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Abstract: Understanding multimedia content remains a challenging problem in e-commerce search
and recommendation applications. It is difficult to obtain item representations that capture the
relevant product attributes since these product attributes are fine-grained and scattered across product
images with huge visual variations and product descriptions that are noisy and incomplete. In
addition, the interpretability and explainability of item representations have become more important
in order to make e-commerce applications more intelligible to humans. Multimodal disentangled
representation learning, where the independent generative factors of multimodal data are identified
and encoded in separate subsets of features in the feature space, is an interesting research area to
explore in an e-commerce context given the benefits of the resulting disentangled representations
such as generalizability, robustness and interpretability. However, the characteristics of real-word
e-commerce data, such as the extensive visual variation, noisy and incomplete product descriptions,
and complex cross-modal relations of vision and language, together with the lack of an automatic
interpretation method to explain the contents of disentangled representations, means that current
approaches for multimodal disentangled representation learning do not suffice for e-commerce
data. Therefore, in this work, we design an explainable variational autoencoder framework (E-VAE)
which leverages visual and textual item data to obtain disentangled item representations by jointly
learning to disentangle the visual item data and to infer a two-level alignment of the visual and
textual item data in a multimodal disentangled space. As such, E-VAE tackles the main challenges
in disentangling multimodal e-commerce data. Firstly, with the weak supervision of the two-level
alignment our E-VAE learns to steer the disentanglement process towards discovering the relevant
factors of variations in the multimodal data and to ignore irrelevant visual variations which are
abundant in e-commerce data. Secondly, to the best of our knowledge our E-VAE is the first VAE-based
framework that has an automatic interpretation mechanism that allows to explain the components of
the disentangled item representations with text. With our textual explanations we provide insight
in the quality of the disentanglement. Furthermore, we demonstrate that with our explainable
disentangled item representations we achieve state-of-the-art outfit recommendation results on the
Polyvore Outfits dataset and report new state-of-the-art cross-modal search results on the Amazon
Dresses dataset.

Keywords: explainability; disentangled representation; multimodal representation; cross-modal
search; outfit recommendation

1. Introduction

Product understanding for multimedia content is a core problem in fashion e-commerce
search and recommendation. To be able to retrieve and recommend suitable products we
require representations of those products that capture all their relevant fine-grained product
attributes. The challenge lies in the fact that relevant fine-grained product attributes are
scattered across the visual and textual e-commerce data and must be correctly detected,
recognized and fused into multimodal representations. Current methods for multimodal
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representation learning such as visual-linguistic transformers usually create representations
that are entangled and suffer from feature correlation and duplication. Furthermore, as
visual-linguistic transformers are purely likelihood-based they lead to spurious correla-
tions which pose several problems. Firstly, spurious correlations result in models that
can be unfair to particular subgroups in a population. Secondly, models suffering from
spurious correlations are inexplicable because they are often right for the wrong reason.
In addition, spurious correlations harm the generalization ability and can lead to errors
in out-of-distribution settings. Because of these problems such models can be perceived
as untrustworthy.

Explanations are a promising mechanism for promoting fairness, transparency and
trust. Therefore, there is an increasing interest in developing eXplainable artificial intelli-
gence (XAI) systems that are interpretable and explainable while maintaining the same level
of performance [1]. One promising technique is multimodal disentangled representation
learning which produces disentangled representations that are less sensitive to misleading
correlations in the training data and have interesting properties such as generalizability,
robustness and interpretability. In multimodal disentangled representation learning, the
multimodal product data are unraveled to discover the small set of independent generative
factors from which a clothing item is assembled. These independent generative factors
or so-called factors of variation are groups of product attributes such as colors (e.g., red,
navy, khaki), neckline shapes (e.g., crew neck, V-neck, boat neck) or fits (e.g., loose, relaxed,
regular). Disentangled representations are interpretable by design since each feature or
subset of features corresponds with exactly one factor of variation. However, an automatic
method to identify which factor of variation is encoded in which subset of features is still
lacking. Currently, a feature dimension is given an interpretation by gradually altering the
value of that dimension while keeping other dimensions fixed and then checking which
product aspect is changing. However, this lack of an automatic interpretation method
prevents disentangled representations from being used to their fullest potential such as for
explainable search and recommendation. In addition, disentangling real-world multimodal
e-commerce data is very challenging. First, the relevant product attributes are scattered
across the visual and textual modalities. Some are visible only in the product image or
are mentioned only in the product description, while others are expressed through both
modalities. Secondly, on the image side, whether product attributes are discovered as
factors of variation depends on their saliency and granularity. Often, product attributes
are much less salient than other visual variations in e-commerce images such as the visual
appearance or pose of the human models which are irrelevant when modelling fashion
items. It is not straightforward how to learn to ignore these salient but irrelevant visual
variations in favor of less salient but relevant visual variations. Furthermore, the factors of
variation for clothing items are product attribute groups with varying granularity. Some at-
tribute groups such as color or fit usually take up a larger portion of the image, while others
such as neckline shape or fasteners are very fine-grained and only have subtle differences.
Overall, the visual variation in e-commerce images is immense resulting in a huge search
space that should be explored to discover the relevant factors of variation. Thirdly, on the
text side the product descriptions are incomplete, meaning they refer to some but not all
product attributes that are instances of relevant factors of variation to be discovered. In
addition, they contain noise such as washing instructions which should be ignored. Finally,
for real-world e-commerce data, we usually do not have any ground truth data except for
the correspondence of the product images and descriptions. Hence, we do not know how
to segment the product images and descriptions into relevant product attributes nor are we
aware of the semantic correspondences of the visual and textual product attributes.

In this work we propose E-VAE, an explainable variational autoencoder (VAE) which
infers a multimodal disentangled space where the visual and textual item data are aligned
at two levels. At a coarse-grained level, we align product images with textual attributes
from the corresponding product description that refer to factors of variation. The alignment
of the fashion images and textual product attributes steers the disentanglement process
towards discovering generative factors that correspond with natural concepts that humans
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use to describe and distinguish clothing items and helps to ignore irrelevant factors of
variation. At a fine-grained level, we infer the latent semantic correspondences of the textual
attributes with the image regions in the multimodal disentangled space. This results in a
fine-grained visual contextualization of the textual attributes and facilitates the alignment at
the coarse-grained level. Through the coarse-grained alignment of the product images and
textual attributes, textual information seeps through to the disentangled representations
of the product images, making them multimodal. Hence, we consider the disentangled
representations of the product images as our multimodal item representations. In addition,
a byproduct of the coarse-grained alignment is that it provides a method to explain the
contents of the disentangled multimodal item representations with text. We compare the
proposed E-VAE model with state-of-the-art systems for outfit recommendation and cross-
modal search. We evaluate their performance on these two tasks as well as their ability to
explain the contents of the representations they produce. Our contributions are:

• To the best of our knowledge, we are the first to propose an automatic method to
explain the contents of disentangled multimodal item representations with text.

• We disentangle real-world multimodal e-commerce data which is challenging because
(i) some attributes are shared and some are complementary between the product image
and description which makes effective fusion complex, (ii) the saliency, granularity
and visual variation of the product attributes complicates detection and recognition,
(iii) the noise and incompleteness of product descriptions makes alignment difficult,
and (iv) we lack ground truth data at the product attribute level.

• We show how the weak supervision of the two-level alignment steers the disentangle-
ment process towards discovering factors of variation that humans use to organize,
describe and distinguish fashion products and to ignore others which is essential
when the visual search space is huge and noisy.

• We demonstrate that our E-VAE creates representations that are explainable while
maintaining the same level of performance as the state-of-the-art or surpassing it. More
precisely, we achieve state-of-the-art outfit recommendation results on the Polyvore
Outfits dataset and new state-of-the-art cross-modal search results on the Amazon
Dresses dataset.

The remainder of the paper is structured as follows. In Section 2 we describe related
work. Next, Section 3 provides a detailed description of our E-VAE and how we steer
and interpret the disentanglement. Then, Section 4 gives an overview of our experimental
setup. Results are presented in Section 5. Finally, Section 6 lists the main conclusions and
directions for future work.

2. Related Work

In this work, we aim to learn explainable disentangled representations of fashion
items from multimodal e-commerce data. This is challenging because relevant product
attributes are scattered across the product images and descriptions, the visual variation
in the product images is huge, and the product descriptions are noisy and incomplete.
Furthermore, explaining the contents of disentangled representations is not straightforward
since an automatic interpretation method is still lacking. We review some current works on
unimodal and multimodal disentangled representation learning as well as on explainability
in e-commerce search and recommender systems.

