
Citation: Adam, G.K. Co-Design of

Multicore Hardware and

Multithreaded Software for Thread

Performance Assessment on an

FPGA. Computers 2022, 11, 76.

https://doi.org/10.3390/

computers11050076

Academic Editor: Paolo Bellavista

Received: 17 April 2022

Accepted: 6 May 2022

Published: 9 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Co-Design of Multicore Hardware and Multithreaded Software
for Thread Performance Assessment on an FPGA
George K. Adam

CSLab Computer Systems Laboratory, Department of Digital Systems, University of Thessaly,
41500 Larisa, Greece; gadam@uth.gr; Tel.: +30-2410-684-596

Abstract: Multicore and multithreaded architectures increase the performance of computing systems.
The increase in cores and threads, however, raises further issues in the efficiency achieved in terms of
speedup and parallelization, particularly for the real-time requirements of Internet of things (IoT)-
embedded applications. This research investigates the efficiency of a 32-core field-programmable gate
array (FPGA) architecture, with memory management unit (MMU) and real-time operating system
(OS) support, to exploit the thread level parallelism (TLP) of tasks running in parallel as threads
on multiple cores. The research outcomes confirm the feasibility of the proposed approach in the
efficient execution of recursive sorting algorithms, as well as their evaluation in terms of speedup
and parallelization. The results reveal that parallel implementation of the prevalent merge sort and
quicksort algorithms on this platform is more efficient. The increase in the speedup is proportional
to the core scaling, reaching a maximum of 53% for the configuration with the highest number of
cores and threads. However, the maximum magnitude of the parallelization (66%) was found to be
bounded to a low number of two cores and four threads. A further increase in the number of cores
and threads did not add to the improvement of the parallelism.

Keywords: multicore; multithreading; performance evaluation; real-time systems

1. Introduction

The continuous evolution of electronic fabrication technologies, which allows SoCs
(system-on-chip circuits) to integrate more and more powerful processing and commu-
nication architectures in a single device, has led to the mass production of consumer
electronic devices providing many functionalities, particularly for applications in Internet
of things (IoT), ubiquitous, cloud, and edge computing. The architecture of such systems
can be considered to consist of one or more programmable elements (multicore processors,
microcontrollers, FPGAs) acting as the master control units and interacting with several
peripherals to perform a set of real-time tasks. Today, embedded applications quite often
demand more critical control, often requiring simultaneous execution of multiple tasks in a
real-time environment. A real-time OS (RTOS) provides support for such requirements,
since time-critical data processing is performed in high-priority tasks with deterministic
execution times.

With the advent of multicore architectures, the research interest in applications running
multiple threads in parallel has increased [1,2]. Multicore and multithreaded architectures
increase system performance by providing high-level parallelism on multithreaded applica-
tions. Despite their considerable impact, their efficient utilization is still under research, due
to the continuous increase in the number of CPU cores. As Amdahl’s law states [3], this mul-
ticore technology has efficiency limits [4]. However, further improvements could be made in
the organization of the multithreaded software applications executed in multicore systems.

FPGAs have taken advantage of this multicore technological evolution. Most of the
FPGA vendors have concentrated their efforts on providing devices with reconfigurable
soft-core processors, combined with hard-core multicore processors, on homogeneous or

Computers 2022, 11, 76. https://doi.org/10.3390/computers11050076 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11050076
https://doi.org/10.3390/computers11050076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-4962-8731
https://doi.org/10.3390/computers11050076
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11050076?type=check_update&version=1

Computers 2022, 11, 76 2 of 13

heterogeneous multicore architectures, with symmetric multiprocessing (SMP) or asym-
metric multiprocessing (AMP). Reconfigurable devices such as FPGAs are widely used as
design platforms for experimental research in investigating the performance and efficiency
of multicore systems [5]. FPGAs are capable of working with diverse systems and applica-
tions that require parallel processing of large amount of data in real time. These platforms
provide operating systems with real-time support for time-constrained applications. One of
the most adopted solutions for real-time support in Linux OS is the PREEMPT_RT patch [6].
Currently, the PREEMPT-RT patch is actually mostly mainlined in the Linux kernel ver-
sions since v2.6.11. Real-time embedded devices often require multiple applications to be
executed in parallel and/or concurrently, in order to satisfy strict timing requirements [7,8].
However, the performance gain is not always evident.

Flexibility is one of the main advantages of architectures based on soft processors,
enabling the development of custom solutions to meet design requirements. In addition,
their scalability enables the addition of new resources and the possibility of replicating
existing system components, e.g., implementing more than one processors/cores in the
same FPGA chip. These advantages were exploited during the design of the proposed
multicore FPGA architecture. The objective of this research work was to investigate the
efficiency of a multicore FPGA-based architecture with real-time OS support, to exploit
the TLP of real-time tasks running in parallel on multiple cores. Toward this direction, the
main contributions of this research are summarized as follows:

1. The design of a 32-core (NIOS II/f soft cores) reconfigurable architecture with embed-
ded real-time Linux support (kernel version 4.9 patched with PREEMPT_RT), used for
the assessment of multithreaded applications running recursively sorting algorithms
in parallel.

2. An approach for the performance evaluation of a soft multithreaded multicore ar-
chitecture conducted in real time on an FPGA, based on recursive generation and
execution of the popular sorting algorithms merge sort and quicksort.

3. A prototype of the proposed architecture implemented on the commercially available
Altera DE2-115 device featuring a Cyclone IV FPGA chip.

The research investigates the performance efficiency and timing of parallel execution
using multiple threads. The POSIX (Portable Operating System Interface) thread program-
ming interface in C was used to enable and control thread and data parallelism [9]. The
experiments included a number of core and thread combinations under different workloads
(merge sort and quick sort algorithms) and datasets (arrays of 32-bit integers). Both sorting
algorithms utilize data partitioning in dividing data in subsets and recursively sorting,
which makes them appropriate for parallelization. Performance metrics included execution
time, speedup, and parallelization efficiency.

