach to the original features. Next, the system
trains an SVM classifier on the changed data to create an intrusion detection model. The
proposed detection system is effective and resilient in experiments across various intrusion
detection datasets.

Faker and Dogdu. [16] integrated big data with deep learning techniques to boost IDS’
effectiveness. A Deep Feedforward Neural Network (DNN) and two ensemble techniques—
RF and Gradient Boosting Tree (GBT)—were used to classify the network traffic datasets.
They used a homogeneity metric to select the datasets’ most essential features. The ML
models were evaluated using a five-fold cross-validation approach. The proposed method
was implemented using Apache Spark, a distributed computing framework, the Keras
deep learning library was used for the deep learning application, and the Apache Spark
ML library was used for the ensemble techniques.

He et al. [17] proposed a system that extracts different levels’ features from the network
connection instead of a large feature vector for the sake of more efficient processing.
The system employs a multimodal-sequential intrusion detection technique utilizing a
hierarchical progressive network with Multimodal Deep Autoencoder (MDAE) and Long
Short-Term Memory (LSTM) technology. The system can easily combine information
on multiple levels’ characteristics inside a network and automatically learn temporal
information across nearby connections using a hierarchical progressive network.

Wang et al. [18] developed a model for IDS using an ameliorated Deep Belief Network
(DBN). Conventional approaches, such as neural network training methods, begin training
a model with pre-prepared parameters, including thresholds and randomly initialized
weights, which can cause problems such as the biasing of the model toward suboptimal
solutions and the extension of the training time. To improve the model, they employed
a Kernel-based Extreme Learning Machine (KELM) escorted by supervised learning in

Computers 2022, 11, 170 4 of 37

place of the back-propagation (BP) algorithm in DBN. Considering the poor classification
performance that might result from randomly initializing kernel parameters using KELM,
an improved grey wolf optimizer was developed to tune these parameters.

Vinayakumar et al. [19] developed a versatile and efficient IDS using a DNN to identify
and categorize unknown and unanticipated cyberattacks. The proposed model is based on a
hybrid intrusion detection warning system within a highly scalable framework deployed on
a commodity hardware server to assess the network and host-level activity for the purpose
of processing and analyzing large amounts of data in near real time. In-depth comparisons
with traditional ML classifiers on many benchmark IDS datasets led to the DNN model’s
selection. In addition, the suggested DNN model was used to collect real-time features
from hosts and networks to spot intrusions and attacks.

Choobdar et al. [20] developed an SDN-based IDS that can be deployed as an appli-
cation module in the controller. In the suggested system, there are three distinct stages.
Initially, the features are pre-trained using sparsely stacked autoencoders (AE), and later,
these are learned in an unsupervised way. The system is trained using the Softmax algo-
rithm in the second stage, and in the third stage, the system’s parameters are adjusted.

Lee et al. [21] proposed the Generative Adversarial Networks (GAN) model as a
solution to the problem of data imbalance by employing an unsupervised DL technique to
produce synthetic data that are highly comparable to real data. After fixing data imbalances
with a GAN, the proposed model uses RF to improve the detection performance.

Lee and Park [22] developed a DL-based IDS for use in networks when the ratio of ma-
licious to benign traffic is exceptionally high. The system’s goal is to address issues of data
asymmetry and achieve high-performance intrusion detection using unsupervised learning
models (AE and GAN models) during DL. The AE-CGAN (autoencoder–conditional GAN)
model was suggested to enhance the intrusion detection efficiency.

Researchers have explored and developed effective IDSs based on ML and DL. The
authors’ comprehensive evaluations of experiments with ML classifiers were used to
analyze several benchmark malware datasets that are available to the public, such as
UNSW-NB15 and CICIDS 2017, with three key challenges: (1) Some researchers assessed
their systems by establishing a few performance metrics that do not allow for deep analysis,
such as FAR, which is one primary types of IDS indicators. (2) They did not state the
optimal values of the hyperparameter selection methods. (3) The performance is affected by
significant differences in the feature numbers of each dataset. To deal with the challenges
outlined above, this paper considers feature selection methods and identifies the best
hyperparameter values of ELM when constructing multiple binary models to detect attack
types separately. It also evaluates the proposed system using six metrics: accuracy, precision,
DR, FAR, specificity, and the F1-score.

3. Preliminary Concepts

Software anomaly-based IDSs use different ML algorithms. Hence, enhancing the
designed ML pipeline increases the efficiency of the proposed software anomaly-based
IDS. The pipeline includes feature selection methods, the classifier, and hyperparameter
optimization. The next subsections provide brief descriptions of the various issues.

3.1. Feature Selection Methods

Feature selection (FS) is approached via three methods: filter, embedded, and wrapper.
The filter method identifies and extracts a feature subset via the given evaluation criteria,
the wrapper method utilizes the learning algorithms, and the embedded (hybrid) approach
combines both. The embedded method selects features based on their weights after training
an ML model [23,24].

Table 1 summarizes the characteristics of the three FS methods. Each method is
described, with examples of its benefits and drawbacks.

FS is the process of identifying the most important features and discarding or removing
irrelevant, redundant, and noisy features to derive a better classification model that requires

Computers 2022, 11, 170 5 of 37

less learning time and has a lower data dimensionality [25]. In the context of a feature set
size of f siz, the FS methods search for an optimal feature subset among the competitive
2 f siz possible subsets. Depending on the problem at hand, the definition of an optimal
subset may change [26].

Table 1. The benefits and drawbacks of the filter, embedded, and wrapper methods.

Method Benefits Drawbacks Examples

1. The filter method relies
on the dataset’s
characteristics to select a
subset of features
without running any
classifiers through
statistical analysis [27].

• Independence of the
classification algorithm.

• Lower computational
complexity.

• Filters are better than
embedding methods and
wrappers in terms of the
time consumed.

• No interaction with the
classifier.

• It is not apparent how
one sets a threshold for
selecting the subset
features and how noise is
filtered out.

• The selected feature
subset has a poorer
classification accuracy
than the embedded and
wrapper methods.

• Correlation feature
selection (CFS).

• Information gain.
• Consistency-based filter.

2. The embedded method
incorporates the FS
phase into the classifier
training process and is
usually tailored to the
specific learning
machine issue [23].

• Interacting with the
classification algorithm.

• Faster than the wrapper
method.

• More accurate than the
filter method.

• Less prone to overfitting.

• Classification algorithms
are dependent on subset
selection.

• Recursive Feature
Elimination for SVM
(RFE-SVM).

• Feature Selection
• Perceptron (FS-P).

3. The wrapper method is
considered one of the
most widely used and
robust supervised
learning algorithms, and
classification is
employed as a black box
to test the efficiency of
the best features [28].

• Interacting with the
classification algorithm.

• Classification algorithms
are dependent on subset
selection.

• Has the best
classification accuracy
compared to embedded
and filter methods.

• More prone to overfitting
than embedded and
wrapper methods.

• Costly in terms of
computation.

• Genetic Algorithm (GA).
• Particle Swarm

Optimization (PSO).
• Grey wolf optimization

(GWO).

Grey Wolf Optimizer (GWO)

Recently, a large number of meta-heuristic algorithms were created and used for a
wide range of optimization issues. The GWO algorithm for mathematical modeling was
created by Mirjalili et al. [29] and requires the adjustment of a few parameters, allowing
for exploration and exploitation to be accomplished in a straightforward manner while
offering favorable convergence [30].

The inspiration for the GWO is the predatory behaviors of grey wolves in the wild.
Wolves live in groups with a rigid hierarchy and several participants (5 to 12). In the GWO,
the population is separated into alpha (α)—group leader, beta (β)—can take over as leader
of the group if the alpha wolf gets sick or dies, and then delta (δ) and omega (ϕ)—the rest
of the group (see Figure 2). Predation involves a series of steps: pursuit, encirclement,
harassment, and, finally, attack [31,32]. Each wolf represents a possible solution, while the
prey itself is the best option. α, β, and δ are the best solutions. The remaining nominees
are marked as ϕ. Based on the locations of α, β, and δ, the positions of the omegas are

Computers 2022, 11, 170 6 of 37

updated. A wolf (wo) uses Equations (1)–(4) to figure out how far away it is from the three
best solutions. It then uses Equation (5) to change its position [32]:

→
A = 2

→
a ·→v1 −

→
a (1)

→
C = 2

→
v2 (2)

→
Dα =

∣∣∣∣→C · →Xα − →
Xwo

∣∣∣∣, →Dβ =

∣∣∣∣→C · →Xβ − →
Xwo

∣∣∣∣, →Dδ = ∣∣∣∣→C · →Xδ − →
Xwo

∣∣∣∣ (3)

→
X1 =

→
Xα −

→
A ·

→
Dα,

→
X2 =

→
Xβ −

→
A ·

→
Dβ,

→
X3 =

→
Xδ −

→
A ·

→
Dδ (4)

→
Xwo(nt) =

→
X1 +

→
X2 +

→
X3

3
(5)

where
→

Xwo,
→

Xα,
→

Xβ, and
→
Xδ are the position of the wolf vectors for wo, α, β, and δ, while

nt is the next iteration of the wolf vector.
→
A and

→
C are the coefficient vectors.

→
Dα,

→
Dβ, and

→
Dδ represent distance vectors between α, β, δ, and wo.

→
v1 and

→
v2 are vectors derived at

random from the range [0,1]. A variable with an arrow over it is a vector quantity. Thus,
writing an arrow over a variable is the standard way of writing a vector. “| |” represents
the absolute operator, which extracts the magnitude of an actual number independently
of its sign, while “·” represents the multiplication operator.

→
a is calculated using the

equation below:
→
a =

2− 2· t
tmax

(6)

where t is the number of current iterations, and tmax is the maximum number of iterations.

Computers 2022, 11, x FOR PEER REVIEW 6 of 34

𝐷ሬሬሬሬ⃗ = ห𝐶 ሬሬሬ⃗ · 𝑋ሬሬሬሬ⃗ − 𝑋௪ሬሬሬሬሬሬሬ⃗ ห, 𝐷ஒሬሬሬሬ⃗ = ห𝐶 ሬሬሬ⃗ · 𝑋ஒሬሬሬሬ⃗ − 𝑋௪ሬሬሬሬሬሬሬ⃗ ห, 𝐷ஔሬሬሬሬሬ⃗ = ห𝐶 ሬሬሬ⃗ · 𝑋ஔሬሬሬሬ⃗ − 𝑋௪ሬሬሬሬሬሬሬ⃗ ห (3) 𝑋ଵሬሬሬሬ⃗ = 𝑋ሬሬሬሬ⃗ − 𝐴 ሬሬሬ⃗ · 𝐷ሬሬሬሬ⃗ , 𝑋2ሬሬሬ⃗ = 𝑋βሬሬሬ⃗ − 𝐴 ሬሬ⃗ · 𝐷βሬሬሬ⃗ , 𝑋ଷሬሬሬሬ⃗ = 𝑋ஔሬሬሬሬ⃗ − 𝐴 ሬሬሬ⃗ · 𝐷ஔሬሬሬሬ⃗ (4)

𝑋௪ሬሬሬሬሬሬሬ⃗ (𝑛𝑡) = 𝑋ଵሬሬሬሬ⃗ + 𝑋ଶሬሬሬሬ⃗ + 𝑋ଷሬሬሬሬ⃗3 (5)

where 𝑋௪ሬሬሬሬሬሬሬ⃗ , 𝑋ሬሬሬሬ⃗ , 𝑋ஒሬሬሬሬ⃗ , and 𝑋ஔሬሬሬሬ⃗ are the position of the wolf vectors for 𝑤𝑜, α, β, and δ, while 𝑛𝑡 is the next iteration of the wolf vector. 𝐴 ሬሬሬ⃗ and 𝐶 ሬሬሬ⃗ are the coefficient vectors. 𝐷ሬሬሬሬ⃗ , 𝐷ஒሬሬሬሬ⃗ ,
and 𝐷ஔሬሬሬሬ⃗ represent distance vectors between α, β, δ, and 𝑤𝑜. 𝑣ଵሬሬሬሬ⃗ and 𝑣ଶ ሬሬሬሬሬ⃗ are vectors de-
rived at random from the range [0,1]. A variable with an arrow over it is a vector quantity.
Thus, writing an arrow over a variable is the standard way of writing a vector. “| |” rep-
resents the absolute operator, which extracts the magnitude of an actual number inde-
pendently of its sign, while “·” represents the multiplication operator. 𝑎 ሬሬ⃗ is calculated us-
ing the equation below: 𝑎 ሬሬ⃗ = 2 − 2 · 𝑡𝑡𝑚𝑎𝑥 (6)

where 𝑡 is the number of current iterations, and 𝑡௫ is the maximum number of itera-
tions.

Figure 2. Wolf group composition scheme.

3.2. Hyperparameter Optimization
Hyperparameter optimization in ML involves selecting the appropriate hyperparam-

eters for a learning algorithm. The values of a hyperparameter are utilized to tune the
learning process. The hyperparameters’ values must be tuned so that the model can opti-
mally handle the ML task. Different algorithms and methods can be used to determine the
best hyperparameter values, including meta-heuristic-based search algorithms [33]. Ar-
chimedes optimization and honey badger were recently introduced as heuristic-based
search algorithms.

3.2.1. Archimedes Optimization Algorithm (AOA)
AOA is a population-based meta-heuristic physics algorithm inspired by Archime-

des’ rules of buoyancy in water. AOA is an algorithm that uses a population of objects as
candidates to achieve a particular aim. AOA starts by determining how to fit the initial
population and then begins to repeat the process with a set limit. The search for objects
involves the generation of volumes, densities, and accelerations at random. By consider-
ing both exploitation and exploration, the AOA is a global optimization method that can
be described through a mathematical model with the following steps [34]:

Step 1—Initialization. This involves the initialization of all the objects’ locations, the
volume (vol), density (den), and acceleration (acc) using the equations below:

Figure 2. Wolf group composition scheme.

3.2. Hyperparameter Optimization

Hyperparameter optimization in ML involves selecting the appropriate hyperparam-
eters for a learning algorithm. The values of a hyperparameter are utilized to tune the
learning process. The hyperparameters’ values must be tuned so that the model can op-
timally handle the ML task. Different algorithms and methods can be used to determine
the best hyperparameter values, including meta-heuristic-based search algorithms [33].
Archimedes optimization and honey badger were recently introduced as heuristic-based
search algorithms.