2.1. Disentangled Representation Learning

The term disentangled representation was first introduced in [2]. The underlying
assumption is that, to create generalizable and interpretable semantic representations of
data observations, we should unravel (disentangle) the underlying structure of those data.
More precisely, given data observations (e.g., images of clothing items or faces) we should
find the set of independent generative factors from which these observations are generated
(e.g., hair length, hair color, skin tone, eye shape, eye color, etc. for a face). The generative
factors or so-called factors of variation are independent, meaning we can change one factor
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without changing others (e.g., changing the hair color does not affect other facial factors
of variation such as hair length or skin tone). A disentangled representation is then a
low-dimensional vector that contains all the information about each factor of variation,
with each coordinate (or subset of coordinates) containing information about only one such
factor. The VAE framework, which was originally proposed in [3,4], is typically used for
disentangled representation learning. It is a neural network architecture consisting of an
encoder that maps an input observation to a low-dimensional latent space and a decoder
that reproduces the input observation given the latent representation. To organize the latent
space in such a way that each coordinate (or subset of coordinates) captures only one factor
of variation, the VAE encoder learns to output a factorized standard Gaussian distribution
over all the latent space dimensions from which the disentangled representation is sampled.
VAEs [5,6] have shown promising results for visual data such as the CelebA [7], Faces [8]
and Chairs [9] datasets but where the amount, granularity and visual variation of the
generative factors is more limited and where there is much less noise compared to fashion
e-commerce data. For textual data, VAEs have been less successful due to the problem of
posterior collapse, although there are some works on how to mitigate this problem [10,11].

Also in e-commerce VAEs have shown promising results. For instance in [12], the
authors learn disentangled representations for users and items based on user behaviour
data. They disentangle the user behaviour data into macro latent factors that govern user
intentions and micro-latent factors that describe the preference about these intentions.
While they solely disentangle user behaviour data, our goal is to disentangle multimodal
data, in our case visual and textual item data. We propose to steer the disentanglement
process towards finding relevant factors of variation in the multimodal item data by jointly
learning to disentangle and learning a two-level alignment of the vision and language in the
disentangled space, that is, of the full images and textual attributes and of the image regions
and textual attributes. Furthermore, the alignment allows us to interpret the components
of the disentangled representations with text, whereas [12] do not allow to interpret the
disentangled representations or to generate explanations.

Other neural architectures can be used for disentangled representation learning as well.
In [13], the authors use a CNN-based architecture to learn disentangled item representations
for item retrieval and outfit recommendation. Their method uses a pre-defined ground
truth attribute hierarchy to determine the disentanglement. This requires immense labeling
effort from e-retailers as new products arrive every day and fashion seasons, trends and
styles change over time. In contrast, E-VAE learns to disentangle without having access to
the actual factors of variation nor to complete ground truth attribute labels.

Finally, our work belongs to a recent line of research that integrates weak supervision in
disentangled representation learning [14,15]. More precisely, we steer the disentanglement
of fashion e-commerce data towards discovering relevant factors of variation through the
alignment of the disentangled neural representations with discrete labels in the form of
textual attributes from the product descriptions that are instances of generative factors
of interest. Furthermore, our approach has the additional advantage that it makes the
disentangled representations explainable.

2.2. Multimodal Disentangled Representation Learning

Recently, there has been an increasing interest in multimodal disentangled represen-
tation learning. For instance in [16], the authors propose a neural architecture that learns
disentangled representations from multi-feedback, that is, both positive (i.e., click) and
negative feedback (i.e., unclick and dislike). More precisely, they propose a co-filtering dy-
namic routing mechanism to capture the complex relations in multi-feedback and also deal
with the noise hidden in multi-feedback. In contrast, instead of disentangling multimodal
user behaviour data our focus is on disentangling multimodal item data but which are also
characterized by complex cross-modal relations and noise. In [17], content-collaborative
disentangled user and item representations are inferred from user behaviour data and
multimodal item data. First, they try to extract as much of the relevant features from
the item content data, which are a concatenation of a coarse-grained visual and textual
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representation. Next, they discover the remaining necessary features from the user-item
interactions. In our work, we disentangle multimodal item data by aligning disentangled
representations of product images with sparse representations of textual attributes from
e-commerce descriptions in a multimodal disentangled space. Since we operate at the
attribute level, our feature disentanglement is more fine-grained than that of [17]. In [18], a
deep generative model embeds user content features and user collaborative features in a
latent space both with their own encoder module. The collaborative encoder module learns
to disentangle the user collaborative features into uncertainty and semantic information
about the user. The uncertainty information is passed to a user-dependent channel which
determines the amount of information from the latent user content features to fuse with
the latent user collaborative features to produce the final latent user embedding. However,
their embeddings are not explainable.

Closely related to our work is the work of [19], where a neural architecture is proposed
that consists of three VAEs. Given instances of a first modality (e.g., image), the first VAE
learns to reconstruct a second modality (e.g., text). The second VAE learns to reconstruct the
second modality (e.g., text) based on this modality itself. The third VAE, called the mapper,
learns to align the latent distributions of the two VAEs in order to effectively combine the
information extracted by both. As a result, the mapper produces disentangled representa-
tions of the first modality (e.g., image) that are close to the disentangled representations
of the second modality (e.g., text). The proposed architecture is used for image-to-text
retrieval. Like us, they also use a form of alignment to align images and texts in a dis-
entangled space. However, their alignment is more coarse-grained than ours and their
disentangled representations are not explainable. Also closely related is the work of [20].
They propose a VAE framework to disentangle visual and textual data by inferring a single
shared multimodal disentangled space and a private unimodal disentangled space per
modality. The shared multimodal space focuses on factors of variation that can be expressed
through both modalities, while the private disentangled spaces focus on modality-specific
factors of variation. They demonstrate the effectiveness of their method on cross-modal
search. Similar to us, they consider the substitutability and complementarity relations of
vision and language in the disentanglement process. However, they do not try to infer the
latent semantic correspondences at the level of visual and textual attributes to improve the
disentanglement and explainability.

2.3. Explainability

For model explainability, existing search and recommender systems most often use
attention to highlight certain words or regions that were important to produce the search or
recommendation results [21–24]. In [21], an encoder-decoder-based architecture is designed
which applies hierarchical co-attention on user and item reviews to capture the deep
user-item interactions and output a rating as well as a natural language explanation for
a given user-item pair. In [22], natural language explanations are generated based on the
user and item features as well as visual features of the item and sentiment features. In
both approaches, the textual explanations are generated based on attention on entangled
feature representations that are not interpretable and suffer from feature correlation and
duplication which negatively affect the explanation. In contrast, our textual explanations
are generated for explainable item representations that are disentangled in a small set of
independent factors of variation. In [23], users and item image regions are projected into a
fine-grained semantic space where the user’s preferences towards each visual attribute of
the item can be calculated with attention. In [24], the authors propose a neural architecture
that learns to attend to the regions in an image showing product attributes that a particular
user is interested in, enabling it to visually explain a recommendation. Furthermore,
the model uses the user review text as a weak supervision signal to infer which image
regions show product attributes the user cares about. While these works provide visual
explanations based on entangled item representations that may contain duplicated and
highly correlated features obtained with attention-based neural architectures, we provide
textual explanations of the contents of disentangled item representations obtained with
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a VAE-based generative deep neural network. In [25], the authors propose to visually
explain VAEs by means of gradient-based attention and show how the attention maps can
be used to localize anomalies in images. In this work, we provide a method to interpret the
components of the disentangled space by jointly training our E-VAE to learn to disentangle
images and to align the disentangled representations with textual phrases.

3. Methodology

Our goal in this work is twofold. First, we want to obtain multimodal disentangled
representations of items that we can interpret and explain. Second, we aim to design a
method to steer the disentanglement process of real-world fashion e-commerce images
towards discovering the relevant factors of variation which are often fine-grained and less
salient than irrelevant visual variations. Therefore we propose E-VAE, an explainable VAE-
based framework that infers a multimodal disentangled space under the weak supervision
of the two-level alignment of the visual and textual item data. The fashion-related phrases
in the textual item data denote attributes of different groups (e.g., colors, necklines, sleeve
lengths) that humans use to organize, describe and distinguish fashion products and can
thus be considered instances of relevant factors of variation. Hence, the alignment steers
the disentanglement process in the desired direction. Additionally, it has the advantage
that it provides a method to interpret the disentangled representations with text.

