Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Objective Function Representation
2.2. Set of Constraints
2.3. Model Characterization and Interpretation
3. Solution Methodology
3.1. Slave Stage: SAPF Method
3.2. Master Stage: GNDO
- The initial population is generated with a normal distribution scattered along the solution space. This population evolves by exploring and exploiting the solution space, searching for the global optimum guided by specific movement rules. At the beginning of the searching process, the variance of the positions of all the solution individuals is significant, and the random position of the decision variables around the global optimum can be considered as random variables subject to a normal distribution behavior;
- Then, the distance between the mean position and the global optimum is continuously reduced, and the variance of the positions among all individuals is also gradually decreased;
- Finally, the distance between the mean position and the global optimum, as well as the variance of the positions among individuals reach a minimum value.
3.2.1. Local Exploration
3.2.2. Global Exploration
3.3. General MS Implementation
Algorithm 1: General implementation of the proposed MS optimizer. |
4. Test Feeder Characteristics
4.1. First Test Feeder
4.2. Second Test Feeder
4.3. Objective Function Evaluation
5. Computational Validation
5.1. First Test Feeder
5.2. Second Test Feeder
5.3. Complementary Analysis
6. Conclusions and Future Works
- ✓
- The expected reductions in the annual operative costs were 27.04% and 27.16% for both test feeders. These values imply annual reductions in the operation costs of USD 1,000,783.62 and USD 1,053,276.55 per year of operation in each test feeder, respectively;
- ✓
- The average behavior of the proposed DCGNDO after 100 repetitions showed that the expected reductions in the power losses, for both test feeders, was higher than 27%, which implies that after each execution, the reductions in the objective function would be higher than USD/year 999,122.95 and USD/year 1,047,113.9811 for the test feeders, respectively;
- ✓
- When the renewable generation varies from the expected output, between 30% and 100%, we note the following: If during all the 20 years, the PV generation is only 30% of the expected value, then both test feeders experience positive reductions of the total annual operative costs of 0.42% and 0.54%, respectively. However, if the PV availability exceeds 60% of the nominal curve, then in the first test feeder, the expected annual grid operative costs would be reduced to 12.18% or higher. For the second test feeder, this reduction would be 12.33% or higher.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ridzuan, M.I.M.; Fauzi, N.F.M.; Roslan, N.N.R.; Saad, N.M. Urban and rural medium voltage networks reliability assessment. SN Appl. Sci. 2020, 2, 241. [Google Scholar] [CrossRef] [Green Version]
- Widiputra, V.; Kong, J.; Yang, Y.; Jung, J.; Broadwater, R. Maximizing Distributed Energy Resource Hosting Capacity of Power System in South Korea Using Integrated Feeder, Distribution, and Transmission System. Energies 2020, 13, 3367. [Google Scholar] [CrossRef]
