On the Feasibility of Real-Time HRV Estimation Using Overly Noisy PPG Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data acquisition and Pre-Processing
2.2. Deep Learning Model
2.3. Simulink® System
2.4. HRV Evaluation
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, F.B.; Anderson, R.N. The Leading Causes of Death in the US for 2020. JAMA 2021, 325, 1829. [Google Scholar] [CrossRef]
- Singh, N.; Moneghetti, K.J.; Christle, J.W.; Hadley, D.; Plews, D.; Froelicher, V. Heart Rate Variability: An Old Metric with New Meaning in the Era of using mHealth Technologies for Health and Exercise Training Guidance. Part One: Physiology and Methods. Arrhythmia Electrophysiol. Rev. 2018, 7, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.; Camm, A.J.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Buccelletti, E.; Gilardi, E.; Scaini, E.; Galiuto, L.; Persiani, R.; Biondi, A.; Basile, F.; Silveri, N.G. Heart rate variability and myocardial infarction: Systematic literature review and metanalysis. Eur. Rev. Med. Pharmacol. Sci. 2009, 13, 299–307. [Google Scholar] [PubMed]
- Kleiger, R.E.; Miller, J.P.; Bigger, J.T.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Esgalhado, F.; Batista, A.; Vassilenko, V.; Russo, S.; Ortigueira, M. Peak Detection and HRV Feature Evaluation on ECG and PPG Signals. Symmetry 2022, 14, 1139. [Google Scholar] [CrossRef]
- Selvaraj, N.; Jaryal, A.; Santhosh, J.; Deepak, K.K.; Anand, S. Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography. J. Med. Eng. Technol. 2008, 32, 479–484. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, H.; Ju, K.; Shin, K.; Lee, M.; Shelley, K.; Chon, K.H. Can Photoplethysmography Variability Serve as an Alternative Approach to Obtain Heart Rate Variability Information? J. Clin. Monit. Comput. 2008, 22, 23–29. [Google Scholar] [CrossRef]
- Sheridan, D.C.; Dehart, R.; Lin, A.; Sabbaj, M.; Baker, S.D. Heart Rate Variability Analysis: How Much Artifact Can We Remove? Psychiatry Investig. 2020, 17, 960–965. [Google Scholar] [CrossRef]
- Hinde, K.; White, G.; Armstrong, N. Wearable Devices Suitable for Monitoring Twenty Four Hour Heart Rate Variability in Military Populations. Sensors 2021, 21, 1061. [Google Scholar] [CrossRef]
- Georgiou, K.; Larentzakis, A.V.; Khamis, N.N.; Alsuhaibani, G.I.; Alaska, Y.A.; Giallafos, E.J. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review. Folia Med. 2018, 60, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, R.; Xian, O.C. Computational Science and Technology; Alfred, R., Iida, H., Haviluddin, H., Anthony, P., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2021; Volume 724, ISBN 978-981-33-4068-8. [Google Scholar]
- Hernández-Vicente, A.; Hernando, D.; Marín-Puyalto, J.; Vicente-Rodríguez, G.; Garatachea, N.; Pueyo, E.; Bailón, R. Validity of the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and Fitness Level Groups. Sensors 2021, 21, 902. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Liu, S.; Zhang, H.; Sun, X.; Wang, S.-H.; Zhao, J.; Yan, J. CNNG: A Convolutional Neural Networks With Gated Recurrent Units for Autism Spectrum Disorder Classification. Front. Aging Neurosci. 2022, 14, 948704. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, L.; Zhao, J.; Li, B.; Wang, S.-H. Attention deficit/hyperactivity disorder Classification based on deep spatio-temporal features of functional Magnetic Resonance Imaging. Biomed. Signal Process. Control 2022, 71, 103239. [Google Scholar] [CrossRef]
- Kazemi, K.; Laitala, J.; Azimi, I.; Liljeberg, P.; Rahmani, A.M. Robust PPG Peak Detection Using Dilated Convolutional Neural Networks. Sensors 2022, 22, 6054. [Google Scholar] [CrossRef] [PubMed]
- Goh, C.-H.; Tan, L.K.; Lovell, N.H.; Ng, S.-C.; Tan, M.P.; Lim, E. Robust PPG motion artifact detection using a 1-D convolution neural network. Comput. Methods Programs Biomed. 2020, 196, 105596. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jimison, H.; Pavel, M. Reducing Motion Artifacts of Pulse Intervals from Photoplethysmogram of a Commercial Wristband for Heart Rate Variability Analysis. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 26–30 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 47–51. [Google Scholar]