Computers 2022, 11, 170 7 of 37

3.2.1. Archimedes Optimization Algorithm (AOA)

AOA is a population-based meta-heuristic physics algorithm inspired by Archimedes’
rules of buoyancy in water. AOA is an algorithm that uses a population of objects as
candidates to achieve a particular aim. AOA starts by determining how to fit the initial
population and then begins to repeat the process with a set limit. The search for objects
involves the generation of volumes, densities, and accelerations at random. By considering
both exploitation and exploration, the AOA is a global optimization method that can be
described through a mathematical model with the following steps [34]:

Step 1—Initialization. This involves the initialization of all the objects’ locations, the
volume (vol), density (den), and acceleration (acc) using the equations below:

ol = lbl + rand× (ubl − lbl); l = 1, 2, . . . , POP (7)

denl = rand
voll = rand

(8)

accl = lbl + rand× (ubl − lbl) (9)

where ol represents the lth object in a population of POP objects, while the minimum and
maximum boundaries of the solution space are denoted by lbl and ubl , respectively. rand
creates random numbers from the range [0,1] in the G-dimensional vector. In this step,
the best population is assessed, and the best-fitting object with the highest fitness value is
chosen and assigned obest, denbest, volbest, and accbest.

Step 2—Updates volumes and densities. The object’s volumes and densities for the
next iteration t + 1 are updated and can be formulated using the equations below:

dent+1
l =dent

l + rand× (denbest−dent
l)volt+1

l =volt
l + rand× (volbest−volt

l) (10)

where rand refers to a random numeric that is uniformly distributed between [0, 1]. denbest
and volbest refer to the volume and density of the best object identified up to this point.

Step 3—Transfer operator and density factor (TF). This step involves the transfer
from exploration to exploitation. A collision between objects is commenced and, after a set
time, the objects strive for a state of balance. The TF rises until it reaches a stable value and
is defined using the equation below:

TF = exp
(

t− tmax

tmax

)
(11)

where t is the number of current iterations, and tmax is the maximum number of iterations.
TF progressively grows over time until it reaches 1. Another feature that helps AOA in
global-to-local searches is the density decreasing factor dd f , which becomes smaller over
time and is defined using the equation below:

dd f t+1 = exp
(

tmax − t
tmax

)
−
(

t
tmax

)
(12)

Through iteration, the value of dd f t+1 decreases over time until it reaches a previously
identified target region. AOA enables a good balance between exploration and exploitation
if this variable is regulated well.

Step 4—Update the object’s acceleration and normalization. The object’s accelera-
tion for the iteration t + 1 update process acct+1

l is split into three phases. These are called
the “exploration phase,” “Exploitation phase,” and the “normalized acceleration phase”.
The following offers a more detailed explanation.

Computers 2022, 11, 170 8 of 37

Step 4.1—Exploration phase (a collision between objects occurs). If TF ≤ 0.5,
which indicates a collision between objects, we choose the random material (mr) and
update the object’s acceleration for iteration t + 1 using the equation below:

acct+1
l =

denmr + volmr × accmr

dent+1
l × volt+1

l

(13)

where denil , voll , and accl represent the density, volume, and acceleration of the object l, re-
spectively. The density, volume, and acceleration of the random material are represented by,
denmr, volmr, and accmr, respectively. In particular, it is essential to note that TF ≤ 0.5 en-
ables exploration in one-third of the iteration time. The exploration–exploitation efficiency
is altered when a value other than 0.5 is used.

Step 4.2—Exploitation phase (no collision between objects occurs). In the absence
of collisions (i.e., TF > 0.5), the following equation should be used to update the object’s
acceleration at the next iteration, t + 1:

acct+1
l =

denbest + volbest × accbest

dent+1
l × volt+1

l

(14)

where accbest represents the object’s acceleration and is the best possible value.
Step 4.3—Normalize acceleration. Here, the acceleration is normalized to compute

the alteration percentage using the equation below:

acct+1
l−norm = up×

acct+1
l − min(acc)

max(acc)−min(acc)
+ lo (15)

where the range of normalization is defined as up = 0.9 and lo = 0.1, respectively. acct+1
l−norm

specifies the proportion of the step that each object alters. The acceleration values are high
if the object l is far from the global optimum, indicating that it is in the exploration phase.
Conversely, it will be in the exploitation phase, i.e., demonstrating the advancement of
the search from its exploration phase to its exploitation phase. The AOA is successful in
achieving stability with regard to exploitation and exploration.

Step 5—Update position. During the exploration phase (i.e., TF ≤ 0.5), the position
must be updated, whereby the position of object lth is modified for the next iteration t + 1
using the equation below:

bt+1
l = bt

l + Con1 × rand× acct+1
l−norm × dd f ×

(
brand − bt

l
)

(16)

where bt+1
l represents the lth object’s updated position in a population of POP objects. Con1

is a constant that always equals 2. Contrarily, however, during the exploitation phase (i.e.,
TF > 0.5), the objects update their locations using the equation below:

bt+1
l = bt

best + F× Con2 × rand× acct+1
l−norm × dd f ×

(
TR× bbest − bt

l
)

(17)

where Con2 is a constant equal to 6. TR rises as time goes on and is directly proportional
to the transfer operator, which can be represented as TR = Con3 × TF. The range of TR is
[Con3 × 0.3, 1], and Con3 is a constant equal to 2. We begin with small proportions, since
this causes the step size of the random walk to be significant and the difference between
the best and the present positions to be considerable. During the search, this proportion
gradually increases to diminish the disparity between the best and the actual positions,
achieving a balance between exploration and exploitation. F presents the direction of the
object as a flag that is arranged according to the object positions, which are defined using
the equation below:

F =

{
+1 i f p ≤ 0.5
−1 i f p > 0.5

(18)

Computers 2022, 11, 170 9 of 37

where p = 2× rand− Con4, and Con4 is a constant equal to 0.5.
Step 6—Evaluation. Through iteration, AOA uses the objective function and identifies

the best possible solution for each object as the evaluation while allocating the best values
to each of the following variables: bbest, volbest, denbest, and accbest.

3.2.2. Honey Badger Algorithm (HBA)

The honey badger is a huge weasel-like animal with black and white fluffy hair that is
found in the semi-deserts of Africa, Southwest Asia, and the Indian subcontinent. The HBA
is a honey badger swarm-based algorithm modeled based on the clever hunting behavior
of honey badgers, who either smell and dig or follow the honeyguide bird to find food.
The HBA process may be broken down into two steps: the “digging phase” and the “honey
phase”, respectively. Thus, in the first phase, referred to as the digging mode, it utilizes
its sense of smell to identify the prey’s approximate position. Once it reaches the prey, it
changes its position to find the best location for digging and capturing it. The honey badger
uses the honeyguide bird as a direct guide to the beehive in a later phase, referred to as the
honey mode. The following shows a mathematical explanation of these processes [35].

Step 1—Initialization phase. We set the starting population size (PS) and locations of
the honey badgers using the equation below:

zk = lbk + r1 × (upbk − lobk); k = 1, 2, . . . , PS (19)

where zk represents the kth honey badger in a population of PS objects. In this context, upbk
and lobk represent the lower and upper boundaries of the search space. r1 is a random
number in the range [0,1].

Step 2—Defining intensity (I). Calculating the intensity based on the prey’s attention
force and the badger’s proximity to the prey is the purpose of this step, kth. This equa-
tion states that if the prey’s scent intensity (Ik) is high, it will move rapidly. If the scent
intensity (Ik) is low, it will move slowly, based on the inverse square law, as stated by the
following equation:

Ik = r2 ×
S

4πd2
k

, S = (zk + zk+1)
2, disk = zprey −zk (20)

where S is the attention force, disk represents the distance that separates the prey from the
kth honey badger, and zprey is the prey’s position. r2 is also a random value in the range of
[0, 1].

Step 3—Update density factor (∂). This step controls the randomization of time-based
changes to facilitate a smooth transition from exploration to exploitation. Here, we update
the density factor (∂), which is reduced with each iteration, to render randomization less
probable over time using the equation below:

∂ = cons× exp
(
−t

tmax

)
(21)

where t stands for the current iteration number, cons is a constant number equal to 2, and
tmax represents the maximum number of iterations.

Step 4—Escaping and averting local optimum. This step, along with the two steps
that follow it, is used to break out of the optimal local positions. In this scenario, the HBA
uses a flag called E that modifies the search direction to provide increased possibilities for
agents/candidates to thoroughly scan the search space.

Step 5—Updating the positions of agents/candidates. The HBA position update
process (znew) is split into two phases, which were previously mentioned. These phases
are called the “digging phase” and the “honey phase”. The following offers a more
detailed explanation.

Computers 2022, 11, 170 10 of 37

5.1—Digging phase. Honey badgers utilize their keen sense of smell to locate their
prey and then dig around it using their cardioid shape. The HBA update position procedure
(znew) is carried out throughout the digging phase via the equation below:

znew = zprey + E× γ× I × zprey + E× r3 × ∂× disk × |cos(2πr4)× [1− cos(2πr5)]| (22)

where zprey represents the best estimate of the prey’s location, I represents the intensity
mentioned in step 2, and the update density factor is denoted by ∂, as mentioned in step 3.
The honey badger’s food-gathering capacity is given by the variable γ ≥ 1 (which is set to 6
by default). disk is the distance from the honey badger to its prey. r3, r4, and r5 denote three
random numbers in the range of [0,1], respectively, “| |” represents the absolute operator. E
is a flag used to modify the search direction, which is represented by the equation below:

E =

{
+1 i f r6 ≤ 0.5
−1 i f r6 > 0.5

(23)

where r6 is also a random value in the range [0, 1]. The smell intensity I of zprey is repre-
sented, and disk is the distance from the honey badger to its prey, and the search influence
factor is ∂, which changes over time. Both are critical factors in the honey badger’s dig-
ging phase. In addition, any disruption E may be caused by the prey during the digging
activities, enabling the badger to choose an even better location for its approach.

5.2—Honey phase. Sometimes a honey badger follows a honeyguide bird to access a
beehive. This can be represented via the following equation:

znew = zprey + E× r7 × ∂× disk (24)

where znew indicates the honey badger’s new position, and zprey indicates the prey’s po-
sition. r7 is also a random value in the range [0, 1]. Equations (21) and (23) can be used to
compute ∂ and E, respectively. In Equation (24), it can be observed that the honey badger
searches near the prey’s position zprey, as it has already been identified, depending on
the information obtained about the distance disk. The time-varying search behavior ∂
has an effect on the search at this point. An E disturbance may also be discovered by a
honey badger.

3.3. Extreme Learning Machine (ELM) Classifier

The ELM was developed by Huang et al. [36]. It is a feedforward network with a
single hidden layer and three components: input neurons, hidden neurons, and output
neurons [37]. The ELM has recently caught the attention of an increasing number of
researchers. It can overcome several challenges in ways that other techniques cannot
due to its strong generalization capacity, low reliance on manual intervention, and the
assurance of a specific level of learning accuracy. It saves a great deal of time and cost when
compared to conventional neural networks [38,39]. Figure 3 depicts the model diagram for
a single-hidden-layer feedforward network ELM model.

Computers 2022, 11, 170 11 of 37

Computers 2022, 11, x FOR PEER REVIEW 10 of 34

where 𝑟 is also a random value in the range [0,1]. The smell intensity 𝐼 of 𝑧௬ is repre-
sented, and 𝑑𝑖𝑠 is the distance from the honey badger to its prey, and the search influ-
ence factor is 𝜕, which changes over time. Both are critical factors in the honey badger’s
digging phase. In addition, any disruption 𝐸 may be caused by the prey during the dig-
ging activities, enabling the badger to choose an even better location for its approach.

5.2—Honey phase. Sometimes a honey badger follows a honeyguide bird to access a
beehive. This can be represented via the following equation: 𝑧௪ = 𝑧௬ + 𝐸 × 𝑟 × 𝜕 × 𝑑𝑖𝑠 (24)

where 𝑧௪ indicates the honey badger’s new position, and 𝑧௬ indicates the prey’s po-
sition. 𝑟 is also a random value in the range [0,1]. Equations (21) and (23) can be used to
compute 𝜕 and 𝐸, respectively. In Equation (24), it can be observed that the honey badger
searches near the prey’s position 𝑧௬, as it has already been identified, depending on the
information obtained about the distance 𝑑𝑖𝑠. The time-varying search behavior 𝜕 has an
effect on the search at this point. An 𝐸 disturbance may also be discovered by a honey
badger.

3.3. Extreme Learning Machine (ELM) Classifier
The ELM was developed by Huang et al. [36]. It is a feedforward network with a

single hidden layer and three components: input neurons, hidden neurons, and output
neurons [37]. The ELM has recently caught the attention of an increasing number of re-
searchers. It can overcome several challenges in ways that other techniques cannot due to
its strong generalization capacity, low reliance on manual intervention, and the assurance
of a specific level of learning accuracy. It saves a great deal of time and cost when com-
pared to conventional neural networks [38,39]. Figure 3 depicts the model diagram for a
single-hidden-layer feedforward network ELM model.

Figure 3. The architecture of the ELM, a single-hidden-layer feedforward network [39].

For any given classification problem, there are 𝑁 unique samples (𝑥, 𝑦), where 𝑥 = [𝑥ଵ, 𝑥ଶ, … , 𝑥]் ∈ 𝑅 is the sample input vector and 𝑦 = [𝑦ଵ, 𝑦ଶ, … , 𝑦]் ∈ 𝑅 is
the output vector, while 𝑛 is the number of features of the training sample, and 𝑚 is the
total number of training sample classes. 𝐿 indicates the nodes used in the hidden layer of
the ELM. The output of the ELM can be formulated using the following equations:

Figure 3. The architecture of the ELM, a single-hidden-layer feedforward network [39].