- Celli, G.; Pilo, F.; Pisano, G.; Cicoria, R.; Iaria, A. Meshed vs. radial MV distribution network in presence of large amount of DG. In Proceedings of the IEEE PES Power Systems Conference and Exposition, New York, NY, USA, 10–13 October 2004. [Google Scholar] [CrossRef]
- Sadovskaia, K.; Bogdanov, D.; Honkapuro, S.; Breyer, C. Power transmission and distribution losses—A model based on available empirical data and future trends for all countries globally. Int. J. Electr. Power Energy Syst. 2019, 107, 98–109. [Google Scholar] [CrossRef]
- Lima, M.; Mendes, L.; Mothé, G.; Linhares, F.; de Castro, M.; da Silva, M.; Sthel, M. Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil. Environ. Dev. 2020, 33, 100504. [Google Scholar] [CrossRef]
- Pimm, A.J.; Palczewski, J.; Barbour, E.R.; Cockerill, T.T. Using electricity storage to reduce greenhouse gas emissions. Appl. Energy 2021, 282, 116199. [Google Scholar] [CrossRef]
- Rotz, C.A.; Asem-Hiablie, S.; Place, S.; Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 2019, 169, 1–13. [Google Scholar] [CrossRef]
- Albuquerque, F.D.; Maraqa, M.A.; Chowdhury, R.; Mauga, T.; Alzard, M. Greenhouse gas emissions associated with road transport projects: Current status, benchmarking, and assessment tools. Transp. Res. Procedia 2020, 48, 2018–2030. [Google Scholar] [CrossRef]
- Valencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158. [Google Scholar] [CrossRef]
- López, A.R.; Krumm, A.; Schattenhofer, L.; Burandt, T.; Montoya, F.C.; Oberländer, N.; Oei, P.Y. Solar PV generation in Colombia—A qualitative and quantitative approach to analyze the potential of solar energy market. Renew. Energy 2020, 148, 1266–1279. [Google Scholar] [CrossRef]
- Rueda-Bayona, J.G.; Guzmán, A.; Eras, J.J.C. Wind and power density data of strategic offshore locations in the Colombian Caribbean coast. Data Brief 2019, 27, 104720. [Google Scholar] [CrossRef]
- Montoya, O.D.; Rivas-Trujillo, E.; Hernández, J.C. A Two-Stage Approach to Locate and Size PV Sources in Distribution Networks for Annual Grid Operative Costs Minimization. Electronics 2022, 11, 961. [Google Scholar] [CrossRef]
- Chen, X.; Du, Y.; Lim, E.; Wen, H.; Yan, K.; Kirtley, J. Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling. Appl. Energy 2020, 268, 114980. [Google Scholar] [CrossRef]
- Lappalainen, K.; Valkealahti, S. Experimental study of the maximum power point characteristics of partially shaded photovoltaic strings. Appl. Energy 2021, 301, 117436. [Google Scholar] [CrossRef]
- Kumar, V.; Pandey, A.S.; Sinha, S.K. Grid integration and power quality issues of wind and solar energy system: A review. In Proceedings of the 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), Sultanpur, India, 11–12 March 2016. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhao, Z. Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renew. Sustain. Energy Rev. 2010, 14, 112–129. [Google Scholar] [CrossRef]
- Cortés-Caicedo, B.; Molina-Martin, F.; Grisales-Noreña, L.F.; Montoya, O.D.; Hernández, J.C. Optimal Design of PV Systems in Electrical Distribution Networks by Minimizing the Annual Equivalent Operative Costs through the Discrete-Continuous Vortex Search Algorithm. Sensors 2022, 22, 851. [Google Scholar] [CrossRef] [PubMed]