Our E-VAE is an extension of β-VAE [5] but with three major changes. First, E-VAE
infers disentangled representations that are not only interpretable but also explainable with
text. Second, E-VAE is designed to disentangle not unimodal data but instead multimodal
item data where some factors of variation are shared and some are complementary between
the vision and language data. Third, E-VAE learns to disentangle real-world e-commerce
data where the amount, granularity and visual variation of the factors of variation is huge
and where there is a lot of noise in both the vision and language data.

Section 3.1 explains how E-VAE disentangles the fashion images. Section 3.2 describes
how we make our disentangled space multimodal and our representations explainable
through the two-level alignment of the vision and language data.

3.1. Disentanglement

On the one hand, our E-VAE learns to disentangle fashion images. We assume the
fashion images are generated from K underlying independent generative factors f1, ..., fK.
We want to model each image v with a latent vector z ∈ Rdz where each coordinate zj or
subset of coordinates corresponds with exactly one generative factor fk (i.e., dz ≥ K). Such
a latent vector is called a disentangled representation.

3.1.1. Prior

Representations z in the latent space are assumed to follow the prior distribution
p(z), which is chosen to be a factorized standard Gaussian distribution N (0, I). Since
each latent feature zj corresponds with a generative factor fk, this means we believe that
each generative factor has a standard normal distribution and that the generative factors
are independent.

3.1.2. Decoder

We assume that each image v is generated from latent variables z that correspond
with the generative factors f1, ..., fK the latter not directly observed. E-VAE defines a joint
probability over the images and latent variables p(v, z) that describes our data. This joint
probability can be decomposed in the likelihood and the prior, i.e., p(v, z) = p(v|z)p(z).
The generative process assumed for our data is thus that we first sample a latent vector z(d)

from the prior (z(d) ∼ p(z)) and then the image v(d) from the likelihood (v(d) ∼ p(v|z)).
The likelihood p(v|z) is modeled by the decoder. The decoder is parameterized with a
deep deconvolutional neural network D(z) based on the ResNet50 architecture [26].
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3.1.3. Encoder

The goal of E-VAE is to actually find the relevant generative factors in the visual
item data. In other words, we want to infer good values for the latent variables given
the observed data when calculating the posterior p(z|v). As the computation of the true
posterior is intractable, it is approximated with the variational posterior q(z|v) which is
modeled by the encoder. The encoder should organize the latent space in a way compatible
with the generative process described above. Therefore, the encoder is trained to return
the mean and the covariance matrix that describe the Gaussian distribution of the latent
features, i.e., q(z|v) = ∏dz

j=1N
(
zj|µj(v̂), σ2

j (v̂)
)
, and which is enforced to be close to a

standard Gaussian distribution. Here, v̂ is an intermediate representation generated by
the encoder which is parameterized with a deep convolutional neural network E(v) based
on the ResNet50 architecture [26] commonly used for image encoding. More precisely,
the encoder consists of the convolutional layers of the ResNet50 architecture with one
fully-connected layer on top. The fully-connected layer takes the input from the last
convolutional layer, flattens it to obtain v̂, and outputs the mean µ(v̂) and variance σ2(v̂)
of the latent variables in the disentangled space.

3.1.4. ELBO

From a probabilistic perspective, encoder q(z|v), decoder p(v|z), and the prior p(z)
interact as follows during training. First, an image is encoded as a distribution over a
low-dimensional latent space by the encoder. Next, a point from this distribution is sampled
and the image is reconstructed by the decoder. Then, E-VAE is trained to maximize the
evidence lower bound (ELBO):

ELBO =
1
D

D

∑
d=1

(
Eq(z(d) |v(d))

[
log p(v(d)|z(d))

]
− β · KL

(
q(z(d)|v(d))||p(z(d))

))
,

(1)

where D is the number of training instances and hyperparameter β > 1. The ELBO is
composed of two terms. The first term is the log-likelihood of the dth image and encourages
the decoder to learn to reconstruct the image. The second term tries to regularize the
organisation of the latent space by enforcing that the distributions returned by the encoder
are close to the prior, which is a standard Gaussian. From a neural network perspective,
encoder E(v) takes an image v as input and outputs values for the mean µ(v̂) and variance
σ2(v̂) of the latent variables. Then, the latent representation z of the input image is
obtained from the multivariate distribution parameterized by the mean and variance using
the reparameterization trick, i.e., z = µ(v̂) + εσ(v̂) with ε ∼ N (0, 1). Finally, decoderD(z)
takes the latent representation and outputs the reconstructed image v̄. The encoder-decoder
is trained by minimizing LELBO:

LELBO =
1
D

D

∑
d=1

( W,H

∑
k=1,l=1

v(d)k,l log
(

f (v̄(d)k,l )
)

+β ·
dz

∑
j=1

1
2
·
(
− log(σ2

j (v̂)) + σ2
j (v̂) + µj(v̂)2 − 1

))
,

(2)

where indices k and l range over respectively the image width W and height H, the image
pixels v(d)k,l are in the range [0, 1] and f is the sigmoid activation function. As mentioned
above, this loss encourages to capture the most relevant features in the latent space and to
create a regularized latent space where the latent features correspond to the independent
generative factors.
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3.2. Explainability through Two-Level Alignment

E-VAE makes the disentangled representations of the fashion images multimodal and
explainable through the weak supervision of the two-level alignment. More precisely, we
extract fashion-related terms and phrases from the e-commerce descriptions and align the
extracted textual attributes with the visual data at two levels. First, at a coarse-grained level,
we align the textual attributes with the disentangled representations of the fashion images.
This encourages E-VAE to focus on encoding factors of variation that correspond with these
attributes. In other words, through the alignment the disentangled representations of the
fashion images will be enriched with information from the e-commerce descriptions and
become multimodal. Furthermore, the alignment with the textual attributes provides a way
to interpret and explain which product attributes are encoded in which coordinates of the
latent disentangled space. Second, at a fine-grained level, we align the textual attributes
with the image regions in the disentangled space. This will visually contextualize the
textual attributes further and facilitates the alignment at the coarse-grained level. Next we
describe this process in detail.

3.2.1. Textual Attribute Extraction and Representation

Given a product description, we only retain phrases x1, ..., xM that are fashion-related
based on a glossary of fashion attributes as is done in [27] (for more details see Section 4.1).
We represent these attributes with word embeddings e1, ..., eM trained with the Skipgram
model [28] on a fashion corpus. As a result, attributes that are instances of the same factor
of variation are likely to be embedded close together as they are expected to appear in
similar contexts. Since the disentanglement process needs to find relevant attributes and
put these together in groups that correspond with the factors of variation, these word
embeddings provide a good starting point. Next, the word embeddings are projected to
the disentangled space:

sj = ReLU(Wsej), (3)

with Ws ∈ Rdz×dt . As a result of using the ReLU activation function to project the textual
attributes to the disentangled space and through the disentanglement which encodes
relevant information related to a certain factor of variation only in a subset of dimensions
of the disentangled space, we expect the textual attribute representations to be sparse.

3.2.2. Coarse-grained Alignment of Images and Textual Attributes

At a coarse-grained level, we align the textual attributes sj with the disentangled
representations of the fashion images z. More precisely, the alignment score of the kth
image and the lth text is computed as the average cosine similarity score of the image with
each textual attribute:

akl =
1
M

M

∑
j=1

z(k)
ᵀ · s(l)j

||z(k)|| · ||s(l)j ||
, (4)

where z(k) and s(l)j are the latent representations of the kth image and the jth word of the
lth text, respectively, and M is the number of words. (Other similarity functions than
cosine similarity could be used here, e.g., unimodal attention mechanisms which compute
the similarity between a query vector (here the disentangled representation) and keys
(here the textual attributes) are also suitable. We experimented with the stacked attention
mechanism of [29] but this did not improve the results.) A triplet loss is used to enforce
that the alignment score of an image with its corresponding text add should be higher than
of the image with the hardest negative text adl , and vice versa for each text:
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LIT =
D

∑
d=1

max(0, ∆− add + adl) + max(0, ∆− add + akd), (5)

where the alignment scores a.. are computed with Equation (4), l and k are the indices of
respectively the hardest negative text and the hardest negative image for the dth image-text
pair, i.e., l = argmaxl 6=dadl and k = argmaxk 6=dakd, and ∆ is the margin.

Through the coarse-grained alignment of the textual attributes and fashion images,
the disentangled representations of the fashion images become multimodal. Hence, we
consider the disentangled representations of the fashion images z as our multimodal
item representations.