The remainder of the paper is organized as follows: first, related work is discussed in
Section 2. Section 3 describes the methodology followed in the design and evaluation of the
proposed multicore FPGA architecture. Section 4 presents the performance evaluation met-
rics used to assess the proposed design. Section 5 presents and discusses the experimental
results obtained from running the multithreaded application software in the experimental
FPGA platform. Lastly, Section 6 concludes the paper and proposes future work.

2. Related Work

In order for multicore architectures to cope with continuous demands for real-time
computational requirements, parallelism is one of the techniques most exploited, i.e., the
ability of a system to execute several tasks as threads (multithreading) running concurrently
on each core and in parallel on multiple cores. In multicore architectures, memory resources
and peripherals are usually shared among the processors (shared memory systems). Such
architectures have many performance benefits, including increased parallelization effi-
ciency and execution speedup. However, increasing the number of cores and threads also
presents some challenges, such as process scheduling and thread parallelization issues. The
hardware-based multithreading capabilities on FPGA platforms targeting multithreaded

Computers 2022, 11, 76 3 of 13

workloads are under further research. One of the main research interests lays in the paral-
lelization efficiency and speedup that can be achieved by multithreaded applications, in
relation to the number of threads and soft cores utilized.

Certain research approaches are based on reconfigurable hardware such as FPGAs,
which can be dynamically adapted to specific multicore configurations [10,11]. In particular,
several multicore architectures with Nios II soft processors have been proposed for design
and testing [12–16]. In the work of Muttillo et al. [17], the authors presented an interesting
design methodology for soft-core platforms on FPGA with SMP Linux, based on the LEON3
32-bit synthesizable soft-processor [18], but without real-time OS support.

Real-time operating systems have also been employed to provide support to system ap-
plications running tasks with timing constraints, particularly in embedded systems [19,20].
However, very few studies have employed real-time operating systems in reconfigurable
hardware to provide real-time support to multithreaded applications. As an Aspencore
study indicated [21], most hardware makes use of Embedded Linux and open-source
real-time operating systems, such as µClinux [22], uC/OS-III [23], or FreeRTOS [24], which
target microcontrollers without MMU support [25–27]. The work of Fradi et al. [28] pre-
sented such an approach of using µClinux, designed for processors without MMU, in
the design of a system on programmable chip (SoPC), based on the Nios II processor, to
facilitate the implementation of an image processing application. Other custom microarchi-
tectures and hardware implementations for real-time operating systems/schedulers such
as those provided by Renesas [29] or nMPRA and nHSE microarchitectures [30] could have
been used to improve timing metrics.

The performance of multicore FPGA systems and multithreaded applications has been
analyzed using many different approaches [31–33]. Although the techniques and tools used
depend on the aspects of performance that are targeted for assessment, the most commonly
used are benchmarks for efficiency metrics [34–36]. The work of Baklouti and Abid [37]
presented the design of a parallel multicore system based on the Nios II soft processor, the
performance of which was tested in terms of speedup and efficiency. Another study by
Azarian and Cardoso [38] presented an FPGA-based multicore architecture for pipelined
task execution, evaluated with benchmarks. However, there are currently almost no parallel
thread applications available for real-time multicore systems, qualifying as benchmarks.

Despite the considerable research efforts in the design and performance assessment
of multicore architectures and multithreaded applications, there has not been much work
on using an FPGA platform with MMU and real-time OS support. Our research has
some common elements with the above studies; however, in contrast, the performance of
multithreaded applications running recursively in parallel on a 32-core FPGA architecture
with MMU and real-time Linux OS support was investigated. Performance evaluation was
based upon recursively generated multithreaded sorting tasks, running in parallel in the
32-core FPGA architecture.

3. Design Methodology

The co-design of the proposed system encompassed hardware and software parts.
The hardware part was a reconfigurable 32-core architecture synthesized into an FPGA
configuration, and the software part comprised a multithreaded application software.

3.1. Proposed System Architecture

The proposed multicore 32-core FPGA architecture was based upon a design for the
Cyclone III series under the Intel license agreement [39]. This design was restructured
and reconfigured to work with a Cyclone IV FPGA chip used in this research. The result
reconfirms the fact that soft processors can usually easily be migrated to new families of
devices. Reconfigurable architectures, due to their flexibility, allow to prototype complete
systems, from small logic circuits to complex architectures involving multiple processors,
buses, and many other devices. In addition, such an architecture has the ability to provide
massive concurrency with a comparatively low energy consumption.

Computers 2022, 11, 76 4 of 13

The Quartus software and Qsys tool were used to redesign and configure this Cyclone
III-based architecture to work with the Cyclone IV EP4CE115F29 FPGA chip. The final
system integrated a real-time Linux OS that supports MMU. This system architecture
consisted of 32 NIOS II/f soft cores with MMU enabled, on-chip memory, flash, and
SDRAM memory. The Altera’s Nios II soft processor is a general-purpose RISC soft
processor with 32-bit instruction words and datapaths. The Nios II/f (fast) variant is a
single issue in-order execution processor, optimized for performance.

The FPGA’s soft cores were implemented using the distributed logic resources and the
specialized hardware blocks of the FPGA fabric, as well as its interconnection resources.
One of the soft cores (core 0), set as the master core, ran Linux with real-time support and
was responsible for booting and handling the multithreaded application’s task allocations
to the remaining cores configured as slaves. The master core used a separate memory
containing both instructions and data. It was also responsible for communication with a
host computer and synchronization of tasks running on each slave core. A JTAG UART
was used to download the application program and data from the host computer into the
corresponding on-chip memory.