For any given classification problem, there are N unique samples (xi, yi), where
xi = [xi1, xi2, . . . , xin]

T ∈ Rn is the sample input vector and yi = [yi1, yi2, . . . , yim]
T ∈ Rm

is the output vector, while n is the number of features of the training sample, and m is the
total number of training sample classes. L indicates the nodes used in the hidden layer of
the ELM. The output of the ELM can be formulated using the following equations:

L

∑
i=1

Ωig
(
ωi.xj + ui

)
= Qj, j = 1, 2, . . . , N (25)

where g(•) is the activation function, and ωi = [ωi1,ωi2, . . . , ωin]
T indicates the in-

put weight vector that connects the input layer nodes to the hidden layer nodes. Ωi =

[Ωi1, Ωi2, . . . , Ωin]
T indicates the output weight vector that acts as the connecting link

between the hidden layer nodes and output layer nodes. ui indicates the offset value of
the first node in the hidden layer. ωi.xj indicates the weight assigned to the inner product
of the value and the training sample value. Qj is the network model’s actual output. The
objective of the single-hidden-layer feedforward network is to minimize the output result’s
error value using the equation below:

N

∑
j=1
‖Qj − yj‖ = 0 (26)

where yj is the predicted output, and ‖ ‖ is a bounded operator between normal spaces. Ac-
cording to Equations (25) and (26), Ωi, ωi, and ui exist to render the following equation true:

L

∑
i=1

Ωig
(
ωi.xj + ui

)
= yj, j = 1, 2, . . . , N (27)

Based on the matrix, the following simplification of Equation (27) can be made:

HΩ = T (28)

Computers 2022, 11, 170 12 of 37

where H stands for the output value matrix of the hidden layer, Ω stands for the output
weight matrix that extends from the hidden layer to the output layer, and T represents the
predicted output matrix. In addition to this, H, T, and Ω are expressed via the following:

H =

 g(ω1.x1 + u1) · · · g(ωL.x1 + uL)
...

. . .
...

g(ω1.xN + u1) · · · g(ωL.xN + uL)

N×L

(29)

Ω =

ΩT
1

...
ΩT

L

L×m

(30)

T =

yT
1
...

yT
L

N×m

(31)

The equation HΩ = T cannot be demonstrated in the great majority of cases. Several
criteria are determined to train a model, including Ωi,ωi, and ui. The following equation
demonstrates the importance of adjusting these criteria in order to achieve the minimum
possible error:

‖H(ωi, u1)Ωi − T‖ = min
ωi ,Ωi ,ui

‖H(ωi, ui)Ωi − T‖ (32)

The conventional neural network algorithm would spend more time training the
model due to its continuous optimization of the parameters during the iterative process of
dealing with such issues. The input weights and the bias of the hidden layer are randomly
initialized in the model training of the ELM. The output weight matrix is also provided.
Since H is determined, the model becomes a linear system, HΩ = T, which can be fixed
with least-squares. Ω can be formulated using the equation:

Ω = H+T (33)

In Equation (33), the symbol H+ represents the Moore–Penrose generalized inverse
matrix of the weight matrix of H’s output.

ELM is effective as a single-hidden-layer feedforward network with a high ability
to generalize, as little manual intervention as possible, and a guarantee of the learning
accuracy. Moreover, the algorithm’s speed is significantly increased. It saves costs and
a great deal of time. This occurs during training, as the algorithm does not require the
repeated optimization of the input weights and hidden layers from the input layer to the
hidden layer. There is a neuron offset, but the input weight and hidden layer offsets are
obtained through random initialization. During training, we are only required to deduce
how many neurons are in the hidden layer. We can directly obtain the model’s output
weight from this point and finish the training. The following Algorithm 1 is a summary of
the learning process that is carried out by the ELM.

Computers 2022, 11, 170 13 of 37

Algorithm 1: Standard ELM Procedure

Input: Activation function g(•)
#Neurons of hidden layer L
N training samples (xi, yi), xi ∈ Rn, yi ∈ Rm, i ∈ 1, 2, . . . , N.

Output: The output weight Ω from the hidden layer to the output layer.

Computers 2022, 11, x FOR PEER REVIEW 12 of 34

In Equation (33), the symbol 𝐻ା represents the Moore–Penrose generalized inverse
matrix of the weight matrix of 𝐻’s output.

ELM is effective as a single-hidden-layer feedforward network with a high ability to
generalize, as little manual intervention as possible, and a guarantee of the learning accu-
racy. Moreover, the algorithm’s speed is significantly increased. It saves costs and a great
deal of time. This occurs during training, as the algorithm does not require the repeated
optimization of the input weights and hidden layers from the input layer to the hidden
layer. There is a neuron offset, but the input weight and hidden layer offsets are obtained
through random initialization. During training, we are only required to deduce how many
neurons are in the hidden layer. We can directly obtain the model’s output weight from
this point and finish the training. The following Algorithm 1 is a summary of the learning
process that is carried out by the ELM.

 Algorithm 1: Standard ELM Procedure

Input: Activation function 𝑔()
#Neurons of hidden layer 𝐿
N training samples (𝑥, 𝑦), 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, 𝑖 ∈ 1,2, … , 𝑁.

 Output: The output weight 𝛺 from the hidden layer to the output layer.
 Begin
 1. Initialize randomly the input weights ω and the offset of the hidden layer 𝑢,
 2. Calculatethe output weight of the hidden layer 𝐻 and
 3. Calculate the output weight from hidden layer to the output layer 𝛺.
 End

Our research focuses on constructing an ML-based network IDS. As IDS is a real-time
application, ELM is strongly recommended, since it involves simple implementation, has
an excellent generalizability, and requires less time spent on training, without iterative
adjustment.

4. Proposed Methodology for the IDS Development
4.1. Proposed Development Pipeline

In binary classification, two classes correspond to the two decision elements. In
multi-class approaches, there are many 𝐹𝑁 choice elements, with one for each of the 𝐹𝑁
classes. Learning a function that maps the set of input features to two decision elements
is more straightforward than learning a function that maps the input features to 𝐹𝑁 de-
cision elements. As a result, multi-class classification is more complicated than binary
classification, especially when dealing with imbalanced big data.

After reviewing the previously identified challenges in the research, we determined
that the ELM algorithm performs well in change classification, whether multi-class or bi-
nary. The learning process of the ELM technique is also affected by the selection of the
optimum features. Additionally, the number of neurons in the hidden layer is a challenge
in the hyperparameter tuning of the ELM algorithm.

The proposed multi-class classification issue was broken down into a collection of
binary classifications to reduce the complexity burden on the classifiers in the aggregation
stage. Figure 4 shows the major components of the proposed meta-heuristic optimization
algorithms based on the hierarchical IDS. The figure is to scale, can be used to reliably
detect the ever-changing data streams in future networks, and contains three principal
stages. First, the proposed system starts with a set of essential phases that must be per-
formed before the training process. More specifically, network traffic packets are the data
stream captured and logged in the raw dataset before preprocessing, feature reduction,
and subsampling to generate binary sub-datasets, guaranteeing the data quality before
sending them to the IDS. Secondly, the training stage splits the binary sub-datasets into
training and validation test sets, trains the ELM model using the training set, optimizes
the hyperparameters using the validation set, and evaluates the binary ELM model using

Our research focuses on constructing an ML-based network IDS. As IDS is a real-
time application, ELM is strongly recommended, since it involves simple implementa-
tion, has an excellent generalizability, and requires less time spent on training, without
iterative adjustment.

4. Proposed Methodology for the IDS Development
4.1. Proposed Development Pipeline

In binary classification, two classes correspond to the two decision elements. In
multi-class approaches, there are many FN choice elements, with one for each of the FN
classes. Learning a function that maps the set of input features to two decision elements
is more straightforward than learning a function that maps the input features to FN
decision elements. As a result, multi-class classification is more complicated than binary
classification, especially when dealing with imbalanced big data.

After reviewing the previously identified challenges in the research, we determined
that the ELM algorithm performs well in change classification, whether multi-class or
binary. The learning process of the ELM technique is also affected by the selection of the
optimum features. Additionally, the number of neurons in the hidden layer is a challenge
in the hyperparameter tuning of the ELM algorithm.

The proposed multi-class classification issue was broken down into a collection of
binary classifications to reduce the complexity burden on the classifiers in the aggregation
stage. Figure 4 shows the major components of the proposed meta-heuristic optimization
algorithms based on the hierarchical IDS. The figure is to scale, can be used to reliably detect
the ever-changing data streams in future networks, and contains three principal stages.
First, the proposed system starts with a set of essential phases that must be performed before
the training process. More specifically, network traffic packets are the data stream captured
and logged in the raw dataset before preprocessing, feature reduction, and subsampling to
generate binary sub-datasets, guaranteeing the data quality before sending them to the IDS.
Secondly, the training stage splits the binary sub-datasets into training and validation test
sets, trains the ELM model using the training set, optimizes the hyperparameters using
the validation set, and evaluates the binary ELM model using the test set. Finally, for
the intrusion detection task, there is an aggregated anomaly detection engine that uses a
hierarchical structure.

Computers 2022, 11, 170 14 of 37

Computers 2022, 11, x FOR PEER REVIEW 13 of 34

the test set. Finally, for the intrusion detection task, there is an aggregated anomaly detec-
tion engine that uses a hierarchical structure.

Figure 4. Context flowchart of the proposed system.

4.2. Essential Stage: Network Traffic and Data Preparation
The ML pipeline is commenced at this point, and the raw datasets obtained through

a tcpdump or similar network packet collection technique are loaded and handled. There
are differences in the dataset, especially when examining instances with a large amount
of data and a high level of imbalance in the classes. Data preparation guarantees the
model’s quality in terms of its construction and prediction by imputing missing values,
removing data redundancy, and excluding data outliers. To facilitate the ML modeling
process, we proposed an FS method to discard irrelevant, redundant, or noisy features
without affecting the data quality and performance of the classification model. Figure 5
represents different phases of the essential data stage for the proposed scheme.

Figure 4. Context flowchart of the proposed system.

4.2. Essential Stage: Network Traffic and Data Preparation

The ML pipeline is commenced at this point, and the raw datasets obtained through a
tcpdump or similar network packet collection technique are loaded and handled. There
are differences in the dataset, especially when examining instances with a large amount of
data and a high level of imbalance in the classes. Data preparation guarantees the model’s
quality in terms of its construction and prediction by imputing missing values, removing
data redundancy, and excluding data outliers. To facilitate the ML modeling process, we
proposed an FS method to discard irrelevant, redundant, or noisy features without affecting
the data quality and performance of the classification model. Figure 5 represents different
phases of the essential data stage for the proposed scheme.

Computers 2022, 11, 170 15 of 37
Computers 2022, 11, x FOR PEER REVIEW 14 of 34

Figure 5. First stage of the essential data preparation procedures.

4.2.1. Data Preprocessing Phase
The proposed system accepts and loads the raw dataset and handles it through fea-

ture mapping, missing value imputation, and normalization to derive the final tuned da-
taset. When dealing with categorical features, a mapping strategy such as label-encoding
(LE) is used to encode them numerically. The LE method assigns a numerical value to
each classified feature. Since network systems occasionally lose packets while transferring
or exchanging faulty data values, the missing values must be addressed as follows. The
missing values of the numeric features are replaced with their mean values. Additionally,
the missing values of the categorical features are replaced with unknown values. Feature
transformation is supported by normalization. The “StandardScaler” normalization
method eliminates any bias in the features and preserves their statistical characteristics as
unaltered.

4.2.2. Feature Selection and Data Reduction Phase
The amount of digital data available around the world is continually increasing, be-

cause data are being collected for various reasons. As a result, ML algorithms can deal
with the growth in both the volume and complexity of the data.

Binary GWO Feature Subset Selection (BGWO)
BGWO is a binary optimization selection method, wherein each feature in a dataset

is represented as a binary cell in the solution vector. A value of 1 indicates that a feature
is relevant and important, whereas a value of 0 indicates that a feature is not selected and
is irrelevant to the objective function (see Figure 6).

Figure 5. First stage of the essential data preparation procedures.

4.2.1. Data Preprocessing Phase

The proposed system accepts and loads the raw dataset and handles it through feature
mapping, missing value imputation, and normalization to derive the final tuned dataset.
When dealing with categorical features, a mapping strategy such as label-encoding (LE)
is used to encode them numerically. The LE method assigns a numerical value to each
classified feature. Since network systems occasionally lose packets while transferring or
exchanging faulty data values, the missing values must be addressed as follows. The
missing values of the numeric features are replaced with their mean values. Additionally,
the missing values of the categorical features are replaced with unknown values. Feature
transformation is supported by normalization. The “StandardScaler” normalization method
eliminates any bias in the features and preserves their statistical characteristics as unaltered.

4.2.2. Feature Selection and Data Reduction Phase

The amount of digital data available around the world is continually increasing,
because data are being collected for various reasons. As a result, ML algorithms can deal
with the growth in both the volume and complexity of the data.

Binary GWO Feature Subset Selection (BGWO)

BGWO is a binary optimization selection method, wherein each feature in a dataset is
represented as a binary cell in the solution vector. A value of 1 indicates that a feature is
relevant and important, whereas a value of 0 indicates that a feature is not selected and is
irrelevant to the objective function (see Figure 6).

Computers 2022, 11, 170 16 of 37
Computers 2022, 11, x FOR PEER REVIEW 15 of 34

Figure 6. Binary representation of a solution.

All positions in the GWO may be found everywhere in a continuous space. This al-
lows for the updating of the equations to be implemented simply. In BGWO, the search
spaces are represented as a hypercube, i.e., the wolves move to be either closer to or fur-
ther away from the hypercube by adjusting specific values (which must be binarized as 0
or 1). It is impossible to continue utilizing the same equations, as mentioned above, in
GWO to keep it up to date [32]. BGWO follows the mathematical model of GWO to obtain
the values of α, β, and δ and utilizes Equation (3) to acquire 𝐷ሬሬሬሬ⃗ , 𝐷ஒሬሬሬሬ⃗ , and 𝐷ஔሬሬሬሬ⃗ . Next, the
sigmoid function (𝑆ଵ) is applied to obtain 𝑠ଵ, 𝑠ଶ, and 𝑠ଷ, which can be formulated using
the following equations:

10(. 0.5)
1 1/ (1)

d dA Dds e α− −= + (34)

10(. 0.5)
2 1 / (1)

d dA Dds e β− −= + (35)

10(. 0.5)
3 1/ (1)

d dA Dds e δ− −= + (36)

where 𝑑 refers to the wolf’s 𝑑௧ dimension.
The 𝑏𝑠𝑡𝑒𝑝ଵ , 𝑏𝑠𝑡𝑒𝑝ଶ , and 𝑏𝑠𝑡𝑒𝑝ଷ values are calculated using Equations (37)–(39).