3.2.3. Fine-grained Alignment of Image Regions and Textual Attributes

To facilitate the alignment of the images and textual attributes, we also align the
textual attributes with regions. This ensures a more fine-grained visual contextualization
of the textual attributes. We obtain the image regions representations v̂i from the last
convolutional layer of the encoder and use another fully-connected layer to project them to
the disentangled space:

vi = Wvv̂i, (6)

with Wv ∈ Rdz×di . Then, we use the bidirectional focal attention mechanism of [30] to find
the latent alignment of the regions vi and textual attributes sj in the disentangled space.
Bidirectional focal attention is designed to identify which fragments (i.e., which regions or
words) are irrelevant in finding these alignments and cancel them out. Irrelevant fragments
are fragments that refer to complementary attributes or that are just noise. The relevance of
fragments is determined by computing their relative importance to other fragments. More
precisely, it is based on the intuition that compared to relevant fragments in a modality,
irrelevant fragments in that modality obtain low attention scores with the fragments in the
other modality. Cancelling such irrelevant fragments out is useful when aligning visual
and textual e-commerce data which are usually quite complementary. Bidirectional focal
attention works in two directions, i.e., it applies text-to-image and image-to-text attention.
Here, we describe the text-to-image direction, but the image-to-text direction is completely
analogous. In text-to-image attention, we try to find relevant image regions for each word
in three steps. First, we compute pre-assigned attention scores αij as the normalized cosine
similarity of each region vi and word sj:

αij = softmax(η
vᵀ

i · sj

||vi|| · ||sj||
), (7)

with η a hyperparameter to further increase the gap between relevant and irrelevant regions.
Second, we distinguish relevant from irrelevant regions by scoring the ith region based on
its preassigned attention score αij compared with the scores αrj of other regions:

F(αij) =
R

∑
r=1

f (αij, αrj)g(αrj) (8)

with f (αij, αrj) = αij − αrj (9)

and g(αrj) =
√

αrj, (10)

where R is the number of regions, and functions f and g measure the difference in preas-
signed attention scores and the importance of a region, respectively. Hence, F(αij) measures
the relevance of the ith region for the jth word compared to other regions. The ith region
will be considered irrelevant for the jth word if it obtains a low preassigned attention score
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with the jth word compared to the relevant regions, i.e., if it receives a score F(αij) ≤ 0.
Third, reassigned attention scores α

′
ij are computed based on scoring function F:

α
′
ij =

αijH(αij)

∑R
i=1 αijH(αij)

(11)

with H(αij) = I
(

F(αij) > 0
)
∈ {0, 1}, (12)

where H is an indicator function. The reassigned attention scores are used to compute a
visual context vector for each word:

cv
j =

R

∑
i=1

α
′
ijvi. (13)

Finally, the alignment score of the kth image and the lth text is calculated based on the
context vectors from both attention directions:

Skl =

1
M ∑M

j=1(
s(l)j

ᵀ
·cv(k)

j

||s(l)j ||·||c
v(k)
j ||

) + 1
R ∑R

i=1(
v(k)

i

ᵀ
·ct(l)

i

||v(k)
i ||·||c

t(l)
i ||

)

2
. (14)

Each image should have a higher alignment score with its corresponding text than
with the hardest negative text, and vice versa for each text:

LRT =
D

∑
d=1

max(0, ∆− Sdd + Sdl) + max(0, ∆− Sdd + Skd), (15)

where ∆ is the margin, and l and k are the indices of respectively the hardest negative
text and the hardest negative image for the dth image-text pair, i.e., l = argmaxl 6=dSdl and
k = argmaxk 6=dSkd.

3.3. Complete Loss Function

Since our E-VAE jointly learns to disentangle and align, the complete loss function is:

LE−VAE = LELBO + λ1 · LIT + λ2 · LRT , (16)

with λ1 and λ2 hyperparameters.

4. Experimental Setup

This section describes our experimental setup. The datasets used for training our
models and our evaluation procedure are explained in Sections 4.1 and 4.2, respectively.
The baseline methods we compare with are listed in Section 4.3. Finally, we provide the
training and implementation details in Section 4.4.

4.1. Datasets

In our experiments, we use two datasets consisting of real e-commerce data from the
web with images of products on a white background and phrase-like product descriptions:
the Polyvore Outfits dataset [31] and the Amazon Dresses dataset [32].

4.1.1. Polyvore Outfits

For outfit recommendation we evaluate on the two versions of the Polyvore Outfits
dataset [31]. The non-disjoint version consists of 251,008 items and 68,306 outfits and the
disjoint version contains 152,785 items and 35,140 outfits. Items belong to one of 11 different
product categories, i.e., tops, bottoms, all body, outerwear, shoes, jewellery, bags, hats,
scarves, sunglasses and other accessories. As such, the visual variation is very extensive.
Examples of outfits of the non-disjoint version are shown in Appendix A Figure A1. The
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non-disjoint version contains 53,306 outfits for training, 10,000 for testing, and 5000 for
validation. The disjoint version contains 16,995 outfits for training, 15,145 for testing, and
3000 for validation. These train-test splits are the same as in [31]. We construct a fashion
glossary of the 1000 most frequent fashion-related phrases for the alignment task based on
the textual data of the items in the non-disjoint training set (see Appendix A).

4.1.2. Amazon Dresses

For cross-modal search we use the Amazon Dresses dataset [32] which consists of
53,689 image-text pairs describing dresses of different styles for a variety of occasions.
Examples of image-text pairs are shown in Appendix A Figure A2. We take the same train-
test split as in [32] which uses 48,689 image-text pairs for training, 4000 for validation and
1000 for testing. We also use their fashion glossary for the alignment task (see Appendix A).

4.2. Evaluation

We first perform an intrinsic evaluation of the explainability of the disentangled
representations obtained by E-VAE. Next, we compare the performance of E-VAE with
that of other baseline methods on outfit recommendation and cross-modal search. For
the textual attribute representations produced by E-VAE and E-BFAN (a variant of our
E-VAE described in Section 4.3) we also report the sparsity percentage which is the average
amount of zero coordinates in the representation of an attribute.

4.2.1. Outfit Recommendation

For outfit recommendation, the disentangled multimodal item representations are
projected to multiple type-specific compatibility spaces as proposed by [31]. More precisely,
given triplets (zu, z+v , z−v ) where zu is the disentangled representation of an item of type
u, z+v represents a compatible item of type v and z−v is a randomly sampled incompatible
item of the same type v, we enforce the following compatibility loss in the type-specific
space for pairs of types (u, v):

LC =
D

∑
d=1

max(0, ∆− Cdd+ + Cdd−) (17)

with Cdd+ =
(W(u,v)

c z(d)u )ᵀ ·W(u,v)
c z+(d)

v

||W(u,v)
c z(d)u || · ||W

(u,v)
c z+(d)

v ||
, (18)

where ∆ is the margin, W(u,v)
c ∈ Rdc×dz is the projection matrix associated with the type-

specific space for the pair (u, v), Cdd+ is the compatibility score of a positive item pair, and
Cdd− is computed analogous to Cdd+ . We add the compatibility loss LC to the complete loss
(Equation (16)) with a factor λ3.

We compute performance on two outfit recommendation tasks: outfit compatibility
(OC) and fill-in-the-blank (FITB). In the OC task, the goal is to predict how compatible the
items in the outfit are in order to distinguish compatible outfits (the positive class) from
incompatible outfits (the negative class). Some examples are shown in Figure 1. OC is
computed as the average compatibility score across all item pairs in the outfit and evaluated
using the area under the ROC curve (AUC). The ROC curve summarizes confusion matrices
by plotting the true positive rate on the y-axis and the false positive rate on the x-axis for
different classification thresholds of the positive and negative class. The AUC thus provides
an aggregate measure of performance across all possible classification thresholds. In the
FITB task, given an incomplete outfit and four candidate items, the goal is to predict which
candidate item is most compatible with the incomplete outfit. Some examples are shown
in Figure 2. The most compatible candidate item is the one which has the highest total
compatibility score with the items in the incomplete outfit. Performance on the FITB task is
evaluated with accuracy. We use the same set of OC and FITB questions as in [31], that is,
20,000 OC and 10,000 FITB test questions for the non-disjoint version and 30,290 OC and
15,145 FITB test questions for the disjoint version.
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4.2.2. Cross-modal Search

In image-to-text retrieval, given an image k we retrieve the top N texts l that best
describe the image, that is, the texts l with the highest total similarity scoreRkl with image
k in the disentangled space. Figure 3 shows some examples for N = 1. In text-to-image
retrieval, we retrieve the top N images k that display the textual attributes expressed in
a given text l, that is, the images k with the highest total similarity score Rkl with text l.
Figure 4 shows some examples for N = 5. We experiment with two different retrieval
models to compute the total similarity score of image k and text l. First, we define the total
similarityRkl,(1) as the similarity of image k and text l at the coarse-grained level:

Rkl,(1) = akl , (19)

with akl as in Equation (4). Second, we define the total similarityRkl,(2) as the average of
the similarity of image k and text l at the coarse-grained and fine-grained level:

Rkl,(2) =
akl + Skl

2
, (20)

with Skl as in Equation (14). We use these retrieval models during testing to evaluate
retrieval performance. We compute recall@N for N = 1, 5, 10.