The development platform used to implement this architecture was Altera’s DE2-115
development board from Terasic Inc., Hsinchu, Taiwan [40]. This board includes a Cyclone
IV FPGA chip and several other components, which support various types of applications.
The Cyclone IV FPGA has a sufficient capacity of 114,480 logic elements (LEs) and 4 MBits
of on-chip memory. The implementation of the 32-core configuration consumed about 30%
of the FPGA’s available logic elements. The architecture also supports multiprocessing and
has several software tools that assist in the development of the multithreaded applications.

A schematic representation of the 32-core system architecture is shown in Figure 1.

Computers 2022, 11, x FOR PEER REVIEW 5 of 14

Figure 1. The 32-core system architecture.

3.2. Software Infrastructure
An instance of Linux kernel (4.9.178-rt131 with real-time support -patched with

PREEMPT_RT-), intended for microcontrollers with MMUs, ran on the master NIOS II
soft core. The Nios II Linux kernel was integrated in this design to provide support for
real-time multithreaded applications running in this Nios II soft-core architecture. The
supported kernel was based on Altera’s open-source Linux provided on GitHub [41]. This
provides an adequate environment to deploy timely real-time application tasks, requiring
a deterministic response (mostly interactive applications), for instance, in performance
critical applications in industrial Internet of things (IIoT) systems.

The development of the multithread control software applied for testing perfor-
mance metrics was based upon the use of the POSIX user level threads library in C.
PThreads is an execution model that exists independently from a language and a parallel
execution model. POSIX Threads is an API defined by the standard IEEE POSIX.1c. In the
proposed shared memory 32-core FPGA architecture, PThreads was used to implement
parallelism.

The FPGA’s soft cores were designated to run the multithreaded application’s two
sorting tasks as two separate threads, concurrently on each core, and in parallel in multi-
ple-core configurations. Each core had its own part of on-chip memory. Input data for
each thread were placed into the same on-chip memory section. All cores shared compo-
nents such as SDRAM memory and other peripherals in a hierarchical mode with the
master core. Resource sharing is one of the most important advantages of shared memory
architectures. The fact that all cores share a common space reduces the need for modifica-
tions in data or control structures. After execution is completed, each core writes its own
data (performance measurements results) to the shared memory.

The hardware and software co-design flow and system infrastructure are shown in
Figure 2.

Figure 1. The 32-core system architecture.

3.2. Software Infrastructure

An instance of Linux kernel (4.9.178-rt131 with real-time support -patched with
PREEMPT_RT-), intended for microcontrollers with MMUs, ran on the master NIOS II
soft core. The Nios II Linux kernel was integrated in this design to provide support for
real-time multithreaded applications running in this Nios II soft-core architecture. The
supported kernel was based on Altera’s open-source Linux provided on GitHub [41]. This

Computers 2022, 11, 76 5 of 13

provides an adequate environment to deploy timely real-time application tasks, requiring
a deterministic response (mostly interactive applications), for instance, in performance
critical applications in industrial Internet of things (IIoT) systems.

The development of the multithread control software applied for testing performance
metrics was based upon the use of the POSIX user level threads library in C. PThreads is an
execution model that exists independently from a language and a parallel execution model.
POSIX Threads is an API defined by the standard IEEE POSIX.1c. In the proposed shared
memory 32-core FPGA architecture, PThreads was used to implement parallelism.

The FPGA’s soft cores were designated to run the multithreaded application’s two
sorting tasks as two separate threads, concurrently on each core, and in parallel in multiple-
core configurations. Each core had its own part of on-chip memory. Input data for each
thread were placed into the same on-chip memory section. All cores shared components
such as SDRAM memory and other peripherals in a hierarchical mode with the master core.
Resource sharing is one of the most important advantages of shared memory architectures.
The fact that all cores share a common space reduces the need for modifications in data or
control structures. After execution is completed, each core writes its own data (performance
measurements results) to the shared memory.

The hardware and software co-design flow and system infrastructure are shown
in Figure 2.

Computers 2022, 11, x FOR PEER REVIEW 6 of 14

Figure 2. Hardware and software co-design flow and system infrastructure.

Such an infrastructure was oriented to get the most possible advantage of parallelism
to maximize processing performance. However, a limiting factor was related to the dy-
namic distribution of the task data. This could affect the ability of the system to provide a
predictable timing response, which is a requirement in real-time applications. For this
purpose, the application in control allocated data for each task in its own on-chip memory,
as a read-only sharing resource. Each task retrieved data in the order in which the pro-
cessing was required, independently from each other, without affecting the other task’s
execution.

Figure 3 gives a partial view of the configuration of the Nios II-based system.

Figure 3. RTL partial view of the Nios II-based architecture.

Figure 2. Hardware and software co-design flow and system infrastructure.

Computers 2022, 11, 76 6 of 13

Such an infrastructure was oriented to get the most possible advantage of parallelism to
maximize processing performance. However, a limiting factor was related to the dynamic
distribution of the task data. This could affect the ability of the system to provide a
predictable timing response, which is a requirement in real-time applications. For this
purpose, the application in control allocated data for each task in its own on-chip memory, as
a read-only sharing resource. Each task retrieved data in the order in which the processing
was required, independently from each other, without affecting the other task’s execution.

Figure 3 gives a partial view of the configuration of the Nios II-based system.

Computers 2022, 11, x FOR PEER REVIEW 6 of 14

Figure 2. Hardware and software co-design flow and system infrastructure.

Such an infrastructure was oriented to get the most possible advantage of parallelism
to maximize processing performance. However, a limiting factor was related to the dy-
namic distribution of the task data. This could affect the ability of the system to provide a
predictable timing response, which is a requirement in real-time applications. For this
purpose, the application in control allocated data for each task in its own on-chip memory,
as a read-only sharing resource. Each task retrieved data in the order in which the pro-
cessing was required, independently from each other, without affecting the other task’s
execution.

Figure 3 gives a partial view of the configuration of the Nios II-based system.

Figure 3. RTL partial view of the Nios II-based architecture. Figure 3. RTL partial view of the Nios II-based architecture.