- Marneni, A.; Kulkarni, A.; Ananthapadmanabha, T. Loss Reduction and Voltage Profile Improvement in a Rural Distribution Feeder Using Solar Photovoltaic Generation and Rural Distribution Feeder Optimization Using HOMER. Procedia Technol. 2015, 21, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Ngamprasert, P.; Rugthaicharoencheep, N.; Woothipatanapan, S. Application Improvement of Voltage Profile by Photovoltaic Farm on Distribution System. In Proceedings of the 2019 International Conference on Power, Energy and Innovations (ICPEI), Pattaya, Thailand, 16–18 October 2019. [Google Scholar] [CrossRef]
- Ghaffarianfar, M.; Hajizadeh, A. Voltage Stability of Low-Voltage Distribution Grid with High Penetration of Photovoltaic Power Units. Energies 2018, 11, 1960. [Google Scholar] [CrossRef] [Green Version]
- Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J. Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm. Sustainability 2021, 13, 13633. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Alvarado-Barrios, L.; Arias-Londoño, A.; Álvarez-Arroyo, C. Efficient Reduction in the Annual Investment Costs in AC Distribution Networks via Optimal Integration of Solar PV Sources Using the Newton Metaheuristic Algorithm. Appl. Sci. 2021, 11, 11525. [Google Scholar] [CrossRef]
- Wang, P.; Wang, W.; Xu, D. Optimal Sizing of Distributed Generations in DC Microgrids With Comprehensive Consideration of System Operation Modes and Operation Targets. IEEE Access 2018, 6, 31129–31140. [Google Scholar] [CrossRef]
- Hraiz, M.D.; Garcia, J.A.M.; Castaneda, R.J.; Muhsen, H. Optimal PV Size and Location to Reduce Active Power Losses While Achieving Very High Penetration Level With Improvement in Voltage Profile Using Modified Jaya Algorithm. IEEE J. Photovoltaics 2020, 10, 1166–1174. [Google Scholar] [CrossRef]
- Mosbah, M.; Khattara, A.; Becherif, M.; Arif, S. Optimal PV Location Choice Considering Static and Dynamic Constraints. Int. J. Emerg. Electr. Power Syst. 2017, 18, 20160141. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Giral-Ramírez, D.A. Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer. Sustainability 2022, 14, 3318. [Google Scholar] [CrossRef]
- Jiménez, J.; Cardona, J.E.; Carvajal, S.X. Location and optimal sizing of photovoltaic sources in an isolated mini-grid. TecnoLógicas 2019, 22, 61–80. [Google Scholar] [CrossRef]
- Mokarram, M.; Mokarram, M.J.; Khosravi, M.R.; Saber, A.; Rahideh, A. Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory. Sci. Rep. 2020, 10, 8200. [Google Scholar] [CrossRef]
- Bawazir, R.O.; Cetin, N.S. Comprehensive overview of optimizing PV-DG allocation in power system and solar energy resource potential assessments. Energy Rep. 2020, 6, 173–208. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, Z.; Mirjalili, S. Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models. Energy Convers. Manag. 2020, 224, 113301. [Google Scholar] [CrossRef]
- Simiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Marini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243. [Google Scholar] [CrossRef]
- Casavola, A.; Franzè, G.; Carelli, N. Voltage regulation in networked electrical power systems for distributed generation: A constrained supervisory approach. IFAC Proc. Vol. 2007, 40, 1155–1160. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454. [Google Scholar] [CrossRef]
- Shen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511. [Google Scholar] [CrossRef] [Green Version]