Figure 1. Outfit compatibility results on the Polyvore Outfits dataset obtained with a classification
threshold of 50% (best viewed in color).
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Figure 2. Outfit completion results on the Polyvore Outfits dataset (best viewed in color).
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Figure 3. Image-to-text retrieval results on the Amazon Dresses dataset (best viewed in color).
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Figure 4. Text-to-image retrieval results on the Amazon Dresses dataset (best viewed in color).

It is important to note that recall computed at the cut-off of N items regards a very
strict evaluation because it relies on incomplete product descriptions and an incomplete
ground truth reference collection. This means we might retrieve an image for a text that
satisfies the text but which is different from the text’s ground truth image, or we might
retrieve a text for an image which is not (part of) the original image description but which
still accurately describes it. Therefore, the actual evaluation results might be higher than
the reported results.

4.3. Baseline Methods

The baselines we compare with are listed below. For fair comparison, we selected state-
of-the-art models that use the exact same ground truth data, that is both visual and textual
item data, and no additional knowledge such as attribute groups or user behaviour data.

4.3.1. Outfit Recommendation

• TypeAware [31] This is a state-of-the-art multimodal outfit recommender system
which infers a multimodal embedding space for item understanding where semanti-
cally related images and texts are aligned as well as images/texts of the same type.
Jointly, the system learns about item compatibility in multiple type-specific compati-
bility spaces.
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• β-VAE [5] Here we first use β-VAE to learn to disentangle the fashion images and
afterwards learn the two-level alignment in the disentangled space and compatibility
in the type-specific compatibility spaces while keeping the layers of β-VAE frozen.

• DMVAE [20] This is a state-of-the-art VAE for multimodal disentangled representation
learning which infers three spaces: a single shared multimodal disentangled space
and a private unimodal disentangled space both for vision and language. We use a
triplet matching loss (similar to Equations (5) and (15)) to learn cross-modal relations.
Then, the representations of these three spaces are concatenated to represent an item
and projected to the type-specific compatibility spaces for compatibility learning.

• E-BFAN This is a variant of E-VAE which infers the two-level alignment in a multi-
modal shared space but does not aim for disentanglement. The multimodal shared
space is enforced with the same loss function as E-VAE (Equation (16)) but with
the LELBO term removed. Next, the resulting explainable item representations are
projected to multiple type-specific compatibility spaces.

4.3.2. Cross-Modal Search

• 3A [27] This is a state-of-the-art neural architecture for cross-modal and multimodal
search of fashion items which learns intermodal representations of image regions and
textual attributes using three alignment losses, i.e., a global alignment, local alignment
and image cluster consistency loss. In contrast with our work, these alignment losses
do not result in explainable representations.

• SCAN [33] This is a state-of-the-art model for image-text matching to find the latent
alignment of image regions and words referring to objects in general, everyday scenes.

• BFAN [30] This is an extension of SCAN [33] that eliminates irrelevant regions and
words when inferring their latent alignments while SCAN integrates all of them,
which can lead to semantic misalignment.

• β-VAE [5] We first use β-VAE to learn to disentangle the fashion images and afterwards
learn the two-level alignment in the disentangled space while keeping the layers of
β-VAE frozen.

• VarAlign [19] This is a state-of-the-art neural architecture for image-to-text retrieval
consisting of three VAEs. A mapper VAE performs cross-modal variational alignment
of the latent distributions of two other VAEs, that is, one VAE that learns to reconstruct
the text based on the image and a second VAE that reconstructs the text based on the
text itself. We use the disentangled image representations obtained after the mapper
and disentangled text representations produced by the second VAE for image-to-
text retrieval.

• DMVAE [20] This is a state-of-the-art VAE for multimodal disentangled representation
learning which infers a single shared multimodal disentangled space and a private
unimodal disentangled space per modality. For fair comparison, we use a triplet
matching loss (similar to Equations (5) and (15)) to learn the cross-modal relations and
use the image shared features and text shared features for cross-modal search.

• E-BFAN This is a variant of E-VAE which creates explainable item representations but
does not aim for disentanglement and therefore discards LELBO from the loss function
(Equation (16)).

4.4. Training Details

All models are trained for 50 epochs using the Adam [34] optimizer and a learning
rate of 5× 10−5. We apply early stopping if there is no improvement for five consecutive
epochs. We use batch sizes of 8 and 16 for the Polyvore Outfits and Amazon Dresses dataset,
respectively (only for DMVAE [20] we had to use a batch size of 4 for the Polyvore Outfits
dataset). For VarAlign [19] we use the setup above for each of the training phases. Images
are resized to W × H = 256× 256 and represented with the conv5_block3_out-layer of size
8× 8× 2048. Hence, dimension di equals 2048 and d f equals 131,072. Texts are cleaned
by only retaining words from the fashion glossary, removing duplicates if any, to obtain
a set of fashion tags for each item. The fashion tags are represented with Skipgram word
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embeddings [28] of dimension dt = 300 (see Appendix B). The latent space dimension dz
affects how many factors of variation we can discover. Here, we find dz = 128 a reasonable
choice for the amount of relevant factors of variation. A sensitivity analysis for dz on the
Amazon Dresses dataset can be found in Appendix D. Dimension dc also equals 128.

For VAE-based models, weights are initialized according to truncated normal distribu-
tions with mean 0 and standard deviation 0.001. For other models, weights are initialized
using the Xavier uniform initializer. For hyperparameter β we perform a grid search over
interval {2, 4, 6, 8, 10, 20, 25, 30, 40, 50} and find the optimal values to be β = 25 and β = 20
for the Polyvore outfits and the Amazon Dresses dataset, respectively. For λ1, λ2 and λ3
we perform grid search over interval {1, 10, 102, 103, 104, 105, 106, 107}. A λ1 = 105 and
λ2 = 105 work best for both datasets. For λ3 we found the optimal value to be 10 for
E-BFAN and 106 for E-VAE. Furthermore, a ∆ of 0.2 and η of 20 were found to work well
based on the validation set. For DMVAE [20] we obtained the best results when dividing
the latent space dimension dz into a private space for each modality of dimension 16 and a
shared space across all modalities of dimension 112. For outfit recommendation, we project
a concatenation of the item representation in the private visual space, private textual space
and shared space to the type-specific compatibility spaces. Furthermore, a grid search
showed that we achieve the best results when we weight the text reconstruction loss with a
factor 105 and the matching loss with a factor 105. For VarAlign [19], we set the KL loss
weighting factor wKL

1 of the first VAE equal to 0.9 and the KL loss weighting factor wKL
2

of the second VAE to 0.999 as reported in their paper. They do not report how they set
their remaining hyperparameters though. Therefore, we set the KL loss weighting factor
wKL

m of the mapper to 0.9 and the weighting factors of the text reconstruction losses wr
1 and

wr
2 of both VAEs as well as the weighting factor wW of the Wasserstein distance loss of

the mapper to 105 inspired by the hyperparameter settings for the text reconstruction and
matching loss of DMVAE [20] and find these settings result in a good performance.

5. Results and Discussion
5.1. Explainability

First, we look at the explanations that we can generate for the content of the disentan-
gled item representations through the alignment with the textual attributes. We use the
textual explanations to provide insight in how the item representations are disentangled
and to evaluate whether this disentanglement is meaningful.

If the item representations are disentangled, this means that each coordinate or subset
of coordinates of the representation contains information about only one factor of variation.
Recall that we assume that the attributes in our vocabulary can be clustered in attribute
groups that correspond with the factors of variation. If the representations are disentangled,
attributes sharing non-zero components should belong to the same factor of variation. For
example, since color is a factor of variation different colors are expected to share non-zero
components. Since for E-BFAN the attribute representations are less sparse as can be seen
from Tables 1 and 2, we only examine this for E-VAE.

Table 1. Outfit recommendation results on the Polyvore Outfits dataset.