Next, the result provides a binary value rather than a continuous one. Then, as shown in
the Equations (34)–(36), we use the transfer function to perform the switch. The values of
0 and 1 are used for the comparison with random numbers:

1
1

1 ()
0

d
d if s randn

bestp
else

 ≥
=

 (37)

2
2

1 ()
0

d
d if s randn

bestp
else

 ≥
=

 (38)

3
3

1 ()
0

d
d if s randn

bestp
else

 ≥
=

 (39)

where 𝑟𝑎𝑛𝑑𝑛 is a number chosen at random from the range [0,1]. 𝑏𝑠𝑡𝑒𝑝ଵ, 𝑏𝑠𝑡𝑒𝑝ଶ, and 𝑏𝑠𝑡𝑒𝑝ଷ are the distances that 𝑤𝑜 moved relative to α, β, and δ (𝑤𝑜 mentioned above in
GWO). The following equations are used to determine 𝑋ଵ, 𝑋ଶ, and 𝑋ଷ:

1
1

1 (1)
2

d d
d if X bstep

X
else

α + ≥
=

 (40)

1
1

1 (1)
2

d d
d if X bstep

X
else

α + ≥
=

 (41)

3
3

1 (1)
2

d d
d if X bstep

X
else

δ + ≥
=

 (42)

Figure 6. Binary representation of a solution.

All positions in the GWO may be found everywhere in a continuous space. This allows
for the updating of the equations to be implemented simply. In BGWO, the search spaces
are represented as a hypercube, i.e., the wolves move to be either closer to or further away
from the hypercube by adjusting specific values (which must be binarized as 0 or 1). It is
impossible to continue utilizing the same equations, as mentioned above, in GWO to keep
it up to date [32]. BGWO follows the mathematical model of GWO to obtain the values

of α, β, and δ and utilizes Equation (3) to acquire
→

Dα,
→

Dβ, and
→
Dδ. Next, the sigmoid

function (S1) is applied to obtain s1, s2, and s3, which can be formulated using the following
equations:

sd
1 = 1/(1 + e−10(Ad .Dd

α−0.5)) (34)

sd
2 = 1/(1 + e−10(Ad .Dd

β−0.5)
) (35)

sd
3 = 1/(1 + e−10(Ad .Dd

δ−0.5)) (36)

where d refers to the wolf’s dth dimension.
The bstep1, bstep2, and bstep3 values are calculated using Equations (37)–(39). Next,

the result provides a binary value rather than a continuous one. Then, as shown in the
Equations (34)–(36), we use the transfer function to perform the switch. The values of 0
and 1 are used for the comparison with random numbers:

bestpd
1 =

{
1 i f (sd

1 ≥ randn)
0 else

(37)

bestpd
2 =

{
1 i f (sd

2 ≥ randn)
0 else

(38)

bestpd
3 =

{
1 i f (sd

3 ≥ randn)
0 else

(39)

where randn is a number chosen at random from the range [0,1]. bstep1, bstep2, and bstep3
are the distances that wo moved relative to α, β, and δ (wo mentioned above in GWO). The
following equations are used to determine X1, X2, and X3:

Xd
1 =

{
1 i f (Xd

α + bstepd
1 ≥ 1)

2 else
(40)

Xd
2 =

{
1 i f (Xd

α + bstepd
2 ≥ 1)

2 else
(41)

Xd
3 =

{
1 i f (Xd

δ + bstepd
3 ≥ 1)

2 else
(42)

Computers 2022, 11, 170 17 of 37

Finally, we employ straightforward stochastic crossover, illustrated by Equation (43),
to update the location of Xwo in the subsequent iteration:

Xd
sh (nt) =

Xd

1 i f (rand < 1/3)
Xd

2 i f (1/3 ≤ rand < 2/3)
Xd

3 else
(43)

In turn, BGWO employs the FS method, which works by selecting the features of
the purity classification through a summary formed by selecting the relevant features and
ignoring the others for the sake of the maximization of the classification accuracy (see
Figure 7).

Computers 2022, 11, x FOR PEER REVIEW 16 of 34

Finally, we employ straightforward stochastic crossover, illustrated by Equation (43),
to update the location of 𝑋௪ in the subsequent iteration:

1

2

3

(1 3)
() (1 3 2 3)

d

d d

d

X if rand
X nt X if rand

X

 <

= ≤ <

sh

else
 (43)

In turn, BGWO employs the FS method, which works by selecting the features of the
purity classification through a summary formed by selecting the relevant features and
ignoring the others for the sake of the maximization of the classification accuracy (see
Figure 7).

Figure 7. BGWO FS method of purity classification.

4.2.3. Multiple-Attack-Based Dataset(s) Subsampling Phase
The reduced dataset with a subset of flow features already extracted using the BGWO

FS method is split into multiple binary and balanced datasets. Each sub-dataset is derived
based on a specific attack, i.e., a binary label. The derived dataset is subsampled randomly
for use in the subsequent stage(s) and reduces the system complexity.

4.3. Classification Stage
We use a type of ML called the “supervised learning approach”. Each instance in the

dataset is classified into a label or category. Classification enables us to construct a model
that assigns a subset of features to each category. The ELM classifier is introduced as one
of the speediest learning algorithms. It is speedier than the multitude of back-propaga-
tion-based classifiers and meets the requirements related to the performance speed in
many applications, especially those that run in real time.

ELM Hyperparameter Optimization
In the abovementioned learning algorithm, many parameters affect the classifier per-

formance and change the evaluation outcomes, such as the accuracy, FAR, and others.
These parameters include the number of hidden neurons, the activation function, the
learning rate, and the number of iterations. The proposed system uses meta-heuristic
physics and swarm algorithms to determine the best values for the hyperparameters so as
to overcome such challenges. Figure 8 shows the major roles of the designed algorithm(s)
in identifying the best values. The tuned dataset is first resampled randomly to generate
a balanced binary subsample dataset per attack. Hence, the first stage outputs a set of the
binary subsampled dataset(s) (i.e., one sub-dataset per attack), which is/are used to con-
struct multiple binary ELM classifier(s) (i.e., software anomaly-based recognizers per at-
tack). The binary ELM classifiers are utilized, and the hyperparameter is tuned using one
of the designed physics and swarm-based search methods. Most ELMs significantly re-
duce the computational burdens and use one single-hidden-layer feedforward neural

Figure 7. BGWO FS method of purity classification.

4.2.3. Multiple-Attack-Based Dataset(s) Subsampling Phase

The reduced dataset with a subset of flow features already extracted using the BGWO
FS method is split into multiple binary and balanced datasets. Each sub-dataset is derived
based on a specific attack, i.e., a binary label. The derived dataset is subsampled randomly
for use in the subsequent stage(s) and reduces the system complexity.

4.3. Classification Stage

We use a type of ML called the “supervised learning approach”. Each instance in the
dataset is classified into a label or category. Classification enables us to construct a model
that assigns a subset of features to each category. The ELM classifier is introduced as one of
the speediest learning algorithms. It is speedier than the multitude of back-propagation-
based classifiers and meets the requirements related to the performance speed in many
applications, especially those that run in real time.

ELM Hyperparameter Optimization

In the abovementioned learning algorithm, many parameters affect the classifier
performance and change the evaluation outcomes, such as the accuracy, FAR, and others.
These parameters include the number of hidden neurons, the activation function, the
learning rate, and the number of iterations. The proposed system uses meta-heuristic
physics and swarm algorithms to determine the best values for the hyperparameters so as
to overcome such challenges. Figure 8 shows the major roles of the designed algorithm(s)
in identifying the best values. The tuned dataset is first resampled randomly to generate
a balanced binary subsample dataset per attack. Hence, the first stage outputs a set of
the binary subsampled dataset(s) (i.e., one sub-dataset per attack), which is/are used to
construct multiple binary ELM classifier(s) (i.e., software anomaly-based recognizers per
attack). The binary ELM classifiers are utilized, and the hyperparameter is tuned using one
of the designed physics and swarm-based search methods. Most ELMs significantly reduce
the computational burdens and use one single-hidden-layer feedforward neural network,

Computers 2022, 11, 170 18 of 37

which involves using a “One-Versus-All” binary classifier that is applied to each class for
the purpose of simple and fast processing. Hence, the most common parameter required
for tuning the ELM classifier is the number of neurons of the single hidden layer.

Computers 2022, 11, x FOR PEER REVIEW 17 of 34

network, which involves using a “One-Versus-All” binary classifier that is applied to each
class for the purpose of simple and fast processing. Hence, the most common parameter
required for tuning the ELM classifier is the number of neurons of the single hidden layer.

Figure 8. Hyperparameter optimization of a classification model.

Figure 9 represents an ELM tuning procedure using the physics meta-heuristic-based
AOA. In AOA, we search for the best values of the most important field of the ELM to
increase the accuracy when detecting and recognizing attacks. The proposed search oc-
curs within the possible range of the number of hidden neurons and selects the best one
per binary attack classifier. The ad hoc goal function is defined to construct a binary ELM
classifier using the suggested value via AOA and to check the model’s performance in
terms of its accuracy. Figure 10 represents the complete flowchart involved in the use of
HBA to identify the optimal value of the number of hidden neurons, which is considered
a hyperparameter and is used by the ELM classifier.

Figure 8. Hyperparameter optimization of a classification model.

Figure 9 represents an ELM tuning procedure using the physics meta-heuristic-based
AOA. In AOA, we search for the best values of the most important field of the ELM to
increase the accuracy when detecting and recognizing attacks. The proposed search occurs
within the possible range of the number of hidden neurons and selects the best one per
binary attack classifier. The ad hoc goal function is defined to construct a binary ELM
classifier using the suggested value via AOA and to check the model’s performance in
terms of its accuracy. Figure 10 represents the complete flowchart involved in the use of
HBA to identify the optimal value of the number of hidden neurons, which is considered a
hyperparameter and is used by the ELM classifier.

Computers 2022, 11, 170 19 of 37

Computers 2022, 11, x FOR PEER REVIEW 17 of 34

network, which involves using a “One-Versus-All” binary classifier that is applied to each
class for the purpose of simple and fast processing. Hence, the most common parameter
required for tuning the ELM classifier is the number of neurons of the single hidden layer.

Figure 8. Hyperparameter optimization of a classification model.

Figure 9 represents an ELM tuning procedure using the physics meta-heuristic-based
AOA. In AOA, we search for the best values of the most important field of the ELM to
increase the accuracy when detecting and recognizing attacks. The proposed search oc-
curs within the possible range of the number of hidden neurons and selects the best one
per binary attack classifier. The ad hoc goal function is defined to construct a binary ELM
classifier using the suggested value via AOA and to check the model’s performance in
terms of its accuracy. Figure 10 represents the complete flowchart involved in the use of
HBA to identify the optimal value of the number of hidden neurons, which is considered
a hyperparameter and is used by the ELM classifier.

Figure 9. The designed AOA for tuning the ELM parameters.

4.4. Aggregated Hierarchical Classifiers Stage

The proposed multi-class classification issue was broken down into a collection of
binary classifications to reduce the complexity burden on the classifiers in the aggregation.

The aggregation process is applied for the purpose of merging the multiple binary ELM
classifiers so as to classify the inputs and categorize them into the multiple available groups.
Figure 11 shows the flow steps of the aggregation of the ELM model, which is employed
to detect anomalies and determine the attack type. The procedure of the binary models
depends on the performance metric of the accuracy. The proposed aggregation scheme
is dynamic and structured based on the number of attack types and their performance
metrics. For the input flow packets, the aggregation model checks the anomaly skewness
in a hierarchical order, starting with the most accurate binary ELM model and proceeding
down to the least accurate binary ELM model. When the flow packet used passes all the
check nodes, it is marked as normal activity; otherwise, the checking procedure alerts the
system administrator to the instance, blocks it, and flags its type.

Computers 2022, 11, 170 20 of 37

Computers 2022, 11, x FOR PEER REVIEW 18 of 34

Figure 9. The designed AOA for tuning the ELM parameters.

Figure 10. Flowchart of the proposed HBA hyperparameter optimization algorithm.

4.4. Aggregated Hierarchical Classifiers Stage
The proposed multi-class classification issue was broken down into a collection of

binary classifications to reduce the complexity burden on the classifiers in the aggregation.
The aggregation process is applied for the purpose of merging the multiple binary

ELM classifiers so as to classify the inputs and categorize them into the multiple available
groups. Figure 11 shows the flow steps of the aggregation of the ELM model, which is
employed to detect anomalies and determine the attack type. The procedure of the binary
models depends on the performance metric of the accuracy. The proposed aggregation
scheme is dynamic and structured based on the number of attack types and their perfor-
mance metrics. For the input flow packets, the aggregation model checks the anomaly
skewness in a hierarchical order, starting with the most accurate binary ELM model and
proceeding down to the least accurate binary ELM model. When the flow packet used
passes all the check nodes, it is marked as normal activity; otherwise, the checking proce-
dure alerts the system administrator to the instance, blocks it, and flags its type.

Figure 10. Flowchart of the proposed HBA hyperparameter optimization algorithm.

Computers 2022, 11, x FOR PEER REVIEW 19 of 34

Figure 11. Aggregation of multiple binary ELM models.

5. Experimental Results and Discussion
5.1. Benchmark Datasets

Due to their numerous benefits over the other outdated standard datasets, such as
KDD98, KDDCUP99, and NSLKDD, which are almost 20 years old and have proven in-
sufficient for modern cybersecurity, lacking data on recent attack types and having inad-
equate normal instances, the UNSW-NB15 and CICIDS2017 benchmark datasets for IDS
were used here.