- Sahin, O.; Akay, B. Comparisons of metaheuristic algorithms and fitness functions on software test data generation. Appl. Soft Comput. 2016, 49, 1202–1214. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Maleki, I.; Dizaji, Z.A. Chaotic vortex-search algorithm: Metaheuristic algorithm for feature selection. Evol. Intell. 2021, 1–32. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chang, V.; Askar, S. A Local Search-Based Generalized Normal Distribution Algorithm for Permutation Flow Shop Scheduling. Appl. Sci. 2021, 11, 4837. [Google Scholar] [CrossRef]
- Doğan, B.; Ölmez, T. Vortex search algorithm for the analog active filter component selection problem. AEU Int. J. Electron. Commun. 2015, 69, 1243–1253. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J. Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. [Google Scholar] [CrossRef]
- Wang, Q.; Chang, P.; Bai, R.; Liu, W.; Dai, J.; Tang, Y. Mitigation Strategy for Duck Curve in High Photovoltaic Penetration Power System Using Concentrating Solar Power Station. Energies 2019, 12, 3521. [Google Scholar] [CrossRef] [Green Version]
Node i | Node j | (Ω) | (Ω) | (kW) | (kvar) |
---|---|---|---|---|---|
1 | 2 | 0.0922 | 0.0477 | 100 | 60 |
2 | 3 | 0.4930 | 0.2511 | 90 | 40 |
3 | 4 | 0.3660 | 0.1864 | 120 | 80 |
4 | 5 | 0.3811 | 0.1941 | 60 | 30 |
5 | 6 | 0.8190 | 0.7070 | 60 | 20 |
6 | 7 | 0.1872 | 0.6188 | 200 | 100 |
7 | 8 | 1.7114 | 1.2351 | 200 | 100 |
8 | 9 | 1.0300 | 0.7400 | 60 | 20 |
9 | 10 | 1.0400 | 0.7400 | 60 | 20 |
10 | 11 | 0.1966 | 0.0650 | 45 | 30 |
11 | 12 | 0.3744 | 0.1238 | 60 | 35 |
12 | 13 | 1.4680 | 1.1550 | 60 | 35 |
13 | 14 | 0.5416 | 0.7129 | 120 | 80 |
14 | 15 | 0.5910 | 0.5260 | 60 | 10 |
15 | 16 | 0.7463 | 0.5450 | 60 | 20 |
16 | 17 | 1.2890 | 1.7210 | 60 | 20 |
17 | 18 | 0.7320 | 0.5740 | 90 | 40 |
2 | 19 | 0.1640 | 0.1565 | 90 | 40 |
19 | 20 | 1.5042 | 1.3554 | 90 | 40 |
20 | 21 | 0.4095 | 0.4784 | 90 | 40 |
21 | 22 | 0.7089 | 0.9373 | 90 | 40 |
3 | 23 | 0.4512 | 0.3083 | 90 | 50 |
23 | 24 | 0.8980 | 0.7091 | 420 | 200 |
24 | 25 | 0.8960 | 0.7011 | 420 | 200 |
6 | 26 | 0.2030 | 0.1034 | 60 | 25 |
26 | 27 | 0.2842 | 0.1447 | 60 | 25 |
27 | 28 | 1.0590 | 0.9337 | 60 | 20 |
28 | 29 | 0.8042 | 0.7006 | 120 | 70 |
29 | 30 | 0.5075 | 0.2585 | 200 | 600 |
30 | 31 | 0.9744 | 0.9630 | 150 | 70 |
31 | 32 | 0.3105 | 0.3619 | 210 | 100 |
32 | 33 | 0.3410 | 0.5302 | 60 | 40 |
Node i | Node j | (Ω) | (Ω) | (kW) | (kW) |
---|---|---|---|---|---|
1 | 2 | 0.0005 | 0.0012 | 0 | 0 |
2 | 3 | 0.0005 | 0.0012 | 0 | 0 |
3 | 4 | 0.0015 | 0.0036 | 0 | 0 |
4 | 5 | 0.0251 | 0.0294 | 0 | 0 |
5 | 6 | 0.3660 | 0.1864 | 2.6 | 2.2 |
6 | 7 | 0.3811 | 0.1941 | 40.4 | 30 |
7 | 8 | 0.0922 | 0.0470 | 75 | 54 |
8 | 9 | 0.0493 | 0.0251 | 30 | 22 |
9 | 10 | 0.8190 | 0.2707 | 28 | 19 |
10 | 11 | 0.1872 | 0.0619 | 145 | 104 |
11 | 12 | 0.7114 | 0.2351 | 145 | 104 |
12 | 13 | 1.0300 | 0.3400 | 8 | 5 |
13 | 14 | 1.0440 | 0.3450 | 8 | 5 |
14 | 15 | 1.0580 | 0.3496 | 0 | 0 |
15 | 16 | 0.1966 | 0.0650 | 45 | 30 |
16 | 17 | 0.3744 | 0.1238 | 60 | 35 |
17 | 18 | 0.0047 | 0.0016 | 60 | 35 |
18 | 19 | 0.3276 | 0.1083 | 0 | 0 |
19 | 20 | 0.2106 | 0.0690 | 1 | 0.6 |
20 | 21 | 0.3416 | 0.1129 | 114 | 81 |
21 | 22 | 0.0140 | 0.0046 | 5 | 3.5 |
22 | 23 | 0.1591 | 0.0526 | 0 | 0 |