- Firoozabadi, R.; Helfenbein, E.D.; Babaeizadeh, S. Efficient noise-tolerant estimation of heart rate variability using single-channel photoplethysmography. J. Electrocardiol. 2017, 50, 841–846. [Google Scholar] [CrossRef]
- Salehizadeh, S.; Dao, D.; Bolkhovsky, J.; Cho, C.; Mendelson, Y.; Chon, K. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Sensors 2015, 16, 10. [Google Scholar] [CrossRef] [Green Version]
- Yap, J.H.; Jeong, D.U. Design and Implementation of Ubiquitous ECG Monitoring System by Using Android Tablet. In Ubiquitous Information Technologies and Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 269–277. [Google Scholar]
- Kim, B.-H.; Noh, Y.-H.; Jeong, D.-U. A Wearable ECG Monitoring System Using Adaptive EMD Filter Based on Activity Status. In Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, Gwangiu, Korea, 24–27 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 11–16. [Google Scholar]
- Allen, J.; Murray, A. Effects of filtering on multi-site photoplethysmography pulse waveform characteristics. In Proceedings of the Computers in Cardiology, Chicago, IL, USA, 19–22 September 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 485–488. [Google Scholar]
- Esgalhado, F.; Fernandes, B.; Vassilenko, V.; Batista, A.; Russo, S. The Application of Deep Learning Algorithms for PPG Signal Processing and Classification. Computers 2021, 10, 158. [Google Scholar] [CrossRef]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195–202. [Google Scholar] [CrossRef]
- Peng, F.; Zhang, Z.; Gou, X.; Liu, H.; Wang, W. Motion artifact removal from photoplethysmographic signals by combining temporally constrained independent component analysis and adaptive filter. Biomed. Eng. Online 2014, 13, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadei, B.C.; Gumiero, A.; Tantillo, G.; Della Torre, L.; Olmo, G. Systolic Blood Pressure Estimation from PPG Signal Using ANN. Electron. 2022, 11, 2909. [Google Scholar] [CrossRef]
- Esgalhado, F.; Batista, A.; Vassilenko, V.; Ortigueira, M. Real-Time PPG-Based HRV Implementation Using Deep Learning and Simulink. In IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 103–111. [Google Scholar]
- Lukáč, T.; Ondráček, O. Using Simulink and Matlab for Real-Time ECG Signal Processing. Conf. MATLAB 2012. [Google Scholar]
Noisy PPG Signal | RMSE (Seconds) | Correlation Coefficient |
---|---|---|
1 | 0.069 | 0.578 |
2 | 0.103 | 0.579 |
3 | 0.135 | 0.293 |
4 | 0.055 | 0.031 |
5 | 0.309 | 0.372 |
6 | 0.056 | 0.521 |
7 | 0.304 | 0.691 |
8 | 0.299 | 0.849 |
9 | 0.128 | 0.238 |
10 | 0.157 | 0.023 |
11 | 0.268 | 0.674 |
12 | 0.177 | 0.098 |
13 | 0.348 | 0.464 |
14 | 0.068 | 0.053 |
15 | 0.066 | 0.600 |
16 | 0.603 | 0.729 |
17 | 0.101 | 0.165 |
18 | 0.124 | 0.198 |
19 | 0.099 | 0.511 |
20 | 0.099 | 0.341 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esgalhado, F.; Vassilenko, V.; Batista, A.; Ortigueira, M. On the Feasibility of Real-Time HRV Estimation Using Overly Noisy PPG Signals. Computers 2022, 11, 177. https://doi.org/10.3390/computers11120177
Esgalhado F, Vassilenko V, Batista A, Ortigueira M. On the Feasibility of Real-Time HRV Estimation Using Overly Noisy PPG Signals. Computers. 2022; 11(12):177. https://doi.org/10.3390/computers11120177
Chicago/Turabian StyleEsgalhado, Filipa, Valentina Vassilenko, Arnaldo Batista, and Manuel Ortigueira. 2022. "On the Feasibility of Real-Time HRV Estimation Using Overly Noisy PPG Signals" Computers 11, no. 12: 177. https://doi.org/10.3390/computers11120177
APA StyleEsgalhado, F., Vassilenko, V., Batista, A., & Ortigueira, M. (2022). On the Feasibility of Real-Time HRV Estimation Using Overly Noisy PPG Signals. Computers, 11(12), 177. https://doi.org/10.3390/computers11120177