5.1.1. UNSW-NB 15 Dataset
The UNSW-NB 15 dataset was created with the assistance of the IXIA Perfect Storm

tool in the Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) at the
University of New South Wales. The researchers can use this dataset to better illustrate,
validate, and test their proposal in a way that simulates real-world limitations and scenar-
ios based on the ACCS declaration. The UNSW-NB 15 dataset is a significant standard
and is the most realistic and challenging in the context of the intrusion detection problem.
The dataset includes one hundred gigabytes’ worth of raw network traffic. It covers recent
modern, normal, and synthetic attack cases obtained from network traffic by configuring
three virtual servers in its setup. The UNSWNB15 dataset has 2,540,044 records (instances)
described by 49 attributes and organized into six distinct categories. These categories are
as follows: flow features, fundamental features, content features, time features, extra pro-
duced features, and labeled features. The training dataset contains details on several
forms of attack, which serve as labels. The distribution of each record included in the
UNSW-NB15 dataset is displayed in Table 2. The records can be broken down into two
primary categories: normal and attack. The data on the attacks are then organized into
nine families according to the kinds of attacks carried out [40].

Table 2. Descriptions of different classes and the distribution of instances in the UNSW-NB15 da-
taset [40,41].

Class No Discerption
Normal 2,218,761 Benign transaction instances.

Generic 215,481

This is an attack style in which the attacker does not care how the un-
derlying cryptographic primitives are implemented. Consider a cy-
pher text protected by a 𝑉-bit key. In a brute-force assault of this
type, the attacker would attempt every conceivable combination of
these 𝑉 bits, or 2 in total.

Exploits 44,525 The attacker’s planned series of operations aim to exploit an exploita-
ble flaw in a target system or network. The attacker is aware of a

Figure 11. Aggregation of multiple binary ELM models.

Computers 2022, 11, 170 21 of 37

5. Experimental Results and Discussion
5.1. Benchmark Datasets

Due to their numerous benefits over the other outdated standard datasets, such as
KDD98, KDDCUP99, and NSLKDD, which are almost 20 years old and have proven
insufficient for modern cybersecurity, lacking data on recent attack types and having
inadequate normal instances, the UNSW-NB15 and CICIDS2017 benchmark datasets for
IDS were used here.

5.1.1. UNSW-NB 15 Dataset

The UNSW-NB 15 dataset was created with the assistance of the IXIA Perfect Storm
tool in the Cyber Range Lab of the Australian Centre for Cyber Security (ACCS) at the
University of New South Wales. The researchers can use this dataset to better illustrate,
validate, and test their proposal in a way that simulates real-world limitations and scenarios
based on the ACCS declaration. The UNSW-NB 15 dataset is a significant standard and is
the most realistic and challenging in the context of the intrusion detection problem. The
dataset includes one hundred gigabytes’ worth of raw network traffic. It covers recent
modern, normal, and synthetic attack cases obtained from network traffic by configuring
three virtual servers in its setup. The UNSWNB15 dataset has 2,540,044 records (instances)
described by 49 attributes and organized into six distinct categories. These categories
are as follows: flow features, fundamental features, content features, time features, extra
produced features, and labeled features. The training dataset contains details on several
forms of attack, which serve as labels. The distribution of each record included in the
UNSW-NB15 dataset is displayed in Table 2. The records can be broken down into two
primary categories: normal and attack. The data on the attacks are then organized into nine
families according to the kinds of attacks carried out [40].

Table 2. Descriptions of different classes and the distribution of instances in the UNSW-NB15
dataset [40,41].

Class No Discerption

Normal 2,218,761 Benign transaction instances.

Generic 215,481

This is an attack style in which the attacker does not care how the underlying
cryptographic primitives are implemented. Consider a cypher text protected
by a V-bit key. In a brute-force assault of this type, the attacker would attempt
every conceivable combination of these V bits, or 2V in total.

Exploits 44,525
The attacker’s planned series of operations aim to exploit an exploitable flaw
in a target system or network. The attacker is aware of a security flaw in a
given system or piece of software and uses this information to their advantage.

Fuzzers 24,246 An attacker takes action in searching for a security flaw in a system or network
by flooding it with false data to bring it down.

Dos 16,353
A deliberate attempt to prevent legitimate users from accessing a server or
network resource, typically by temporarily disrupting or stopping such
services on a host connected to the internet.

Backdoors 2329
The process of secretly bypassing a system’s security measures to gain
unauthorized access to a system or its data and, potentially, to issue
commands from outside the compromised system.

Computers 2022, 11, 170 22 of 37

Table 2. Cont.

Class No Discerption

Reconnaissance 13,987 A group of attackers pretend to gather information about a computer system
or network to access the security controls.

Analysis 2677 Utilized to penetrate online applications using various techniques, including
port scanning, spam, and HTML file penetrations.

Shellcode 1511 The attacker creates malicious code and injects it into any program that
launches a command shell, exploiting the software’s flaws with minimal effort.

Worms 174
The attacker makes copies of their working files to spread to other computers.
Most of the time, it spreads through a computer network by taking advantage
of the weak security of the target computer.

5.1.2. CICIDS2017 Dataset

The Canadian Institute for Cybersecurity (CIC) released the CICIDS2017 dataset in late
2017 [42]. This dataset includes both normal instances and the latest instances of commonly
used attacks. According to a study published by McAfee in 2016, the CICIDS2017 dataset
includes the most widespread attacks. Data were collected and analyzed for five days
using an open-source tool called CICFlowMeter [16]. The CICIDS2017 database simulates
actual network activity. The attack profiles built by the developers insert various attack
instances into fourteen families according to the kinds of attacks carried out other than
normal network packets (instances). The CICIDS2017 dataset not only includes cutting-
edge examples of cyberattacks carried out in networks, but it also satisfies all the other
conditions typical of real-life cyberattacks [43]. Table 3 displays the distribution of the
different traffic classifications in the dataset, where the number of instances is 2,830,743,
and these are described by 78 features. The extracted features include the destination port,
flow time, total forward packets, and total reverse packets.

Table 3. The description of different categories, classes, and instances’ distribution in the CICIDS2017
dataset [18,42].

Category Class No Description

Normal Normal 2,359,087 Benign connection instances.

Dos

Dos Hulk 231,072
The goal of the attack is to render a computer or network resource
temporarily inaccessible, overloading systems with unnecessary
requests to block some or all valid requests from being completed.
It is a common method used in this attack.

DoS GoldenEye 10,293

DoS slowloris 5796

DoS Slowhttptest 5499

DDos DDos 41,835

The victim’s bandwidth or resources are overloaded when many
systems work together. These attacks often include many hacked
computers (a botnet, for example) sending a deluge of traffic to the
infiltrated server.

FTP-Patator FTP-Patator 7938 Secure shell—representation of a brute force attack.

SSH-Patator SSH-Patator 5897 File transfer protocol FTP-Patator of a brute force attack.

Computers 2022, 11, 170 23 of 37

Table 3. Cont.

Category Class No Description

Web

Web Attack—Brute Force 1507 Today, these new attacks are appearing daily because people and
businesses are now taking security seriously. We use SQL Injection,
in which an attacker constructs a string of SQL commands and uses
them to coerce a database into returning the information, Cross-Site
Scripting (XSS), which occurs when developers fail to properly test
their code to determine the possibility of script injection, and Brute
Force over HTTP, which uses a list of passwords to try to identify
the administrator’s password.

Web Attack—XSS 652

Web Attack—Sql Injection 21

PortScan PortScan 158,930
Used to identify the access port on a network. An attacker can use
this to learn about the listening habits of both the sender and the
recipient.

Bot Bot 1966

A collection of computers and other networked computers utilized
by a botnet’s creator to carry out their malicious plans. It gives an
attacker access to the computer and its network and may be used to
steal information or deliver spam.

Infiltration Infiltration 36

Insider attacks utilize weak software such as Adobe Acrobat
Reader. After successful exploitation, a backdoor is installed on the
victim’s machine and may perform IP sweeps, complete port scans,
and Nmap service enumerations.

Heartbleed Heartbleed 11

This a problem in the Open SSL cryptographic library, a
widespread TLS implementation tool. It is abused by sending a
faulty heartbeat request to a susceptible party (typically a server) to
elicit a response.

5.2. Evaluation Results Using the UNSW-NB15 and CICIDS2017 Datasets

A binary meta-heuristic FS method is used to enhance the software-based anomaly
IDS system to extract the most relevant of the available features. The FS method reduces the
number of features by 65.31% and 51.28% for UNSW-NB15 and CICIDS2017, respectively,
representing the most informative features. Table 4 lists the features used to classify the
normal and attack data from the UNSW-NB15 and CICIDS2017 datasets. The configuration
used for the BGWO is the FS method, which selects the features of the purity classification,
including the value of each parameter (the number of iterations = 100, population size = 50).
The objective function is the classification accuracy.

Table 4. Features selected from the datasets.

Dataset Number of Available
Features Number of Selected Features Index of Informative

Features

UNSW-NB15 49 17 1,5,12,13,17,20,21,22,23,25,
28,32,33,38,43,44,46

CICIDS2017 78 38

3,5,7,12,13,14,17,18,19,21,
23,25,27,29,30,31,32,34,35,38,
39,41,46,49,51,52,53,56,57,58,
61,63,64,67,69,71,73,76

Due to the fact that the performance of the ELM classifier is affected by changed
parameters, the hyperparameter optimization methods AOA and HBA were proposed to
select the optimal value of the number of hidden neurons.

AOA and HBA are meta-heuristic-based optimization algorithms that identify the best
hyperparameter values for ELM per attack. These algorithms’ configurations include the
values per parameter (the number of iterations = 100, population size = 75), and the fitness

Computers 2022, 11, 170 24 of 37

function is the accuracy metric. Table 5 represents the hyperparameter values suggested by
AOA and HBA for the attack list of UNSW-NB15 and CICIDS2017 datasets.

Table 6 depicts the statistical analysis performance of the ELM classifier per attack
using UNSW-NB15. The tuned ELM classifier using AOA achieves maximum accuracy and
precision values of 99.62% and 100, respectively. It reaches values of 99.19%, 98.64%, and
98.91% for the average DR, specificity, and F1-score, respectively, for different attacks, and
it achieves a superior FAR compared to the others for the attacks of worms. Additionally,
it shows the tuned ELM using HBA, which exceeds DR by 100% for analysis attacks,
with averages of 97.84%, 98.65%, 97.87%, and 98.63% in terms of the precision, accuracy,
specificity, and F1-score, respectively. For FAR, the performance of the ELM tuned by HBA
ranges from zero for a generic attack up to 0.04% for worms, which represent an average of
0.02% of all the attacks.

Table 5. The number of hidden neurons for the hyperparameter optimization of the ELM classifier,
using the AOA and HBA algorithms for UNSW-NB15 and CICIDS2017 datasets.

Dataset Attack
Number of Hidden Neurons

AOA HBA

UNSW-NB15

Exploits 1479 1293

Reconnaissance 883 754

DoS 716 721

Generic 2495 2817

Shellcode 198 199

Fuzzers 904 926

Worms 47 39

Backdoor 287 287

Analysis 311 330

CICIDS2017

DDoS 489 671

PortScan 327 354

Bot 37 44

Infiltration 69 70

Web_Attack_Brute_Force 77 68

Web_Attack_XSS 350 281

Web_Attack_Sql_Injection 900 911

FTP-Patator 289 214

SSH-Patator 108 93

DoS slowloris 83 79

DoS Slowhttptest 77 83

DoS Hulk 3476 3512

DoS GoldenEye 883 384

Heartbleed 17 23

DDoS 489 671

PortScan 327 354

Bot 37 44

Infiltration 69 70

Web_Attack_Brute_Force 77 68

Computers 2022, 11, 170 25 of 37

Table 6. Overall analysis of the tuned ELM classifier using the UNSW-NB15 reduced features.

Classifier #Features Tuning
Algorithm Statistic Precision DR Accuracy Specificity FAR F1-Score

ELM 17

AOA

Min 97.63% 95.92% 98.10% 97.57% 0% 97.92%

Max 100% 99.83% 99.62% 100% 0.02% 99.62%

Ave 98.65% 99.19% 98.93% 98.64% 0.01% 98.91%

HBA

Min 96% 97.96% 97.14% 96.43% 0% 96.97%

Max 99.54% 100% 99.58% 99.54% 0.04% 99.58%

Ave 97.84% 99.44% 98.65% 97.87% 0.02% 98.63%

Table 7 illustrates the statistical analysis of the ELM classifiers’ performance per attack
using the CICIDC2017 dataset. The proposed tuned classifier achieves the best performance
for Heartbleed in terms of the precision, DR, accuracy specificity, and F1-score, all of which
exceed those of the others by 100%, and it achieves the minimum FAR of zero, regardless of
whether AOA or HBA are used for the tuning. However, the tuned AOA classifier achieves
better values in terms of the FAR than ELM using HBA.

Table 7. Overall analysis of the tuned ELM classifier using the CICIDS2017 reduced features.

Classifier #Features Tuning
Algorithm Statistic Precision DR Accuracy Specificity FAR F1-Score

ELM 38

AOA

Min 97.87% 99.34% 98.72% 97.96% 0% 98.66%

Max 100% 100% 100% 100% 2.04% 100%

Ave 99.48% 99.78% 99.63% 99.49% 0.51% 99.63%

HBA

Min 77.78% 90.00% 84.62% 66.67% 0% 87.50%

Max 100% 100% 100% 100% 33.33% 100%

Ave 97.01% 99.04% 97.74% 95.54% 4.46% 98.02%

In term of the accuracy of each binary ELM classifier, the aggregation module creates
a hierarchy classifier comprising multiple binary recognizers. Figure 12 represents the
aggregated hierarchical multiple binary classifiers for the UNSW-NB15 dataset. Figure 12a
demonstrates the reduced subset features and the use of AOA for the tuning of ELM binary
classifiers, whereas Figure 12b illustrates the details of the use of HBA for the tuning of
binary ELM classifiers. Figure 13 represents the aggregated hierarchical multiple binary
classifiers for the CICIDS2017 dataset using the reduced features. Figure 13a illustrates the
order of fourteen binary tuned classifiers using AOA based on the accuracy. Figure 13b
demonstrates the tree compositions of the fourteen binary classifiers based on the accuracy
using HBA for the hyperparameter optimization. A comprehensive analysis of the proposed
system outcomes are discussed in terms of the performance metrics of the supervised
learning, including the accuracy, DR, FAR, precision, and F1-score, versus the recent
contributions and IDS systems, as illustrated in the next section.