3.3. Multithreaded Application

One of the approaches used to efficiently exploit an application’s parallelism is to
partition the application into multiple threads and execute them in parallel. In a mul-
tithreaded application, each process was configured and assigned to run in parallel on
multiple cores on the FPGA. It was efficiently structured as multiple independent threads of
control that perform different sorting tasks running in parallel on multiple cores. Creation
and controlling of threads were achieved by making calls to the POSIX Threads API, in
order to set the threads real-time parallel execution features, including scheduling policy,
CPU affinity, and timing.

Each process scheduled the two sorting tasks (merge and quick sort) as software
threads (SW thread1 and SW thread2). Multiple threads were created recursively and
executed concurrently on each core, as well as in parallel on multiple cores. The threads
accessed common data for sorting operations, merge sort and quick sort, through shared
FPGA SDRAM memory. Nevertheless, data movement between cores would affect the
thread performance metrics, such as execution time. For this purpose, data arrays of 32-bit
integers of size 102 to 106 elements were allocated for each core in the on-chip memory to
support the concurrent execution. Sorted data output was written out in the same memory
space during the sorting operations, by overwriting the input. Both algorithms utilize data
partitioning in dividing data in subsets for their recursive sorting. This functionality makes
them appropriate for parallelization.

Thread scheduling can be performed at different levels of the OS, and even outside
of it. Linux implements scheduling at the kernel level. In our study, thread scheduling
was implemented by the multithreaded application itself. The application exploited the
capabilities offered by the underlying Linux real-time OS scheduler to manage thread
migration and placement among the cores. In particular, in terms of thread scheduling, the
POSIX standard defined scheduling policies, thread attributes, and system calls that the
multithreaded application called to interact with the scheduler.

Computers 2022, 11, 76 7 of 13

The multithreaded application equally distributed and allocated the workload of
sorting computations and partitioned data to each core for optimal balance. The merge and
quicksort algorithms were implemented on the basis of a recursive approach upon which
threads were created until the assigned thread’s count was achieved (e.g., 21 to 26 threads).
The threads were configured with high priority and SCHED_FIFO real-time policy. The
SCHED_FIFO scheduling policy is mainly used for real-time applications. Priority reflects
the importance of a thread and, therefore, the relative urgency of a thread to be scheduled
compared to others. In real-time contexts, a usually desirable property is the respect of
deadlines. Real-time applications perform tasks that must complete before a given time
called a deadline. Linux patched with PREEMPT_RT provides such real-time support and
guarantees maximal bounds on scheduling delays. Threads were scheduled as real-time
threads with the highest real-time priority (priority level: 99).

Figure 4 illustrates the execution flow of the multithreaded application.

Computers 2022, 11, x FOR PEER REVIEW 8 of 14

Figure 4. Execution flow of the multithreaded application.

4. Performance Evaluation
4.1. Performance Evaluation Metrics

Performance analysis and evaluation commonly involve benchmarking and empiri-
cally measuring performance methods and techniques. A typical method to assess the
performance of multicore computing systems is through the parallel scaling behavior of
multithreaded applications. The sequential execution of an application serves as the base-
line that is used as a reference for analysis and comparisons of parallel threads’ executions
on multiple cores. The level of thread parallelism substantially impacts the performance
of the multithreaded applications through various factors, ranging from hardware-spe-
cific and thread implementation-specific to application-specific.

4.1.1. Execution Time
Each thread may be thought of as an independent task having its own memory stack

and instructions. The threads are spread out in parallel sets among the available cores
reducing the execution time to the maximum execution time of any of the threads, com-
pared to sequential execution version. The work is evenly divided among threads, and
the overhead of allocating and scheduling threads is minimal. The time it takes for a
thread to execute a single task is essential in performance measurements. The real time is
the difference between the end time and the begin time. Therefore, an average value of
the total execution time (𝑡௫) for a given number of execution runs (iterations) is esti-
mated by the following equation: 𝑡௫ = 𝑡ௗ − 𝑡, (1)

where 𝑡ௗ is the time it takes to finish the task’s execution, and 𝑡 is the initial time
the execution is started.

4.1.2. Speedup
Speedup is defined as the execution time of a sequential program divided by the ex-

ecution time of a parallel program that computes the same algorithm running on multiple
cores. According to a given number of execution runs, an average speedup (𝑆𝑝௩) is cal-
culated on the basis of the following equation:

𝑆𝑝௩ = 100 − 𝑡ሺሻ x 100𝑡௦ሺ𝑖ሻ x 𝑛
ୀଵ , (2)

Figure 4. Execution flow of the multithreaded application.

4. Performance Evaluation
4.1. Performance Evaluation Metrics

Performance analysis and evaluation commonly involve benchmarking and empir-
ically measuring performance methods and techniques. A typical method to assess the
performance of multicore computing systems is through the parallel scaling behavior of
multithreaded applications. The sequential execution of an application serves as the base-
line that is used as a reference for analysis and comparisons of parallel threads’ executions
on multiple cores. The level of thread parallelism substantially impacts the performance of
the multithreaded applications through various factors, ranging from hardware-specific
and thread implementation-specific to application-specific.

4.1.1. Execution Time

Each thread may be thought of as an independent task having its own memory
stack and instructions. The threads are spread out in parallel sets among the available
cores reducing the execution time to the maximum execution time of any of the threads,
compared to sequential execution version. The work is evenly divided among threads,
and the overhead of allocating and scheduling threads is minimal. The time it takes for a
thread to execute a single task is essential in performance measurements. The real time is
the difference between the end time and the begin time. Therefore, an average value of the

Computers 2022, 11, 76 8 of 13

total execution time (texec) for a given number of execution runs (iterations) is estimated by
the following equation:

texec = tend − tbegin, (1)

where tend is the time it takes to finish the task’s execution, and tbegin is the initial time the
execution is started.