Polyvore Outfits
Disjoint Non-Disjoint

Model OC FITB Sparsity OC FITB Sparsity
auc acc % auc acc %

TypeAware [31] 81.29 53.28 - 81.94 54.35 -
β-VAE [5] 63.70 37.29 - 66.74 39.13 -
DMVAE [20] 80.20 52.97 - 82.36 55.76 -

E-BFAN 82.65 54.90 73.28 89.11 60.34 80.73
E-VAE 81.90 52.24 82.60 88.41 58.87 83.93
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Table 2. Cross-modal search results on the Amazon Dresses dataset. R@N denotes recall@N.

Amazon Dresses
Model Image to Text Text to Image Sparsity

R@1 R@5 R@10 R@1 R@5 R@10 %

3A [27] 6.80 19.30 30.00 8.80 21.80 32.10 -
SCAN [33] 0.00 0.20 0.80 0.30 0.40 0.80 -
BFAN [30] 9.20 28.80 41.90 16.90 38.60 52.00 -
β-VAE [5] 0.00 1.20 2.20 0.40 1.20 2.40 -
VarAlign [19] 5.30 15.10 21.40 - - - -
DMVAE [20] 9.80 28.70 42.40 11.10 28.60 41.00 -

E-BFAN (Rkl,(1)) 6.20 26.10 39.60 15.40 36.40 50.10 69.62
E-BFAN (Rkl,(2)) 6.90 27.30 41.30 17.50 39.60 52.40 69.67
E-VAE (Rkl,(1)) − LRT 6.80 27.00 39.70 15.20 37.10 47.30 90.59
E-VAE (Rkl,(1)) 6.70 26.40 42.20 15.60 37.20 49.10 88.89
E-VAE (Rkl,(2)) 9.20 32.10 47.20 18.20 42.10 53.40 88.87

Table 3 shows some examples of attributes and the five attributes they share the most
non-zero components with. More precisely, these five attributes are found by ranking the
attributes given by the fashion glossary by the number of overlapping non-zero dimensions
with the given attribute. In most cases, we can see that attributes that share multiple non-
zero components indeed are instances of the same factor of variation. In cases where they
are not, we may assume other reasons why they share non-zero components. For instance,
short (referring to dress length) is visually similar with short sleeves. Furthermore, brown
is the main color of a leopard-print and colors and prints could be considered very similar
factors of variation. Lastly, ankle-strap has a connection with the shoe type leather-sandals.
Overall, these results show that our E-VAE indeed seems to find the factors of variation
considered by humans. For the Amazon Dresses dataset especially colors, textures/prints
and fabrics are very well disentangled. For the Polyvore Outfits dataset we see nice
examples for different kinds of factors of variation.

The ability to explain disentangled representations makes it possible to inspect which
features are encoded in which components of the item representations. In future applica-
tions, this allows control over which features are used to produce search and recommenda-
tion results. In addition, it could increase the fairness, transparency, trust and effectiveness
of search and recommender systems by generating explanations for why certain products
are retrieved. We perform a user study to verify whether our textual explanations would
be useful to real users of fashion e-commerce websites. Our survey was filled out by
38 women between the ages of 18 and 65 of whom 50% visit a webshop multiple times a
week and 89.50% visit a webshop multiple times a month. Of the 38 respondents, 92.10%
stated they like to receive recommendations that are personalized to their preferences and
78.90% mentioned that they would like to receive explanations that reveal what informa-
tion these personalized recommendations are based on. Next, we evaluate for different
groups of product attributes how useful it would be to use them in textual explanations
for personalized recommendations. More precisely, for each of the factors of variation in
Table 3, we asked the respondents how useful it would be to base an explanation on that
product attribute group. We used a five-point Likert scale where 1 corresponds with very
useful and 5 with very useless. We found that the majority of the product attribute groups
were considered useful to include in explanations. The product attribute groups that were
considered most useful can be classified into four classes: fit (size/shape, neckline/collar,
(dress) length, heel type), style (style, brand, bag type, jacket type, type of top, type of
bottom, jeans style), occasion (occasion, season) and small details (accessories/detailing).
The results for these product attribute groups are shown in Figure 5. In the absence of online
fitting rooms customers can assess the product completely only after it arrives at their home.
This makes fit-related issues one of the main reasons for product returns. Furthermore,
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another prominent reason for product returns is that the product does not align with the
customer expectations. Including fit-related explanations can then help customers gauge
the suitability of a product. We assume these are the reasons why users value explanations
with fit-related product attributes (Figure 5a–d). Apart from body type, a recommendation
engine should also make suggestions based on style preferences. Therefore, style-related
explanations are useful for users since they are an indicator whether the system as correctly
captured these style preferences (Figure 5e–k). Furthermore, it seems users do not only like
to receive recommendations on what to wear but also on when to wear it. Occasion- and
season-related explanations were also rated as very useful in our survey (Figure 5l–m). In
addition, such explanations reveal whether the user intent while browsing was correctly
estimated. Finally, we found that explanations related to small details such as accessories
or detailing in the clothing are considered useful as well (Figure 5n). We argue this is
because these are difficult to search for in a webshop as they are often not mentioned in
the product description nor available as a product attribute group to automatically filter
on. However, these small details often give a clothing item something extra and can make
or break the fact that the user likes the item. For the remaining factors of variation, that
is, color, texture/print, fabric and ankle strap type, only a small majority of respondents
found explanations based on these product attribute groups useful. The reason might be
the difference in importance of such product attributes, e.g., some users might prefer wool
sweaters while for others the fabric does not matter. Alternatively, some users might find
that certain explanations are straightforward, e.g., if you have clicked on several black
dresses or checkered coats it is logical that you will receive recommendations of black
dresses or checkered coats making an explanation of where these recommendations come
from less useful. The results can be found in Figure A3 of Appendix C. Overall, we conclude
that the textual explanations that could be produced with our explainable disentangled
representations would be useful for online customers.

Table 3. Attributes that are instances of a factor of variation and the five attributes they share the most
non-zero components with when using E-VAE (attributes that belong to another factor of variation
are crossed out.).

Amazon Dresses
Attribute Five Attributes Sharing Non-Zero Components Factor of Variation

purple {gray, navy, brown, blue, zebra-print} color
pink {beige, coral, brown, yellow, summer)} color

reptile {plaid, aztec, chevron, ombre, horizontal-stripes } texture/print
zebra-print {aztec, chevron, snake-print, ombre, animal-print} texture/print
floral-print {paisley, gingham, aztec, snake-print, plaid} texture/print

short {tea-length, knee-length, wear-to-work, shift, short-sleeves} dress length
viscose {lyocell, cashmere, ramie, wool, acetate} fabric
acetate {ramie, lyocell, cashmere, wool, viscose} fabric

rhinestones {ruffles, homecoming, acrylic, chains, sequins} accessories/detailing
scalloped {crochet, metallic, fringe, mandarin, embroidered} accessories/detailing
cocktail {nightclub, homecoming, sports, khaki, career} style/occassion

wear-to-work {career, office, turtleneck, boatneck, athletic} style/occassion
crew {turtleneck, boatneck, peter-pan, athletic, sweater} neckline/collar
scoop {modal, square-neck, cowl, turtleneck, boatneck} neckline/collar
spring {summer, fall, winter, khaki, neutral} season

Polyvore Outfits
Attribute Five Attributes Sharing Non-Zero Components Factor of Variation

brown {khaki, camel, leopard-print, tan, burgundy} color
gingham {check, plaid, polka, polka-dot, ruffled texture/print

crepe {silk, satin, twill, acetate, silk-blend} fabric
beaded {braided, crochet, feather, leaf, flower} accessories/detailing

chic {retro, stylish, boho, bold, inspired} style
high-neck {neck, scoop, halter, hollow, neckline} neckline/collar

Alexander-McQueen {dsquared, Prada, Balenciaga, Balmain, Dolce-Gabbana} brand
ankle-strap {leather-sandals, slingback, buckle-fastening, strappy, straps} ankle strap type

bag {canvas, crossbody, handbag, tote, clutch} bag type
covered-heel {high-heel, heel-measures, slingback, stiletto, stiletto-heel} heel type

bomber {jacket, hoodie, biker, moto, letter} jacket type
distressed {ripped, boyfriend-jeans, denim, topshop-moto, washed} jeans style
crop-top {bra, cami, crop, tank, top} tops

pants {leggings, maxi-skirt, pant, trousers, twill} bottoms
relaxed-fit {relaxed, roll, loose-fit, rounded, size-small } size/shape
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(a) size/shape (b) neckline/collar

(c) (dress) length (d) heel type

(e) style (f) brand

(g) bag type (h) jacket type

(i) tops (j) bottoms

(k) jeans style (l) occasion

(m) season (n) accessories/detailing
Figure 5. Results from a user study on the usefulness of certain product attribute groups in textual
explanations. We used a five-point Likert scale where 1 corresponds with very useful and 5 with very
useless. All the product attribute groups shown here are considered useful.
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5.2. Outfit Recommendation

The outfit recommendation results on the Polyvore Outfits dataset are reported in
Table 1.