5.3. Discussion

Here, we evaluate the use of the proposed BGWO FS and optimized ELM-based AOA
and HBA as the primary detector for a hierarchical aggregation system. Our analysis
confirms that the proposed system can achieve a remarkable accuracy, precision, DR,
specificity, and F1-score, all of which are higher than those of the other state-of-the-art
systems. The FAR of an IDS should be kept to a minimum, and the DR should be kept at a
maximum. The proposed system performs exceptionally well, with a far lower FAR and
higher DR than those in previous studies. This section compares the proposed approach

Computers 2022, 11, 170 26 of 37

with the most up-to-date research methods in terms of the accuracy, DR, FAR, precision,
and F1-score so as to validate the effectiveness and reliability of the proposed system.

Computers 2022, 11, x FOR PEER REVIEW 24 of 34

(a) (b)

Figure 12. Aggregated hierarchical multiple binary classifiers for the UNSW-NB15 dataset are listed
as: (a) description of the aggregated hierarchical multiple binary classifiers for AOA optimization;
(b) description of the aggregated hierarchical multiple binary classifiers for HBA optimization.

Figure 12. Aggregated hierarchical multiple binary classifiers for the UNSW-NB15 dataset are listed
as: (a) description of the aggregated hierarchical multiple binary classifiers for AOA optimization;
(b) description of the aggregated hierarchical multiple binary classifiers for HBA optimization.

Accuracy is a metric for determining which model best identifies the relationships and
trends between variables in a dataset based on the input data. It calculates this by dividing
the total number of correct classifications by the total number of classifications made and
formulated using the following equation:

Accuracy =
TP + TN

FN + TP + FP + TN
(44)

where the true positive (TP) is the number of positive instances (attack events) detected
correctly. The true negative (TN) is the number of negative instances (normal events)
detected correctly. The false positive (FP) refers to the number of non-positive events
mistakenly identified as positive. The false negative (FN) refers to the number of positive
events incorrectly identified as negative [44].

Computers 2022, 11, 170 27 of 37Computers 2022, 11, x FOR PEER REVIEW 25 of 34

(a) (b)

Figure 13. Aggregated hierarchical multiple binary classifiers for the CICIDS2017 dataset, listed as:
(a) description of the aggregated hierarchical multiple binary classifiers for AOA optimization; (b)
description of the aggregated hierarchical multiple binary classifiers for HBA optimization.

5.3. Discussion
Here, we evaluate the use of the proposed BGWO FS and optimized ELM-based AOA

and HBA as the primary detector for a hierarchical aggregation system. Our analysis con-
firms that the proposed system can achieve a remarkable accuracy, precision, DR, speci-
ficity, and F1-score, all of which are higher than those of the other state-of-the-art systems.
The FAR of an IDS should be kept to a minimum, and the DR should be kept at a maxi-
mum. The proposed system performs exceptionally well, with a far lower FAR and higher
DR than those in previous studies. This section compares the proposed approach with the
most up-to-date research methods in terms of the accuracy, DR, FAR, precision, and F1-
score so as to validate the effectiveness and reliability of the proposed system.

Accuracy is a metric for determining which model best identifies the relationships
and trends between variables in a dataset based on the input data. It calculates this by
dividing the total number of correct classifications by the total number of classifications
made and formulated using the following equation: Accuracy = 𝑇𝑃 + 𝑇𝑁𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 (44)

Figure 13. Aggregated hierarchical multiple binary classifiers for the CICIDS2017 dataset, listed
as: (a) description of the aggregated hierarchical multiple binary classifiers for AOA optimization;
(b) description of the aggregated hierarchical multiple binary classifiers for HBA optimization.

Table 8 illustrates the accuracy recognition rate in the context of UNSW-NB15, where
the proposed system reached the most significant average accuracy rates of 98.93% when
using the AOA–ELM, which is the top result compared to all the other systems, and 98.65%
when using HBA-ELM, which is the second-best result compared to all the other systems.
The sample systems reached an average accuracy of 98.79%± 0.14, representing the general
population’s standard deviation of the accuracy rates.

Computers 2022, 11, 170 28 of 37

Table 8. Accuracy comparison of the proposed system in relation to the other systems using the
UNSW-N15 dataset.

Attack
The

Proposed
AOA-ELM

The
Proposed

HBA-ELM
Moualla
et al. [12]

Ren et al.
[14]

Sharma
et al. [45]

Gu et al.
[15]

Jiang et al.
[46]

Rajagopal
[47]

Manjunatha
et al. [48]

Vinayakumar
et al. [19]

Exploits 99.03% 98.9% 93.91% 92.6% 90.12% 84.2% 79.21% 76.22% 84.2% 89.9%

Reconnaissance 99.03% 98.73% 98.74% 98.8% 95.33% 95.7% 89.45% 20.77% 95.7% 92.7%

DoS 98.97% 98.71% 98.14% 93.1% 94.9% 94.9% 92.12% 83.8% 94.9% 99.4%

Generic 99.62% 99.58% 98.34% 100% 98.23% 91.5% 96.37% 11.51% 91.5% 78.3%

Shellcode 98.57% 97.91% 99.92% 99.2% 99.4% 99.5% 92.79% 18.4% 99.5% 99%

Fuzzers 98.98% 98.67% 98.92% 95.3% 91.47% 91.6% 93.43% 29.36% 91.6% 98.8%

Worms 98.1% 97.14% 97.28% 100% 99.92% 99.9% 65.31% 15% 99.9% 99.9%

Backdoor 98.71% 98.93% 99.06% 98% 99.11% 99.2% 83.53% 49% 99.2% 95.1%

Analysis 99.38% 99.25% 99.44% 98.2% 99.26% 99.1% 84.67% 58% 99.1% 99.55%

Average 98.93% 98.65% 98.19% 97.24% 96.42% 95.07% 86.32% 40.23% 94.51% 94.74%

Underlined and bold: the best result amongst the systems. Bold: the second-best result amongst the systems.

Table 9 shows the details of the accuracy recognition rate of each class in CICIDS2017
obtained by Choobdar et al. [20], Zhiqiang et al. [49], Vinayakumar et al. [19], and our
system. From Table 9, the accuracy values in relation to all the attack types achieved by
the proposed approach are higher than those of the other three approaches, except for
the results of Zhiqiang et al. [49], who reached a 99.8% accuracy in DDoS attacks. The
accuracies achieved range from 98.72% to 100% for SSH-Patator applied to DoS goldeneye,
DoS slowloris, and Heartbleed, respectively. Moreover, the proposed system achieved an
average accuracy of 99.63% versus the values of 96.07% derived by Choobdar et al. [20],
88.58% derived by Zhiqiang et al. [49], and 93.99% derived by Vinayakumar et al. [19]. The
proposed system achieved percentage increases of approximately 3.56%, 11.05%, and 5.64%
in terms of the average accuracy compared to the other systems.

Table 9. Accuracy comparison of the proposed system in relation to the other systems using the
CICIDS2017 dataset.

Attack The Proposed
AOA–ELM

The Proposed
HBA–ELM

Choobdar et al.
[20]

Zhiqiang et al.
[49]

Vinayakumar
et al. [19]

DoS Hulk 99.92% 99.91% 99.2% 97.48% NA

PortScan 99.97% 99.96% 98.5% 99.72% 85.5%

DDoS 98.89% 98.72% 98.2% 99.8% 85.5%

DoS GoldenEye 100% 90.91% 95.2% 95.84% NA

FTP-Patator 99.45% 98.78% 98.7% 98.71% NA

SSH-Patator 98.72% 98.47% 94.8% 91.57% 95.8%

DoS slowloris 100% 84.62% 98.4% 97.62% 92.8%

DoS Slowhttptest 99.94% 99.92% 87.7% 85.52% NA

Bot 99.75% 99.69% 98.2% 31% 95.9%

Web
Attack—Brute

Force
99.83% 99.83% 95.2% NA 98.8%

Web Attack—XSS 99.61% 99.48% 95.3% NA 98.8%

Infiltration 99.14% 98.38% 98.9% NA NA

Web Attack—Sql
Injection 99.68% 99.66% 97% NA 98.8%

Heartbleed 100% 100% 89.7% NA NA

Average 99.63% 97.74% 96.07% 88.58% 93.99%

Computers 2022, 11, 170 29 of 37

Some researchers are more interested in DR (recall) than other metrics. The DR shows
that the critical metric for IDS is the proportion of successfully classified attacks relative to
the total attack instances, and it is formulated using the following equation:

DR =
TP

TP + FN
(45)

When addressing these issues, we concentrate more on attack instances than usual,
because wrongly classifying attacks from among attack instances causes more damage than
cases when they are wrongly classified from among normal instances.

Table 10 demonstrates that the proposed system achieves a better average DR when
using HBA–ELM and AOA–ELM, yielding values of 99.44% and 99.19%, respectively,
compared to the other systems. Table 10 shows that the proposed system achieves the best
DR for most attack type(s), and the system set out by Moualla et al. [12] achieves higher
DR values of 99.86% and 99.91% for shellcode and worms attacks, respectively.

Table 10. DR comparison of the proposed system with other systems using the UNSW-N15 dataset.

Attack
The

Proposed
AOA–ELM

The
Proposed

HBA–ELM

Moualla
et al. [12]

Ren et al.
[14]

Jagruthi et al.
[50]

Rajagopal
et al. [47]

Wang et al.
[18]

Exploits 99.62% 99.55% 86.05% 66.3% 97% 85% 60.4%

Reconnaissance 99.73% 99.76% 93.16% 82% 72% 74.8% 66.7%

DoS 99.65% 99.48% 82.47% 46.1% 57% 25% 41.4%

Generic 99.65% 99.63% 97.05% 96.6% 96% 98.32% 99.8%

Shellcode 99.56% 98.90% 99.86% 78% 11% 58.22% 62%

Fuzzers 99.83% 99.79% 95.8% 38.1% 0.1% 60.97% 62.8%

Worms 95.92% 97.96% 99.91% 79.5% 1.6% 37.5% 50%

Backdoor 99.14% 99.86% 98.11% 40.3% 64% 10.79% 0%

Analysis 99.63% 100% 98.89% 6.1% 60% 11% 64.8%

Average 99.19% 99.44% 94.59% 59.22% 50.97% 51.29% 56.43%

Table 11 shows the detailed DR of each class obtained by the proposed system and the
other systems. Table 11 shows that the proposed system achieves the best and second-best
average DR values for each attack type, namely 99.78% and 99.04%, when using HBA–ELM
and AOA–ELM.

Table 11. DR comparison of the proposed system in relation to other systems using the
CICIDS2017 dataset.

Attack
The

Proposed
AOA-ELM

The
Proposed

HBA-ELM
Choobdar
et al. [20]

Lee et al.
[21]

Ho et al.
[51]

Ferrag
et al. [52]

Hosseini
et al. [53]

Lee et al.
[22]

Wang et al.
[18]

Toupas
et al. [43]

DoS Hulk 99.93% 99.93% 98.5% 99.34% 99.96% 96.78% 98.8% 99.73% 89.4% 99.25%

PortScan 99.99% 99.99% 97.1% 99.95% 99.99% 99.88% 99.79% 99.96% 92.1% 99.79%

DDoS 99.83% 99.49% 97.5% 99.93% 99.94% 99.87% 99.9% 99.92% 70.4% 99.9%

DoS Golden Eye 100% 90.00% 93% 99.42% 99.92% 67.57% 99.27% 99.44% 89.4% 99.27%

FTP-Patator 99.34% 99.34% 95.4% 99.84% 99.73% 99.63% 99.59% 99.84% 77.1% 99.59%

SSH-Patator 99.46% 99.46% 95.6% 99.75% 99.32% 99.9% 98.97% 99.75% 97.3% 98.97%

DoS slowloris 100% 100% 96% 99.48% 99.65% 97.75% 89.93% 99.31% 89.4% 89.93%

DoS Slowhttptest 100% 100% 88.1% 99.05% 99.63% 93.84% 86.87% 89.95% 89.4% 86.76%

Bot 99.66% 99.66% 97.3% 53.13% 66.37% 46.47% 95.12% 54.51% 87.4% 95.11%

Web Attack—Brute
Force 99.72% 99.72% 87.6% 60% 99.53% 73.26% 98.31% 94.84% 94.5% 98.31%

Computers 2022, 11, 170 30 of 37

Table 11. Cont.

Attack
The

Proposed
AOA-ELM

The
Proposed

HBA-ELM
Choobdar
et al. [20]

Lee et al.
[21]

Ho et al.
[51]

Ferrag
et al. [52]

Hosseini
et al. [53]

Lee et al.
[22]

Wang et al.
[18]

Toupas
et al. [43]

Web Attack—XSS 99.52% 99.52% 96.2% 60% 92.8% 30.62% 98.31% 94.84% 94.5% 98.31%

Infiltration 99.61% 99.65% 98.2% 60% 91.66% 100% 81.66% 66.67% NA 81.66%

Web Attack—Sql
Injection 99.90% 99.87% 95% 60% 80.95% 50% 98.31% 94.84% 94.5% 98.31%

Heartbleed 100% 100% 88.7% 100% 100% 100% 95% 100% NA 95%

Average 99.78% 99.04% 94.59% 84.99% 94.96% 82.54% 95.70% 92.40% 88.26% 96.84%

A high FAR value significantly reduces the effectiveness of the IDS. Even if the value
of FAR can be kept to a minimum, this does not indicate that the system is entirely safe
and immune to assault. FAR is a reducing function representing the proportion of normal
instances incorrectly classified as attacks and is formulated using the following equation:

FAR =
FP

FP + TN
(46)

Traditional ML-based IDSs suffer from high FAR values, mainly due to the fact that
dataset imbalance is not considered. The proposed system maintains the lowest FAR
values, even though the sample size of the worm attacks in the UNSW-NB 15 dataset is very
small, with only 174 instances, and infiltration, web attack—SQL Injection, and Heartbleed
attacks in the CICIDS2017 only number 36, 21, and 11, respectively. This indicates that the
proposed system can learn the features of the data more effectively and carry out accurate
classification with a small amount of data. Tables 12 and 13 demonstrate that the proposed
system achieves a lower FAR than the other systems.