4.1.2. Speedup

Speedup is defined as the execution time of a sequential program divided by the
execution time of a parallel program that computes the same algorithm running on multiple
cores. According to a given number of execution runs, an average speedup (Spavg) is
calculated on the basis of the following equation:

Spavg =
n

∑
i=1

100 −
tp(i) × 100

tseq(i)× n
, (2)

where tseq is the time it takes to sequentially execute the workload on a single core, tp is the
time it takes to execute the workload in parallel on multiple cores, and n is the number of
performed iterations.

4.1.3. Parallelization Efficiency

In multicore architectures, it is essential to know the effectiveness of the parallelization
of thread execution on multiple cores. Parallelization efficiency (fp) measures the time for
which a processor is fully utilized. A higher efficiency indicates better utilization of the
processors. This is calculated using the following equation:

fp =
tseq

tp(nc)× nc
, (3)

where tseq is the time it takes to sequentially execute a program on a single core, and tp is
the time it takes to execute a program in parallel on nc cores.

5. Experimental Results and Discussion
5.1. Evaluation Results

A number of experiments were carried out on an ALTERA DE2-115 development
board to evaluate the performance of the proposed soft-core reconfigurable architecture
and verify its feasibility for multithreading research. Initially, the application was executed
sequentially on a single core with a pair of two threads. Then, the execution proceeded in
parallel with the number of threads varying from 4 to 62 on multiple core configurations
of 2 to 31 cores, respectively. Both merge and quicksort algorithms were set to sort in
ascending order datasets of 32-bit integers of size 102 to 106 (100 to 1 M) elements.

When running the application sequentially on a single core with two threads, the
processor’s affinity was set to that specific single core. Thus, each core was shared by at
least two threads running concurrently. Although one-to-one thread-core mapping is the
most obvious choice to obtain best performance, this running scheme was chosen in order
to emulate a commonly adopted by default SMT execution mode [42]. In addition, pairing
of threads can be highly beneficial for the workload. For example, two threads working on
the same data benefit from sharing caches, thus diminishing the number of on-chip memory
accesses performed. In a real-time context, reducing contention over shared resources can
allow threads to respect their deadlines more easily.

The results were used as the baseline for comparisons with parallel executions on
multiple cores, as well as calculation of the speedup and parallelization efficiency. In the
case of parallel execution, the data and sorting operations were equally partitioned and
distributed among the threads. Each pair of threads ran on a distinct core, processing a

Computers 2022, 11, 76 9 of 13

data subset. Thus, threads were executed in parallel with each other and concurrently on
each core.

The experiments were executed for a number of repetitions, approximately for a few
thousand iterations, to obtain sufficient values for average estimation. Table 1 presents
the execution time results for merge and quicksort algorithms for different datasets and
different thread and core variations.

Table 1. Merge and quicksort execution times.

Cores Threads Sort Alg
Datasets

102 103 104 105 106

Execution Times (ms)

1 2
Merge 3.2 6.5 6.12 8.56 40

Quick 1.08 1.1 2.79 79 2530

2 4
Merge 2.2 3.31 3.25 4.1 38

Quick 1.01 1.03 2.78 80 2532

4 8
Merge 1.51 1.71 1.83 3.91 37

Quick 1 1.04 2.8 79 2525

8 16
Merge 0.9 0.98 1 2.51 39

Quick 0.95 1.05 2.9 70 2510

16 32
Merge 0.52 0.6 0.7 2.22 24

Quick 0.61 0.91 2.63 67 2480

31 62
Merge 0.25 0.4 1.2 2.01 22

Quick 0.45 0.62 1.8 61 2472

The results show the differences in structure and complexity of each sorting algorithm.
The merge sort algorithm achieved lower execution times than quicksort, particularly
for large datasets (≥105). Table 2 presents the average execution times for both algo-
rithms. What we can see is that the total execution times decreased as the number of
threads increased.

Table 2. Average execution times.

Datasets

102 103 104 105 106

Cores Threads Average Execution Times (ms)

1 2 2.14 3.80 4.46 43.78 1285

2 4 1.61 2.17 3.02 42.05 1283

4 8 1.26 1.38 2.32 41.46 1281

8 16 0.93 1.02 1.95 36.26 1274

16 32 0.57 0.76 1.67 34.61 1252

31 62 0.35 0.51 1.50 31.51 1247

As depicted in Figure 5, data sorting was more efficient as the number of threads
increased, particularly for large sets of data (≥104).

Table 3 presents the average speedup and parallelization efficiency calculated for each
combination of cores and threads.

Computers 2022, 11, 76 10 of 13

Table 3. Average speedup and parallelization.

Cores Threads Average Speedup (%) Average Parallelization (%)

1 2 - -

2 4 20.8 66.0

4 8 31.8 42.3

8 16 40.9 26.4

16 32 48.0 17.2

31 62 53.5 12.2

Computers 2022, 11, x FOR PEER REVIEW 10 of 14

Cores Threads Sort Alg
Datasets

102 103 104 105 106

4 8
Merge 1.51 1.71 1.83 3.91 37
Quick 1 1.04 2.8 79 2525

8 16
Merge 0.9 0.98 1 2.51 39
Quick 0.95 1.05 2.9 70 2510

16 32
Merge 0.52 0.6 0.7 2.22 24
Quick 0.61 0.91 2.63 67 2480

31 62
Merge 0.25 0.4 1.2 2.01 22
Quick 0.45 0.62 1.8 61 2472

The results show the differences in structure and complexity of each sorting algo-
rithm. The merge sort algorithm achieved lower execution times than quicksort, particu-
larly for large datasets (≥105). Table 2 presents the average execution times for both algo-
rithms. What we can see is that the total execution times decreased as the number of
threads increased.

Table 2. Average execution times.

 Datasets
 102 103 104 105 106

Cores Threads Average Execution Times (ms)
1 2 2.14 3.80 4.46 43.78 1285
2 4 1.61 2.17 3.02 42.05 1283
4 8 1.26 1.38 2.32 41.46 1281
8 16 0.93 1.02 1.95 36.26 1274

16 32 0.57 0.76 1.67 34.61 1252
31 62 0.35 0.51 1.50 31.51 1247

As depicted in Figure 5, data sorting was more efficient as the number of threads
increased, particularly for large sets of data (≥104).