We find that E-VAE largely outperforms the β-VAE [5] baseline. This clearly shows the
importance of the weak supervision of our alignment to steer the disentanglement process
towards finding the relevant factors of variation. Without it, the factors of variation that
are found by β-VAE [5] do not correspond with those in the fashion glossary and are less
relevant for the OC and FITB task.

Furthermore, our E-VAE surpasses TypeAware [31] with a large margin on the non-
disjoint dataset split. For the disjoint dataset split, E-VAE only outperforms TypeAware [31]
on the OC task. We argue that this performance difference between the two dataset splits
is due to their size. The non-disjoint version (approximately 250,000 items of 11 different
product categories) is easier to disentangle by E-VAE than the disjoint version (approxi-
mately 150,000 items of 11 different product categories) as disentangling requires enough
training examples to discover the relevant factors of variation.

The results obtained with DMVAE [20] also indicate that disentangling the disjoint
dataset split is harder. On the disjoint dataset split, E-VAE performs better on the OC
task but not on the FITB task. On the larger non-disjoint dataset split, E-VAE outperforms
DMVAE [20] with a large margin. We argue that this is due to our two-level alignment
in the disentangled shared space, which is more fine-grained than the one inferred by
DMVAE [20] and can therefore better model fine-grained product attributes involved in
making fashionable outfit combinations.

While the representations created with E-VAE are sparser, the best results on both tasks
and dataset splits are obtained with the E-BFAN model which creates explainable but more
entangled representations. However, note that the Polyvore Outfits dataset is extremely
challenging to disentangle. It contains extensive visual variation due to the presence of
11 different product categories and contains fewer examples per product category compared
with the Amazon Dresses dataset. Furthermore, we consider an extensive attribute glossary
of 1000 fine-grained attributes as instances of factors of variation to disentangle.

Some examples of OC and FITB questions answered by E-VAE are shown in Figures 1 and 2.

5.3. Cross-Modal Search

We report our cross-modal search results on the Amazon Dresses dataset in Table 2.
We make several observations.

First, when comparing E-BFAN and E-VAE, we see that both achieve the best results
with retrieval modelRkl,(2). We find that E-BFAN (Rkl,(2)) is surpassed by E-VAE (Rkl,(2))
on all metrics. In addition, the textual attribute representations created by E-VAE are
more sparse than those of E-BFAN, which seems to indicate that the item representations
produced by E-BFAN are indeed more entangled. E-VAE (Rkl,(1))− LRT shows the effect of
the additional alignment at the fine-grained level. Without LRT (Equation (5)) we can only
use retrieval modelRkl,(1) since we then no longer learn how to compute Skl . We observe
that the alignment of the textual attributes and image regions improves the results when it
is both enforced during training (LRT) and incorporated in the retrieval model (Skl).

Second, our E-VAE surpasses the β-VAE [5] baseline with a great margin. This clearly
demonstrates the effectiveness and necessity of the two-level alignment of the vision and
language data in the disentangled space. Hence, our proposed extensions to β-VAE [5] to
disentangle multimodal e-commerce data create item representations that better capture
relevant fine-grained product attributes. Furthermore, they have the additional benefit that
they result in textual explainability.

Also SCAN [33] is largely outperformed by the other models. We expect this is because
the other models that find the latent alignments of image regions and words such as 3A [27],
BFAN [30], E-BFAN and E-VAE all include some method to eliminate irrelevant regions
and words, while SCAN integrates all of them. This is often not that big of a problem
for multimodal datasets with images of objects in everyday scenes where the annotations
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are generated and curated to describe the image content. However for multimodal e-
commerce data, where the images and descriptions are often complementary and noisy,
failing to eliminate such attributes will lead to semantic misalignment. Therefore, image-
text matching models created for general multimodal data are often not suitable to align
multimodal e-commerce data.

Compared to the original BFAN [30] which is not explainable, E-VAE (Rkl,(2)) performs
better on all metrics and E-BFAN (Rkl,(2)) performs slightly better on text-to-image retrieval
but not on image-to-text retrieval.

VarAlign [19] is also surpassed by E-VAE. This indicates that for image-to-text retrieval
a two-level cross-modal alignment of the visual and textual item data is more suited than a
cross-modal alignment of the latent distributions of two unimodal disentangled spaces.

DMVAE [20], which jointly learns to disentangle and align an image and its description
in a shared multimodal space, outperforms E-VAE (Rkl,(2)) on recall@1 for image-to-text
retrieval but not on other metrics. DMVAE performs very well on image-to-text retrieval
but less so on text-to-image retrieval. We argue that this is because their disentangled
full-text representations make less expressive search queries than our sparse textual at-
tribute representations.

Overall, E-VAE (Rkl,(2)) achieves the highest cross-modal search results on the Ama-
zon Dresses dataset, except on recall@1 for image-to-text retrieval. This shows that through
the alignment of the disentangled representations with textual attributes we obtain ex-
plainable representations that are separated in factors of variation corresponding with
relevant product attribute groups and that provide a useful mechanism to identify whether
a particular item has a particular product attribute. The most sparse attribute representa-
tions are created with E-VAE (Rkl,(1) − LRT). There is a positive correlation between the
sparsity of the attribute representations and the quality of disentanglement of the item
representations. We provide some qualitative examples obtained by E-VAE (Rkl,(2)) on
image-to-text and text-to-image retrieval in Figures 3 and 4. These figures demonstrate
that, given a description, E-VAE (Rkl,(2)) can retrieve images that exhibit the requested
attributes, and given an image, E-VAE (Rkl,(2)) can retrieve suitable descriptions.

5.4. Summary and Future Work

The experimental results (Tables 1 and 2) demonstrate that E-VAE achieves state-of-the-
art performance on outfit recommendation and surpasses the state of the art on cross-modal
search. Our E-VAE largely outperforms β-VAE [5] on both tasks which clearly shows the
technical contribution of our model for disentangling multimodal e-commerce data.

In addition, we illustrate that in contrast with state-of-the-art methods our E-VAE
has the additional benefit that it learns disentangled representations that are interpretable
and explainable. We justify the disentanglement and explainability by proving two points.
First, the textual attribute representations are very sparse (Tables 1 and 2) meaning that
information related to these product attributes is encoded in a small subset of dimensions of
the disentangled space. Second, attributes that are encoded in similar subsets of dimensions
indeed belong to the same factor of variation (Table 3). Future research might focus on
further improving the alignment of the disentangled representations with textual attributes.
In addition, in future work our method to create interpretable and explainable disentangled
item representations could be used to build transparent search and recommender systems
that generate explanations to why certain products are retrieved. There it could be explored
how to generate multimodal explanations instead of only textual explanations in search and
recommendation. Finally, it would be interesting to combine the strengths of our proposed
method with those of the transformer architecture.

We found that especially the Polyvore Outfits dataset was challenging to disentangle.
With 11 different product categories and fewer examples per product category than in the
Amazon Dresses dataset, the visual variation was very extensive and the noise abundant.
Furthermore, our Polyvore attribute glossary considered 1000 fine-grained attributes for
disentanglement compared to 205 for the Amazon Dresses dataset. Overall, our E-VAE
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succeeded to find the factors of variation considered by humans. Especially colors, prints
and fabrics are very well disentangled for the Amazon Dresses dataset. For the Polyvore
Outfits dataset we showed nice examples of discovered factors of variation that are general,
e.g., color, style, size and brand, as well as specific to a particular clothing category, e.g.,
bag type, heel type and jeans type. An interesting research direction to explore here is
the design of self-supervised pretraining tasks for e-commerce images to obtain better
representations of the fine-grained discriminative regions in these images that could make
the disentanglement easier. Moreover, future work could explore ways to change the
saliency definition of a VAE through the use of another reconstruction loss more suitable
for e-commerce images.