Table 12. FAR comparison of the proposed system in relation to other systems using the UNSW-
N15 dataset.

Attack The Proposed
AOA-ELM

The Proposed
HBA-ELM

Moualla et al.
[12] Ren et al. [14] Wang et al. [18] Salman et al.

[54]

Exploits 0.02% 0.02% 0.09% 0.34% 2.9% 1.40%

Reconnaissance 0.02% 0.02% 0.04% 0.18% 2.4% 4.90%

DoS 0.02% 0.02% 0.09% 0.54% 7.6% 4.20%

Generic 0% 0.00% 0.16% 0.03% 0.9% 0.39%

Shellcode 0.02% 0.03% 0% 0.22% 0.68% 11%

Fuzzers 0.02% 0.02% 0.03% 0.62% 4.7% NA

Worms 0% 0.04% 0.03% 0.21% 0.08% 20%

Backdoor 0.02% 0.02% 0.01% 0.20% 1.2% 3.70%

Analysis 0.01% 0.02% 0.01% 0.39% 1.3% 7.83%

Average 0.01% 0.02% 0.05% 0.30% 2.42% 6.68%

Computers 2022, 11, 170 31 of 37

Table 13. Comparison of FAR values of the proposed system and other systems using the
CICIDS dataset.

Attack The Proposed AOA–ELM The Proposed HBA–ELM Wang et al. [18]

DoS Hulk 0.09% 0.11% 1.40%

PortScan 0.04% 0.06% 0.09%

DDoS 2.04% 2.04% 0.80%

DoS GoldenEye 0% 8.33% 1.40%

FTP-Patator 0.44% 1.78% 0.32%

SSH-Patator 1.93% 2.42% 1.30%

DoS slowloris 0% 33.33% 1.40%

DoS Slowhttptest 0.13% 0.17% 1.40%

Bot 0.17% 0.28% 0.32%

Web Attack—Brute Force 0.06% 0.06% 0.34%

Web Attack—XSS 0.31% 0.55% 0.34%

Web Attack—Sql Injection 1.34% 12.75% 0.34%

Infiltration 0.55% 0.55% NA

Heartbleed 0% 0% NA

Average 0.51% 4.46% 0.79%

Precision refers to the system’s ability to determine how many positive classifications
are correct. It is calculated by dividing the number of true positives by the number of
events that were classified as positive and can be formulated using the following equation:

Precision =
TP

TP + FP
(47)

As is observable from Tables 14 and 15, the precision rate of the proposed system is
considerably higher in relation to all the attack categories than that of the other systems,
indicating that the proposed system’s overall performance is good.

Table 14. Comparison of the precision of the proposed and other systems using the
UNSW-N15 dataset.

Attack
The

Proposed
AOA–ELM

The
Proposed

HBA–ELM

Moualla
et al. [12]

Ren et al.
[14]

Jagruthi
et al. [50]

Rajagopal
et al. [47]

Wang et al.
[18]

Exploits 98.44% 98.25% 91% 75.9% 100% 63.41% 90.1%

Reconnaissance 98.33% 97.7% 93% 9% 73% 90.65% 68%

DoS 98.29% 97.93% 100% 35.1% 53% 41.6% 7.6%

Generic 99.58% 99.54% 100% 99.8% 91% 99.42% 97.7%

Shellcode 97.63% 96.98% 100% 35.2% 72% 68.65% 15.2%

Fuzzers 98.13% 97.58% 98% 94.2% 40% 64.42% 65.4%

Worms 100% 96% 95% 77.8% 33% 57.69% 3.2%

Backdoor 98.29% 98.03% 100% 15.1% 77% 70% 0%

Analysis 99.14% 98.55% 100% 4.6% 44% 67.44% 100%

Average 98.65% 97.84% 97.44% 58.50% 64.78% 69.25% 49.69%

Computers 2022, 11, 170 32 of 37

Table 15. Comparison of the precision of the proposed and other systems using the CICIDS
2017 dataset.

Attack
The

Proposed
AOA–ELM

The
Proposed

HBA–ELM

Choobdar
et al. [20]

Lee et al.
[21]

Toupas et al.
[43]

Lee et al.
[22]

Wang et al.
[18]

DoS Hulk 99.91% 99.88% 98.6% 99.59% 99.77% 99.63% 92.9%

PortScan 99.96% 99.94% 98.5% 99.37% 97.94% 99.38% 82.9%

DDoS 97.99% 97.98% 97.1% 99.9% 99.82% 99.99% 80.9%

DoS
GoldenEye 100% 90% 96.9% 99.56% 97.54% 99.42% 92.9%

FTP-Patator 99.56% 98.26% 93.2% 100% 98.68% 99.97% 72.4%

SSH-Patator 97.87% 97.35% 93.2% 100% 99.05% 99.66% 94.6%

DoS slowloris 100% 77.78% 96.2% 99.74% 92.91% 99.61% 92.9%

DoS
Slowhttptest 99.87% 99.83% 87.3% 99.14% 93.23% 99% 92.9%

Bot 99.83% 99.72% 95.9% 86.31% 71.92% 83.69% 83.6%

Web
Attack—Brute

Force
99.94% 99.94% 96.40% 99.41% 95.59% 99.40% 92.30%

Web
Attack—XSS 99.70% 99.46% 97.3% 99.41% 95.59% 99.40% 92.30%

Infiltration 98.67% 98.56% 98.20% 100% 79.54% 100% NA

Web
Attack—Sql

Injection
99.45% 99.45% 96.5% 99.41% 95.59% 99.40% 92.30%

Heartbleed 100% 100% 88.40% 100% 100% 100% NA

Average 99.48% 97.01% 95.26% 98.70% 94.08% 98.47% 96.47%

In regard to the F1-score, it is common for the recall and precision to be in a state
of trade-off. The score is commonly used as a performance metric for evaluating the
effectiveness of IDS, since it considers both the precision and recall. Mathematically, it is
expressed using the following equation:

F1− score = 2× Precision× Recall
Precision + Recall

(48)

Using the confusion matrix derived from the testing of the proposed system, Table 16
shows the comprehensive F1-scores for each attack category gained by the proposed
and other systems using the UNSW-NB15 dataset, which confirms the superiority of the
proposed system in relation to the exploits, reconnaissance, DoS, generic, fuzzers, and
worm attacks compared to Moualla et al. [12], Ren et al. [14], Jiang [46], and Jagruthi
et al. [50]. The system set out by Moualla et al. [12] achieved higher F1-scores in relation
to shellcode and backdoor attacks. As a result, the proposed system has a higher F1-score
average (of 98.91%) than the other systems.

Computers 2022, 11, 170 33 of 37

Table 16. Comparison of F1-scores of the proposed and other systems using the UNSW-NB15 dataset.

Attack The Proposed
AOA–ELM

The Proposed
HBA–ELM

Moualla et al.
[12] Ren et al. [14] Jiang [46] Jagruthi et al.

[50]

Exploits 99.03% 98.9% 88.45% 70.8% 67.89% 98%

Reconnaissance 99.03% 98.72% 93.11% 85.3% 62.54% 73%

DoS 98.96% 98.7% 90.39% 39.9% 29.55% 55%

Generic 99.62% 99.58% 98.41% 98.3% 98.85% 94%

Shellcode 98.59% 97.93% 99.92% 48.6% 30.95% 19%

Fuzzers 98.97% 98.68% 96.34% 54.2% 37.47% 11%

Worms 97.92% 96.97% 97.34% 78.7% 10.75% 22%

Backdoor 98.71% 98.93% 99.05% 21.9% 8.97% 70%

Analysis 99.39% 99.27% 99.44% 5.3% 9.69% 0.1%

Average 98.91% 98.63% 95.83% 55.89% 39.63% 49.12%

Table 17 shows the comprehensive F1-scores of each attack category gained by the
proposed and other systems using the CICIDS2017 dataset. Here, the proposed system
achieved higher F1-scores for DoS hulk, portscan, DoS goldeneye, DoS slowloris, DoS
Slowhttptest, bot, web attack—brute force, web attack—XXS, infiltration, and web attack—
SQL Injection attacks compared to Choobdar et al. [20], J. Lee et al. [21], Toupas et al. [43],
and Lee et al. [22]. The system set out by Lee et al. [21] achieved higher F1-scores for DDoS,
FTP-Patator, and SSH-Patator than the other systems. The proposed system achieved a
higher average F1-score of 99.63% than the other systems, which is a high value.

Table 17. Comparison of the F1-scores of the proposed and other systems using the CICIDS
2017 dataset.

Attack The Proposed
AOA–ELM

The Proposed
HBA–ELM

Choobdar et al.
[20] Lee et al. [21] Toupas et al.

[43] Lee et al. [22]

DoS Hulk 99.92% 99.91% 96.3% 99.47% 99.25% 99.68%

PortScan 99.97% 99.96% 97.6% 99.66% 98.82% 99.67%

DDoS 98.90% 98.73% 98% 99.96% 99.86% 99.96%

DoS
GoldenEye 100% 90% 85.8% 99.49% 98.35% 99.43%

FTP-Patator 99.45% 98.80% 95.9% 99.92% 99.12% 99.92%

SSH-Patator 98.66% 98.40% 92.5% 99.87% 99% 99.87%

DoS slowloris 100% 87.50% 98.3% 99.61% 88.85% 99.46%

DoS
Slowhttptest 99.94% 99.92% 88.6% 99.09% 87.64% 98.98%

Bot 99.75% 99.69% 97.3% 65.77% 79.72% 65.94%

Web
Attack—Brute

Force
99.83% 99.83% 94.8% 97.73% 96.91% 97.07%

Computers 2022, 11, 170 34 of 37

Table 17. Cont.

Attack The Proposed
AOA–ELM

The Proposed
HBA–ELM

Choobdar et al.
[20] Lee et al. [21] Toupas et al.

[43] Lee et al. [22]

Web
Attack—XSS 99.61% 99.49% 97% 97.73% 96.91% 97.07%

Infiltration 99.14% 99.10% 98.2% 75% 79.16% 80%

Web
Attack—Sql

Injection
99.67% 99.66% 95% 97.73% 96.91% 97.07%

Heartbleed 100% 100% 88.3% 100% 96.66% 100%

Average 99.63% 98.02% 94.54% 95.07% 94.08% 95.29%

6. Conclusions

This paper proposed a new optimized IDS based on multiple hierarchical ELM classi-
fiers. The new proposed IDS utilizes two novel meta-heuristic optimization algorithms,
AOA and HBA, to enhance the classification performance of ELM, in addition to using
enhanced BGWO optimization, which selects the most important features. As a result, the
proposed system introduces a multi-class classifier for detecting attack types. It implicitly
trains multiple binary classifiers to detect the differences between normal and attack in-
stances. Each ELM classifier is introduced to accurately detect a specific attack class defined
by the “One-Versus-All” method. In the newly proposed optimized IDS, the multi-class
classification issue is broken down into a collection of binary classifications, as using binary
classifications entails lower a complexity than multi-class classification. Each classifier is
tuned to quickly obtain the optimal neuron number of the hidden layer.

The newly proposed IDS incorporates a three-stage pipeline that can be summarized by
algorithms such as BGWO feature selection, the ELM classifiers, AOA, and HBA for tuning
the ELM hyperparameters, which are themselves selected to construct adaptable and fast
binary classifiers. Two benchmark datasets, UNSW-NB15 and CICIDS2017, were utilized
for the validation. The newly proposed IDS is adaptable to any new dataset. The accuracy,
DR, FAR, precision, specificity, and the F1-score were the evaluation metrics used to show
that the proposed system is better than the other systems in the same general category.
All the systems were evaluated using the same benchmark datasets, thus ensuring that
the comparisons are unbiased and fair. The experimental results reveal that the proposed
system considerably increased the overall accuracy and F1-score, giving values up to
98.9% and 99.6%m compared to the other systems using the UNSWNB-15 and CICIDS2017
datasets, respectively. Furthermore, it maintains the highest precision and DR and the
lowest FAR. These results are promising. Additionally, according to the research results,
the proposed IDS is highly successful in detecting attack types in imbalanced datasets. In
future work, IDS could be used to independently utilize feature selection for each attack
type and create a new classification approach to identify attack types.

Author Contributions: Conceptualization, K.A.E., A.A.A. and B.I.H.; methodology, K.A.E., A.A.A.
and B.I.H.; software, B.I.H.; validation, K.A.E. and A.A.A.; formal analysis, B.I.H.; investigation,
K.A.E. and A.A.A.; resources, K.A.E., A.A.A. and B.I.H.; data curation, B.I.H.; writing—original draft
preparation, B.I.H.; writing—review and editing, K.A.E. and A.A.A.; visualization, B.I.H.; project
administration, K.A.E.; funding acquisition, K.A.E., A.A.A. and B.I.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Computers 2022, 11, 170 35 of 37

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: UNSW-NB15 dataset available at URL: https://research.unsw.edu.au/
projects/unsw-nb15-dataset (accessed on 1 October 2022). And CICIDS2017 dataset available at URL:
https://www.unb.ca/cic/datasets/ids-2017.html (accessed on 1 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. DataReportal—Global Digital Insights. Digital 2022: Global Overview Report—DataReportal—Global Digital Insights. Available

online: https://datareportal.com/reports/digital-2022-global-overview-report (accessed on 8 September 2022).
2. Mahdavisharif, M.; Jamali, S.; Fotohi, R. Big data-aware intrusion detection system in communication networks: A deep learning

approach. J. Grid Comput. 2021, 19, 46. [CrossRef]
3. Qureshi, A.-U.-H.; Larijani, H.; Mtetwa, N.; Javed, A.; Ahmad, J. RNN-ABC: A new swarm optimization based technique for

anomaly detection. Computers 2019, 8, 59. [CrossRef]
4. Thakkar, A.; Lohiya, R. A survey on intrusion detection system: Feature selection, model, performance measures, application

perspective, challenges, and future research directions. Artif. Intell. Rev. 2021, 55, 453–563. [CrossRef]
5. Hameed, B.; AlHabshy, A.A.; ElDahshan, K.A. Distributed Intrusion Detection Systems in Big Data: A Survey. Al-Azhar Bull. Sci.