Figure 5. Average execution times in relation to datasets and cores.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

100 1000 10000 100000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Data sets

2 threads

4 threads

8 threads

16 threads

32 threads

62 threads

Figure 5. Average execution times in relation to datasets and cores.

As illustrated in Figure 6, each additional core augmented performance, i.e., the
speedup increased. However, there was a limit to the parallelization improvement, due to
that part of the application which could not be further parallelized. As shown in Figure 6,
the maximum parallelization performance (66%) of the threads was bound to four threads
and two cores. A further increase in the number of cores and pairs of threads did not
increase significantly the overall performance.

Computers 2022, 11, x FOR PEER REVIEW 11 of 14

Table 3 presents the average speedup and parallelization efficiency calculated for
each combination of cores and threads.

Table 3. Average speedup and parallelization.

Cores Threads
Average Speedup

(%)
Average Parallelization

(%)
1 2 - -
2 4 20.8 66.0
4 8 31.8 42.3
8 16 40.9 26.4

16 32 48.0 17.2
31 62 53.5 12.2

As illustrated in Figure 6, each additional core augmented performance, i.e., the
speedup increased. However, there was a limit to the parallelization improvement, due
to that part of the application which could not be further parallelized. As shown in Figure
6, the maximum parallelization performance (66%) of the threads was bound to four
threads and two cores. A further increase in the number of cores and pairs of threads did
not increase significantly the overall performance.

Figure 6. Average speedup and parallelization efficiency.

5.2. Discussion
This research exploited the performance offered by today’s soft-core processors built

on FPGAs and having a real-time OS with MMU support, especially when running paral-
lel multithreaded tasks. Experiments were conducted upon the development and imple-
mentation of a 32-core architecture on an FPGA with MMU and Linux real-time support.
The use of Linux patched with PREEMPT_RT in real-time support of multithreaded sort-
ing tasks running in parallel on FPGA architectures seems to be one of the first research
efforts of its kind. In this study, both merge and quicksort algorithms utilized data parti-
tioning in dividing data in subsets for their recursive sorting. This functionality made
them appropriate for parallelization. However, future research can utilize a variety of
sorting algorithms.

Overall, the results verified the validity and efficiency of the proposed FPGA design
in testing and evaluating the performance of multithreaded applications. In particular, the
results provided insight into thread performance issues related to speedup and parallel-
ization efficiency. Certainly, the parallel implementation of merge sort and quicksort al-
gorithms on multiple cores was more efficient than sequential implementation on a single

20.8
31.8

40.9
48.0 53.5

66.0
42.3

26.4 17.2 12.2

0
10
20
30
40
50
60
70
80
90

100

2 threads 4 threads 8 threads 16 threads 32 threads 62 threads

1 2 4 8 16 31

%

Cores

Avg Speedup(%) Avg Parallelization(%)

Figure 6. Average speedup and parallelization efficiency.

Computers 2022, 11, 76 11 of 13

5.2. Discussion

This research exploited the performance offered by today’s soft-core processors built
on FPGAs and having a real-time OS with MMU support, especially when running parallel
multithreaded tasks. Experiments were conducted upon the development and implementa-
tion of a 32-core architecture on an FPGA with MMU and Linux real-time support. The use
of Linux patched with PREEMPT_RT in real-time support of multithreaded sorting tasks
running in parallel on FPGA architectures seems to be one of the first research efforts of its
kind. In this study, both merge and quicksort algorithms utilized data partitioning in divid-
ing data in subsets for their recursive sorting. This functionality made them appropriate
for parallelization. However, future research can utilize a variety of sorting algorithms.

Overall, the results verified the validity and efficiency of the proposed FPGA design
in testing and evaluating the performance of multithreaded applications. In particular,
the results provided insight into thread performance issues related to speedup and par-
allelization efficiency. Certainly, the parallel implementation of merge sort and quicksort
algorithms on multiple cores was more efficient than sequential implementation on a single
core. It is interesting that the parallelization efficiency did not improve at the same rate as
the speed of the execution time and the speedup. The increase in speedup was proportional
to core scaling, reaching a maximum of 53% for the configuration with the highest number
of cores and threads (31 cores and 62 threads). However, the maximum magnitude of
parallelization (66%) was found to be bounded to a low number of cores and threads (four
threads and two cores). It seems that this was limited by the part of the task that could
not benefit from the parallelization improvement. Indeed, as explained by Amdahl’s law,
even a small part with limited thread level parallelism can impose important constraints to
the performance.

Previous work was primarily focused on the design and performance assessment
of multicore architectures and multithreaded applications on an FPGA platform without
MMU and real-time OS support. This work used a multicore FPGA-based architecture
with MMU and real-time OS support. In addition, in contrast to studies that employed
reconfigurable hardware with MMU and real-time support, with most commonly using
benchmarks for efficiency metric assessment, in this work, performance evaluation was
based on recursively generated multithreaded sorting applications. This is because there are
currently almost no parallel thread applications available for real-time multicore systems,
qualifying as benchmarks.

6. Conclusions

The design and implementation of a prototype 32-core architecture on a low-cost
FPGA with MMU and Linux OS with real-time support was implemented and used to
perform experimental performance tests with a multithreaded sorting application.

The proposed multicore FPGA architecture proved to be effective in exploiting the
performance of low-threaded applications (up to 64 instances of threads) on a shared
memory framework. The maximum magnitude of the parallelization (66%) was found to
be bounded to a low number of cores and threads (four threads and two cores). The research
outcomes confirmed the feasibility and validity of the proposed design approach in using
multiple soft processors implemented on an FPGA, to execute and evaluate multithreaded
tasks with real-time support, and to gain more insight into multicore FPGA multithreading.