6. Conclusions

We proposed E-VAE which learns explainable disentangled representations from
multimodal e-commerce data. We achieved this by jointly learning to disentangle the
product images and learning to align the product tags with the product images and their
regions in the disentangled space. Through the weak supervision of the alignment we
could steer the disentanglement process towards discovering factors of variation of interest
which was necessary given the huge search space of visual variations. In addition, our
proposed model is the first to generate textual explanations for the content of disentangled
representations and gave us insight in whether the disentanglement is meaningful, which
groups of product attributes are well separated and which are not. Finally, we obtained
state-of-the-art outfit recommendation results on the Polyvore Outfits dataset and new
state-of-the-art cross-modal search results on the Amazon Dresses dataset.
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Appendix A. Datasets

For our experiments, we chose datasets with real-world e-commerce data from the
web consisting of images of products on a white background and phrase-like descriptions.
Such images of products on a white background are common on e-commerce websites and
already pose a great challenge in discovering the generative factors given the extensive
visual variations. Furthermore, the phrase-like descriptions allow to train word embeddings
on a fashion vocabulary where embeddings of attributes belonging to the same attribute
group are often already embedded close together as they appear in similar contexts. This
benefits the disentanglement process where attributes need to be clustered in attribute
groups that make up the factors of variation. Two datasets that meet these requirement are
the Polyvore Outfits [31] and the Amazon Dresses [32] datasets.

Appendix A.1. Polyvore Outfits

For the alignment task, we cannot use the same fashion glossary as for the Amazon
Dresses dataset as that one is mostly focused on fashion attributes of dresses. Furthermore,
fashion glossaries provided with other datasets such as the DeepFashion dataset [35] are
also not suitable since as fashion changes quickly, new fashion terms are also introduced
frequently and the same fashion concept can be described differently depending on the
vendor. In addition, the DeepFashion dataset does not have shoes, however, this is a
product category which has a quite specific vocabulary. Therefore, we use the textual data
of the items in the training set of the non-disjoint version of the Polyvore Outfits dataset to
obtain a glossary of fashion terms to use in the alignment task. More precisely, for each
item we use both the title, description and url name. We only keep alphabetical characters
and punctuation, split contractions into multiple tokens, replace punctuation by a white
space, remove multiple consecutive white spaces and put everything in lower case. Next,
we use a part-of-speech (POS) tagger on the tokens and only keep adjectives, adverbs, verbs
and nouns. Then, we look at all unigrams, bigrams and trigrams for potential attributes,
but remove those words referring to sizes (i.e., containing mm, cm, inch or xxs to xxl),
words consisting of only two letters or less, and the verbs has, have, is and are. Finally,
we compute the frequency of the remaining unigrams, bigrams and trigrams and take
the 1000 most frequent ones as our fashion glossary. The resulting glossary will be made
publicly available. Examples of items and their description before and after cleaning with
the fashion glossary are shown in Figure A1.

Appendix A.2. Amazon Dresses

The fashion glossary used to clean the descriptions of the Amazon Dresses dataset
is shown in Table A1. The terms in this fashion glossary are product attributes which are
instances of different factors of variations. Examples of items and their description before
and after cleaning with the fashion glossary are shown in Figure A2.
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Figure A1. Examples of outfits in the training and test set (best viewed in color). Bold phrases in the
item descriptions are those that remain after cleaning with the fashion glossary.

Figure A2. Examples of image-text pairs from the training and test set (best viewed in color). Bold
phrases in the item descriptions are those that remain after cleaning with the fashion glossary.
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Table A1. Amazon Dresses fashion glossary. The glossary consists of 205 terms.

Amazon Dresses Fashion Glossary

3-4-sleeve a-line abstract acetate acrylic
action-sports animal-print applique argyle asymmetrical
athletic aztec baby-doll ballet banded
beaded beige black blue boatneck
bone bows bridesmaid brocade bronze
brown burgundy bustier buttons camo
canvas career cashmere casual chains
checkered cheetah-print chevron chiffon coat
cocktail contrast-stitching coral cotton cover-up
cowl crew crochet crystals cut-outs
denim dip-dyed dress dropped-waist embroidered
empire epaulette evening fall faux-leather
faux-pockets felt floor-length floral-print flowers
fringe geometric gingham gold gown
gray green grommets halter hemp
high-low high-waist homecoming horizontal-stripes houndstooth
jacquard jersey juniors keyhole khaki
knee-length lace leather leopard-print linen
little-black-dress logo long long-sleeves lycra
lyocell mahogany mandarin maxi mesh
metallic microfiber mock-turtleneck modal mother-of-the-bride
multi navy neutral nightclub notch-lapel
nylon off-the-shoulder office olive ombre
one-shoulder orange outdoor paisley patchwork
peplum peter-pan petite pewter pink
piping pique plaid pleated plus-size
point polka-dot polyester ponte prom
purple ramie rayon red reptile
resort retro rhinestones ribbons rivets
ruched ruffles satin scalloped scoop
screenprint sequins shawl sheath shift
shirt short short-sleeves silk silver
sleeveless smocked snake-print snap spandex
sport sports spread spring square-neck
strapless street studded summer surf
sweater sweetheart synthetic taffeta tan
tank taupe tea-length terry tie-dye
tropical tunic turtleneck tweed twill
v-neck velvet vertical-stripes viscose wear-to-work
wedding western white wide winter
wool wrap-dress yellow zebra-print zipper

Appendix B. Word Embeddings

We use the Skipgram model [28] to obtain word embeddings. For each dataset, we use
as word embedding training data the phrase-like descriptions of the items in the training
set, where we replace multiword fashion concepts from the fashion glossary with one
hyphenated word such that one embedding can be learned for that concept, e.g., little
black dress is replaced by little-black-dress, skinny jeans by skinny-jeans, etc. We train for
15 epochs to obtain word embeddings of dimension dt = 300 using a window size of 5.

Appendix C. User Study

The results of our user study to verify the usefulness of textual explanations based
on color, texture/print, fabric and ankle strap type are presented in Figure A3. For these
product attribute groups there was no consensus among respondents.
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(a) color (b) texture/print

(c) fabric (d) ankle strap type
Figure A3. Results from our user study on the usefulness of certain product attribute groups in
textual explanations. We used a five-point Likert scale where 1 corresponds with very useful and
5 with very useless. For the product attribute groups shown here there is no general consensus on
their usefulness.

Appendix D. Sensitivity Analysis

We conduct a sensitivity analysis of the dimension dz for the best performing systems
on the Amazon Dresses dataset (Table A2). The values for dimension dz we experiment
with are 32, 64, 128, 256 and 512. The results show that our E-VAE is more sensitive to
the dimension dz than the other models. This is because dz affects how many factors of
variation we expect to find and should be carefully tuned. Since the representations learned
by E-VAE are much more sparse, a dz that is too small does not leave so much room to
encode relevant features. For a dz that is too large, we hypothesize that the granularity of
the factors of variation that are discovered is too small and that correspondence with the
textual attributes in the product descriptions can no longer be found.

Table A2. Sensitivity analysis of dimension dz for cross-modal retrieval conducted for the best
performing models on the Amazon Dresses dataset. R@N denotes recall@N.

Amazon Dresses
Model dz Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10

3A [27]

32 6.60 18.10 27.40 4.30 15.40 25.60
64 6.00 18.60 29.60 5.00 16.40 25.30
128 6.80 19.30 30.00 8.80 21.80 32.10
256 7.30 22.60 32.60 6.80 20.30 30.10
512 8.90 23.80 34.20 7.40 18.60 29.50

BFAN [30]

32 7.40 26.20 38.00 12.60 34.00 46.40
64 8.00 27.90 42.00 16.10 37.90 50.40
128 9.20 28.80 41.90 16.90 38.60 52.00
256 9.30 28.30 42.20 15.50 35.40 49.50
512 8.10 29.80 41.40 15.50 37.60 50.60

E-VAE (Rkl,(1))

32 0.50 1.60 3.10 0.20 0.90 1.40
64 6.80 23.20 36.10 12.40 32.20 45.10
128 6.70 26.40 42.20 15.60 37.20 49.10
256 0.30 1.30 2.80 0.30 1.20 2.30
512 0.30 0.50 1.40 0.10 0.50 1.00
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Table A2. Cont.

Amazon Dresses
Model dz Image to Text Text to Image

R@1 R@5 R@10 R@1 R@5 R@10

E-VAE (Rkl,(2))

32 0.10 1.60 3.70 0.30 1.30 1.80
64 6.30 22.10, 35.30 13.50 33.50 47.10

128 9.20 32.10 47.20 18.20 42.10 53.40
256 0.20 0.60 1.40 0.10 0.50 1.00
512 0.10 0.80 1.30 0.10 0.50 1.00

E-BFAN (Rkl,(2))

32 5.70 25.00 38.10 12.80 35.30 46.80
64 6.10 25.60 40.20 14.40 36.90 49.90

128 6.90 27.30 41.30 17.50 39.60 52.40
256 8.20 28.70 42.80 18.90 39.20 52.80
512 9.30 30.00 44.20 18.20 42.50 53.50
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