2021, 32, 27–44. [CrossRef]
6. Azeez, N.A.; Ayemobola, T.J.; Misra, S.; Maskeliūnas, R.; Damaševičius, R. Network intrusion detection with a hashing based

apriori algorithm using Hadoop MapReduce. Computers 2019, 8, 86. [CrossRef]
7. Milenkoski, A.; Vieira, M.; Kounev, S.; Avritzer, A.; Payne, B.D. Evaluating computer intrusion detection systems: A survey of

common practices. ACM Comput. Surv. 2015, 48, 1–41. [CrossRef]
8. Ahmad, Z.; Khan, A.S.; Shiang, C.W.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of machine

learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2021, 32, e4150. [CrossRef]
9. Sarker, I.H.; Kayes, A.; Badsha, S.; Alqahtani, H.; Watters, P.; Ng, A. Cybersecurity data science: An overview from machine

learning perspective. J. Big Data 2020, 7, 41. [CrossRef]
10. Abou-Kreisha, M.T.; Yaseen, H.K.; Fathy, K.A.; Ebeid, E.A.; ElDahshan, K.A. Multisource Smart Computer-Aided System for

Mining COVID-19 Infection Data. Healthcare 2022, 10, 109. [CrossRef]
11. Elzeki, O.; Sarhan, S.; Elfattah, M.A.; Salem, H.; Shams, M.Y. Biomedical Healthcare System For Orthopedic Patients Based On

Machine Learning. J. Eng. Appl. 2006, 16, 616–622.
12. Moualla, S.; Khorzom, K.; Jafar, A. Improving the performance of machine learning-based network intrusion detection systems

on the UNSW-NB15 dataset. Comput. Intell. Neurosci. 2021, 2021, 1–13. [CrossRef] [PubMed]
13. Wong, P.K.; Yang, Z.; Vong, C.M.; Zhong, J. Real-time fault diagnosis for gas turbine generator systems using extreme learning

machine. Neurocomputing 2014, 128, 249–257. [CrossRef]
14. Ren, J.; Guo, J.; Qian, W.; Yuan, H.; Hao, X.; Jingjing, H.J.S. Building an effective intrusion detection system by using hybrid data

optimization based on machine learning algorithms. Secur. Commun. Netw. 2019, 2019, 7130868. [CrossRef]
15. Gu, J.; Lu, S. An effective intrusion detection approach using SVM with naïve Bayes feature embedding. Comput. Secur. 2021,

103, 102158. [CrossRef]
16. Faker, O.; Dogdu, E. Intrusion detection using big data and deep learning techniques. In Proceedings of the 2019 ACM Southeast

Conference, Kennesaw, GA, USA, 18–20 April 2019; Kennesaw State University: Kennesaw, GA, USA, 2019; pp. 86–93.
17. He, H.; Sun, X.; He, H.; Zhao, G.; He, L.; Ren, J. A novel multimodal-sequential approach based on multi-view features for

network intrusion detection. IEEE Access 2019, 7, 183207–183221. [CrossRef]
18. Wang, Z.; Zeng, Y.; Liu, Y.; Li, D. Deep belief network integrating improved kernel-based extreme learning machine for network

intrusion detection. IEEE Access 2021, 9, 16062–16091. [CrossRef]
19. Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep learning approach for

intelligent intrusion detection system. IEEE Access 2019, 7, 41525–41550. [CrossRef]
20. Choobdar, P.; Naderan, M.; Naderan, M. Detection and Multi-Class Classification of Intrusion in Software Defined Networks

Using Stacked Auto-Encoders and CICIDS2017 Dataset. Wirel. Pers. Commun. 2022, 123, 437–471. [CrossRef]
21. Lee, J.; Park, K. GAN-based imbalanced data intrusion detection system. Pers. Ubiquitous Comput. 2021, 25, 121–128. [CrossRef]
22. Lee, J.; Park, K. AE-CGAN model based high performance network intrusion detection system. Appl. Sci. 2019, 9, 4221. [CrossRef]
23. Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. Feature selection for high-dimensional data. Prog. Artif. Intell. 2016,

5, 65–75. [CrossRef]
24. Nadimi-Shahraki, M.H.; Banaie-Dezfouli, M.; Zamani, H.; Taghian, S.; Mirjalili, S. B-MFO: A binary moth-flame optimization for

feature selection from medical datasets. Computers 2021, 10, 136. [CrossRef]
25. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A survey on evolutionary computation approaches to feature selection. IEEE Trans.

Evol. Comput. 2015, 20, 606–626. [CrossRef]

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://www.unb.ca/cic/datasets/ids-2017.html
https://datareportal.com/reports/digital-2022-global-overview-report
http://doi.org/10.1007/s10723-021-09581-z
http://doi.org/10.3390/computers8030059
http://doi.org/10.1007/s10462-021-10037-9
http://doi.org/10.21608/absb.2021.63810.1100
http://doi.org/10.3390/computers8040086
http://doi.org/10.1145/2808691
http://doi.org/10.1002/ett.4150
http://doi.org/10.1186/s40537-020-00318-5
http://doi.org/10.3390/healthcare10010109
http://doi.org/10.1155/2021/5557577
http://www.ncbi.nlm.nih.gov/pubmed/34220999
http://doi.org/10.1016/j.neucom.2013.03.059
http://doi.org/10.1155/2019/7130868
http://doi.org/10.1016/j.cose.2020.102158
http://doi.org/10.1109/ACCESS.2019.2959131
http://doi.org/10.1109/ACCESS.2021.3051074
http://doi.org/10.1109/ACCESS.2019.2895334
http://doi.org/10.1007/s11277-021-09139-y
http://doi.org/10.1007/s00779-019-01332-y
http://doi.org/10.3390/app9204221
http://doi.org/10.1007/s13748-015-0080-y
http://doi.org/10.3390/computers10110136
http://doi.org/10.1109/TEVC.2015.2504420

Computers 2022, 11, 170 36 of 37

26. Abdel-Basset, M.; El-Shahat, D.; El-henawy, I.; de Albuquerque, V.H.C.; Mirjalili, S. A new fusion of grey wolf optimizer algorithm
with a two-phase mutation for feature selection. Expert Syst. Appl. 2020, 139, 112824. [CrossRef]

27. Cui, X.; Li, Y.; Fan, J.; Wang, T.; Zheng, Y. A hybrid improved dragonfly algorithm for feature selection. IEEE Access 2020, 8,
155619–155629. [CrossRef]

28. El-Hasnony, I.M.; Barakat, S.I.; Elhoseny, M.; Mostafa, R.R. Improved feature selection model for big data analytics. IEEE Access
2020, 8, 66989–67004. [CrossRef]

29. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
30. Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput.

Appl. 2018, 30, 413–435. [CrossRef]
31. Chantar, H.; Mafarja, M.; Alsawalqah, H.; Heidari, A.A.; Aljarah, I.; Faris, H. Feature selection using binary grey wolf optimizer

with elite-based crossover for Arabic text classification. Neural. Comput. Appl. 2020, 32, 12201–12220. [CrossRef]
32. Hu, P.; Pan, J.-S.; Chu, S.-C. Improved binary grey wolf optimizer and its application for feature selection. Knowl. Based Syst. 2020,

195, 105746. [CrossRef]
33. Desuky, A.S.; Cifci, M.A.; Kausar, S.; Hussain, S.; El Bakrawy, L.M. Mud Ring Algorithm: A new meta-heuristic optimization

algorithm for solving mathematical and engineering challenges. IEEE Access 2022, 10, 50448–50466. [CrossRef]
34. Hashim, F.A.F.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new

metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [CrossRef]
35. Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic

algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [CrossRef]
36. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.

[CrossRef]
37. Huang, G.-B.; Wang, D.H.; Lan, Y. Extreme learning machines: A survey. Int. J. Mach. Learn. Cybern. 2011, 2, 107–122. [CrossRef]
38. Zhang, K.; Hu, Z.; Zhan, Y.; Wang, X.; Guo, K. A smart grid AMI intrusion detection strategy based on extreme learning machine.

Energies 2020, 13, 4907. [CrossRef]
39. Ali, H.; Elzeki, O.M.; Elmougy, S. Smart Attacks Learning Machine Advisor System for Protecting Smart Cities from Smart

Threats. Appl. Sci. 2022, 12, 6473. [CrossRef]
40. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network

data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; IEEE: Piscataway Township, NJ, USA, 2015; pp. 1–6.

41. Kumar, V.V.; Sinha, D.; Das, A.K.; Pandey, S.C.; Goswami, R.T. An integrated rule based intrusion detection system: Analysis on
UNSW-NB15 data set and the real time online dataset. Clust. Comput. 2020, 23, 1397–1418. [CrossRef]

42. Sharafaldin, I.; Gharib, A.; Lashkari, A.H.; Ghorbani, A.A. Towards a reliable intrusion detection benchmark dataset. Secur.
Commun. Netw. 2018, 2018, 177–200. [CrossRef]

43. Toupas, P.; Chamou, D.; Giannoutakis, K.M.; Drosou, A.; Tzovaras, D. An intrusion detection system for multi-class classification
based on deep neural networks. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 1253–1258.

44. Salem, H.; Attiya, G.; El-Fishawy, N. Intelligent decision support system for breast cancer diagnosis by gene expression profiles. In
Proceedings of the 2016 33rd National Radio Science Conference (NRSC), Aswan, Egypt, 22–25 February 2016; IEEE: Piscataway
Township, NJ, USA, 2016; pp. 421–430.

45. Sharma, J.; Giri, C.; Granmo, O.-C.; Goodwin, M. Multi-layer intrusion detection system with ExtraTrees feature selection, extreme
learning machine ensemble, and softmax aggregation. EURASIP J. Inf. Secur. 2019, 2019, 1–16. [CrossRef]

46. Jiang, K.; Wang, W.; Wang, A.; Wu, H. Network intrusion detection combined hybrid sampling with deep hierarchical network.
IEEE Access 2020, 8, 32464–32476. [CrossRef]

47. Rajagopal, S.; Kundapur, P.P.; Hareesha, K.S. A stacking ensemble for network intrusion detection using heterogeneous datasets.
Secur. Commun. Netw. 2020, 2020, 4586875. [CrossRef]

48. Manjunatha, B.; Gogoi, P.; Akkalappa, M. Data Mining based Framework for Effective Intrusion Detection using Hybrid Feature
Selection Approach. Int. J. Comput. Netw. Inform. Secur. 2019, 11, 1–12. [CrossRef]

49. Zhiqiang, L.; Zhijun, L.; Ting, G.; Yucheng, S.; Ghulam, M.-U.-D. A three-layer architecture for intelligent intrusion detection
using deep learning. In Proceedings of the Fifth International Congress on Information and Communication Technology, London,
UK, 20–21 February 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 245–255.

50. Jagruthi, H.; Kavitha, C. A Novel Framework for NIDS Using Stacked Ensemble Learning. In Soft Computing for Security
Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 115–127. [CrossRef]

51. Ho, S.; Al Jufout, S.; Dajani, K.; Mozumdar, M. A novel intrusion detection model for detecting known and innovative cyberattacks
using convolutional neural network. IEEE Open J. Comput. Soc. 2021, 2, 14–25. [CrossRef]

52. Ferrag, M.A.; Maglaras, L.; Ahmim, A.; Derdour, M.; Janicke, H.J.F.i. Rdtids: Rules and decision tree-based intrusion detection
system for internet-of-things networks. Future Internet 2020, 12, 44. [CrossRef]

http://doi.org/10.1016/j.eswa.2019.112824
http://doi.org/10.1109/ACCESS.2020.3012838
http://doi.org/10.1109/ACCESS.2020.2986232
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1007/s00521-017-3272-5
http://doi.org/10.1007/s00521-019-04368-6
http://doi.org/10.1016/j.knosys.2020.105746
http://doi.org/10.1109/ACCESS.2022.3173401
http://doi.org/10.1007/s10489-020-01893-z
http://doi.org/10.1016/j.matcom.2021.08.013
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.1007/s13042-011-0019-y
http://doi.org/10.3390/en13184907
http://doi.org/10.3390/app12136473
http://doi.org/10.1007/s10586-019-03008-x
http://doi.org/10.13052/jsn2445-9739.2017.009
http://doi.org/10.1186/s13635-019-0098-y
http://doi.org/10.1109/ACCESS.2020.2973730
http://doi.org/10.1155/2020/4586875
http://doi.org/10.5815/ijcnis.2019.08.01
http://doi.org/10.1007/978-981-16-5301-8_9
http://doi.org/10.1109/OJCS.2021.3050917
http://doi.org/10.3390/fi12030044

Computers 2022, 11, 170 37 of 37

53. Hosseini, S.; Seilani, H. Anomaly process detection using negative selection algorithm and classification techniques. Evol. Syst.
2021, 12, 769–778. [CrossRef]

54. Salman, T.; Bhamare, D.; Erbad, A.; Jain, R.; Samaka, M. Machine learning for anomaly detection and categorization in multi-cloud
environments. In Proceedings of the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud),
New York, NY, USA, 26–28 June 2017; IEEE: Piscataway Township, NJ, USA, 2017; pp. 97–103.

http://doi.org/10.1007/s12530-019-09317-1

	Introduction
	Literature Review
	Preliminary Concepts
	Feature Selection Methods
	Hyperparameter Optimization
	Archimedes Optimization Algorithm (AOA)
	Honey Badger Algorithm (HBA)

	Extreme Learning Machine (ELM) Classifier

	Proposed Methodology for the IDS Development
	Proposed Development Pipeline
	Essential Stage: Network Traffic and Data Preparation
	Data Preprocessing Phase
	Feature Selection and Data Reduction Phase
	Multiple-Attack-Based Dataset(s) Subsampling Phase

	Classification Stage
	Aggregated Hierarchical Classifiers Stage

	Experimental Results and Discussion
	Benchmark Datasets
	UNSW-NB 15 Dataset
	CICIDS2017 Dataset

	Evaluation Results Using the UNSW-NB15 and CICIDS2017 Datasets
	Discussion

	Conclusions
	References