Regarding future work, it seems interesting to extend this research with outcomes
obtained from comparisons with appropriate real-time benchmarks. Furthermore, current
research is exploring the use of distributed memory to model thread performance on
microprocessors implemented in several FPGAs.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Computers 2022, 11, 76 12 of 13

Data Availability Statement: All data has been presented in main text.

Acknowledgments: The author would like to thank the Computer Systems Laboratory (CSLab, https:
//cslab.ds.uth.gr/) (accessed on 30 April 2022) in the Department of Digital Systems, University of
Thessaly, Greece, for the technical support and the resources provided for this experimental research.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Radojkovic, P.; Carpenter, P.M.; Moreto, M.; Cakarevic, V.; Verdu, J.; Pajuelo, A.; Cazorla, F.J.; Nemirovsky, M.; Valero, M. Thread

Assignment in Multicore/Multithreaded Processors: A Statistical Approach. IEEE Trans. Comput. 2016, 65, 256–269. [CrossRef]
2. Fernando, E.; Murad, D.F.; Wijanarko, B.D. Classification and Advantages Parallel Computing in Process Computation: A

Systematic Literature Review. In Proceedings of the IEEE International Conference on Computing, Engineering, and Design
(ICCED), Bangkok, Thailand, 8 September 2018; pp. 143–147.

3. Amdahl, G.M. Computer Architecture and Amdahl’s Law. IEEE Comput. 2013, 46, 38–46. [CrossRef]
4. Hill, M.D.; Marty, M.R. Amdahl’s law in the multicore era. Computer 2008, 41, 33–38. [CrossRef]
5. Nane, R.; Sima, V.; Pilato, C.; Choi, J.; Fort, B.; Canis, A.; Chen, Y.T.; Hsiao, H.; Brown, S.; Ferrandi, F.; et al. A Survey and

Evaluation of FPGA High-Level Synthesis Tools. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2016, 35, 1591–1604.
[CrossRef]

6. The Linux Foundation Wiki: Real Time Linux. Available online: https://wiki.linuxfoundation.org/realtime/start (accessed on
7 December 2020).

7. Wang, J. Real-Time Embedded Systems, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017.
8. Sheikh, S.Z.; Pasha, M.A. Energy-Efficient Scheduling for Hard Real-Time Systems: A Survey. ACM Trans. Embed. Comput. Syst.

2018, 17, 1–26. [CrossRef]
9. Severance, C. Posix: A model for future computing. IEEE Comput. 1999, 32, 131–132. [CrossRef]
10. Gaillardon, P.-E. Reconfigurable Logic: Architecture, Tools, and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [CrossRef]
11. Kirchhoff, M.; Kerling, P.; Streitferdt, D.; Fengler, W. A Real-Time Capable Dynamic Partial Reconfiguration System for an

Application-Specific Soft-Core Processor. Int. J. Reconfig. Comput. 2019, 2019, 4723838. [CrossRef]
12. Cardoso, J.; Hubner, M. Reconfigurable Computing: From FPGAs to Hardware/Software Codesign; Springer: New York, NY, USA, 2011.

[CrossRef]
13. Yan, L.; Wu, B.; Wen, Y.; Zhang, S.; Chen, T. A reconfigurable processor architecture combining multi-core and reconfigurable

processing units. Telecommun. Syst. 2014, 55, 333–344. [CrossRef]
14. Vanderbauwhede, W.; Benkrid, K. High-Performance Computing Using FPGAs; Springer: New York, NY, USA, 2014. [CrossRef]
15. Chouliaras, V.A.; Stevens, D.; Dwyer, V.M. VThreads A novel VLIW chip multiprocessor with hardware-assisted PThreads.

Microprocess. Microsyst. 2016, 47, 466–485. [CrossRef]
16. Hassanein, A.; El-Abd, M.; Damaj, I.; Rehman, H. Parallel Hardware Implementation of the Brain Storm Optimization Algorithm

using FPGAs. Microprocess. Microsyst. 2020, 74, 103005. [CrossRef]
17. Muttillo, V.; Valente, G.; Federici, F.; Pomante, L.; Faccio, M.; Tieri, C.; Ferri, S. A design methodology for soft-core platforms on

FPGA with SMP Linux, OpenMP support, and distributed hardware profiling system. EURASIP J. Embed. Syst. 2016, 2016, 15.
[CrossRef]

18. LEON3 Processor. Available online: http://www.gaisler.com/index.php/products/processors/leon3 (accessed on
6 December 2021).

19. Wang, K.C. Embedded and Real-Time Operating Systems; Springer: Cham, Switzerland, 2017.
20. Seo, S.; Kim, J.; Kim, S.M. An Analysis of Embedded Operating Systems: Windows CE Linux VxWorks uC/OS-II and OSEK/VDX.

Int. J. Appl. Eng. Res. 2017, 12, 7976–7981.
21. Aspencore: 2019 Embedded Markets Study. Available online: www.embedded.com/wp-content/uploads/2019/11/EETimes_

Embedded_2019_Embedded_Markets_Study.pdf (accessed on 16 January 2022).
22. µClinux. Available online: https://en.wikipedia.org/wiki/%CE%9CClinux (accessed on 7 November 2021).
23. MicroC/OS: Micro-Controller Operating Systems. Available online: https://en.wikipedia.org/wiki/Micro-Controller_

Operating_Systems (accessed on 2 December 2021).
24. FreeRTOS. Available online: https://en.wikipedia.org/wiki/FreeRTOS (accessed on 12 December 2021).
25. Zhu, S.-H. Hardware Implementation based on FPGA of Semaphore Management in µC/OS-II real-time operating system. Int. J.

Grid Util. Comput. 2015, 6, 192–199. [CrossRef]
26. Matthews, E.; Shannon, L.; Fedorova, A. Shared Memory MicroBlaze System with SMP Linux Support. ACM Trans. Reconfig.