23 | 24 | 0.3463 | 0.1145 | 28 | 20 |
24 | 25 | 0.7488 | 0.2475 | 0 | 0 |
25 | 26 | 0.3089 | 0.1021 | 14 | 10 |
26 | 27 | 0.1732 | 0.0572 | 14 | 10 |
3 | 28 | 0.0044 | 0.0108 | 26 | 18.6 |
28 | 29 | 0.0640 | 0.1565 | 26 | 18.6 |
29 | 30 | 0.3978 | 0.1315 | 0 | 0 |
30 | 31 | 0.0702 | 0.0232 | 0 | 0 |
31 | 32 | 0.3510 | 0.1160 | 0 | 0 |
32 | 33 | 0.8390 | 0.2816 | 10 | 10 |
33 | 34 | 1.7080 | 0.5646 | 14 | 14 |
34 | 35 | 1.4740 | 0.4873 | 4 | 4 |
3 | 36 | 0.0044 | 0.0108 | 26 | 18.55 |
36 | 37 | 0.0640 | 0.1565 | 26 | 18.55 |
37 | 38 | 0.1053 | 0.1230 | 0 | 0 |
38 | 39 | 0.0304 | 0.0355 | 24 | 17 |
39 | 40 | 0.0018 | 0.0021 | 24 | 17 |
40 | 41 | 0.7283 | 0.8509 | 102 | 1 |
41 | 42 | 0.3100 | 0.3623 | 0 | 0 |
42 | 43 | 0.0410 | 0.0478 | 6 | 4.3 |
43 | 44 | 0.0092 | 0.0116 | 0 | 0 |
44 | 45 | 0.1089 | 0.1373 | 39.22 | 26.3 |
45 | 46 | 0.0009 | 0.0012 | 39.22 | 26.3 |
4 | 47 | 0.0034 | 0.0084 | 0 | 0 |
47 | 48 | 0.0851 | 0.2083 | 79 | 56.4 |
48 | 49 | 0.2898 | 0.7091 | 384.7 | 274.5 |
49 | 50 | 0.0822 | 0.2011 | 384.7 | 274.5 |
8 | 51 | 0.0928 | 0.0473 | 40.5 | 28.3 |
51 | 52 | 0.3319 | 0.1140 | 3.6 | 2.7 |
9 | 53 | 0.1740 | 0.0886 | 4.35 | 3.5 |
53 | 54 | 0.2030 | 0.1034 | 26.4 | 19 |
54 | 55 | 0.2842 | 0.1447 | 24 | 17.2 |
55 | 56 | 0.2813 | 0.1433 | 0 | 0 |
56 | 57 | 1.5900 | 0.5337 | 0 | 0 |
57 | 58 | 0.7837 | 0.2630 | 0 | 0 |
58 | 59 | 0.3042 | 0.1006 | 100 | 72 |
59 | 60 | 0.3861 | 0.1172 | 0 | 0 |
60 | 61 | 0.5075 | 0.2585 | 1244 | 888 |
61 | 62 | 0.0974 | 0.0496 | 32 | 23 |
62 | 63 | 0.1450 | 0.0738 | 0 | 0 |
63 | 64 | 0.7105 | 0.3619 | 227 | 162 |
64 | 65 | 1.0410 | 0.5302 | 59 | 42 |
11 | 66 | 0.2012 | 0.0611 | 18 | 13 |
66 | 67 | 0.0047 | 0.0014 | 18 | 13 |
12 | 68 | 0.7394 | 0.2444 | 28 | 20 |
68 | 69 | 0.0047 | 0.0016 | 28 | 20 |
Param. | Value | Unit | Param. | Value | Unit |
---|---|---|---|---|---|
0.1390 | USD/kWh | T | 365 | days | |
10 | % | 2 | % | ||
20 | years | 1 | h | ||
1036.49 | USD/kWp | 0.0019 | USD/kWh | ||
2400 | kW | 0 | kW | ||
3 | — | ±10 | % | ||
USD/V | USD/V | ||||
USD/W | USD/A |
Method | Location (Node) | Size (MW) | (USD/Year) |
---|---|---|---|
Benchmark case | — | — | 3,700,455.38 |
BONMIN | 2,701,824.14 | ||
DCCBGA | 2,699,932.28 | ||
DCNMA | 2,700,227.33 | ||
DCVSA | 2,699,761.71 | ||
DCGNDO | 2,699,671.76 |
Method | Location (Node) | Size (MW) | (USD/Year) |
---|---|---|---|
Benchmark case | — | — | 3,878,199.93 |
DCCBGA | 2,825,783.33 | ||
DCNMA | 2,826,368.60 | ||
DCVSA | 2,825,264.56 | ||
DCGNDO | 2,824,923.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya, O.D.; Grisales-Noreña, L.F.; Ramos-Paja, C.A. Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach. Computers 2022, 11, 53. https://doi.org/10.3390/computers11040053
Montoya OD, Grisales-Noreña LF, Ramos-Paja CA. Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach. Computers. 2022; 11(4):53. https://doi.org/10.3390/computers11040053
Chicago/Turabian StyleMontoya, Oscar Danilo, Luis Fernando Grisales-Noreña, and Carlos Andres Ramos-Paja. 2022. "Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach" Computers 11, no. 4: 53. https://doi.org/10.3390/computers11040053
APA StyleMontoya, O. D., Grisales-Noreña, L. F., & Ramos-Paja, C. A. (2022). Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach. Computers, 11(4), 53. https://doi.org/10.3390/computers11040053