Technol. Syst. 2016, 26, 1–22. [CrossRef]
27. Hahm, O.; Baccelli, E.; Petersen, H.; Tsiftes, N. Operating Systems for Low-End Devices in the Internet of Things: A Survey. IEEE

Internet Things J. 2016, 3, 720–734. [CrossRef]
28. Fradi, M.; Youssef, W.E.; Mohsen, M. The design of an embedded system (SOPC) for an image processing application.

In Proceedings of the International Conference on Control, Automation and Diagnosis (ICCAD), Hammamet, Tunisia,
19–21 January 2017; pp. 511–515. [CrossRef]

https://cslab.ds.uth.gr/
https://cslab.ds.uth.gr/
http://doi.org/10.1109/TC.2015.2417533
http://doi.org/10.1109/MC.2013.418
http://doi.org/10.1109/MC.2008.209
http://doi.org/10.1109/TCAD.2015.2513673
https://wiki.linuxfoundation.org/realtime/start
http://doi.org/10.1145/3291387
http://doi.org/10.1109/2.738309
http://doi.org/10.1201/b19388
http://doi.org/10.1155/2019/4723838
http://doi.org/10.1007/978-1-4614-0061-5
http://doi.org/10.1007/s11235-013-9791-1
http://doi.org/10.1007/978-1-4614-1791-0
http://doi.org/10.1016/j.micpro.2016.07.010
http://doi.org/10.1016/j.micpro.2020.103005
http://doi.org/10.1186/s13639-016-0051-9
http://www.gaisler.com/index.php/products/processors/leon3
www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://en.wikipedia.org/wiki/%CE%9CClinux
https://en.wikipedia.org/wiki/Micro-Controller_Operating_Systems
https://en.wikipedia.org/wiki/Micro-Controller_Operating_Systems
https://en.wikipedia.org/wiki/FreeRTOS
http://doi.org/10.1504/IJGUC.2015.070677
http://doi.org/10.1145/2870638
http://doi.org/10.1109/JIOT.2015.2505901
http://doi.org/10.1109/CADIAG.2017.8075711

Computers 2022, 11, 76 13 of 13

29. Renesas Electronics Corporation. Microcontrollers & Microprocessors (MCUs, MPUs). 2022. Available online: www.renesas.com/
us/en/products/microcontrollers-microprocessors (accessed on 30 April 2022).

30. Găitan, V.G.; Zagan, I. An Overview of the nMPRA and nHSE Microarchitectures for Real-Time Applications. Sensors 2021,
21, 4500. [CrossRef]

31. Iordanou, K.; Nikolakaki, S.M.; Malakonakis, P.; Dollas, A. A performance evaluation of multi-FPGA architectures for compu-
tations of information transfer. In Proceedings of the 18th ACM International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS ‘18), New York, NY, USA, 15–19 July 2018; pp. 1–9. [CrossRef]

32. Belleza, R.R.; Freitas, E.P. Performance study of real-time operating systems for internet of things devices. IET Softw. 2018, 12,
176–182. [CrossRef]

33. Adam, G.K. Real-Time Performance and Response Latency Measurements of Linux Kernels on Single-Board Computers.
Computers 2021, 10, 64. [CrossRef]

34. Shannon, L.; Matthews, E.; Doyle, N.; Fedorova, A. Performance Monitoring for Embedded Computing Systems on FPGAs.
In Proceedings of the 2nd International Workshop on FPGAs for Software Programmers (FSP), London, UK, 1 September 2015;
pp. 68–72.

35. Podobas, A.; Sano, K.; Matsuoka, S. A Survey on Coarse-Grained Reconfigurable Architectures. From a Performance Perspective.
IEEE Access 2020, 8, 146719–146743. [CrossRef]

36. Meyer, M.; Kenter, T.; Plessl, C. In-depth FPGA accelerator performance evaluation with single node benchmarks from the HPC
challenge benchmark suite for Intel and Xilinx FPGAs using OpenCL. Parallel Distrib. Comput. 2022, 160, 79–89. [CrossRef]

37. Baklouti, M.; Abid, M. Multi-Softcore Architecture on FPGA. Int. J. Reconfig. Comput. 2014, 2014, 979327. [CrossRef]
38. Azarian, A.; Cardoso, J.M.P. Pipelining Data-Dependent Tasks in FPGA-Based Multicore Architecture. Microprocess. Microsyst.

2016, 42, 165–179. [CrossRef]
39. Intel Corporation: Nios II Processor with Memory Management Unit Design Example. Available online: https://www.intel.com/

content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-
ii/exm-mmu.html (accessed on 19 October 2021).

40. Altera DE2-115 Development and Education Board. Available online: www.terasic.com.tw/cgi-bin/page/archive.pl?Language=
English&CategoryNo=139&No=502&PartNo=2 (accessed on 1 October 2021).

41. GitHub, Inc., Linux Development Repository for Socfpga. 2020. Available online: https://github.com/altera-opensource/linux-
socfpga (accessed on 2 October 2021).

42. Tullsen, D.M.; Eggers, S.J.; Levy, H.M. Simultaneous multithreading: Maximizing on-chip parallelism. In Proceedings of the
22nd IEEE Annual International Symposium on Computer Architecture, Santa Margherita Ligure, Genoa, Italy, 22–24 June 1995;
pp. 392–403. [CrossRef]

www.renesas.com/us/en/products/microcontrollers-microprocessors
www.renesas.com/us/en/products/microcontrollers-microprocessors
http://doi.org/10.3390/s21134500
http://doi.org/10.1145/3229631.3229635
http://doi.org/10.1049/iet-sen.2017.0048
http://doi.org/10.3390/computers10050064
http://doi.org/10.1109/ACCESS.2020.3012084
http://doi.org/10.1016/j.jpdc.2021.10.007
http://doi.org/10.1155/2014/979327
http://doi.org/10.1016/j.micpro.2016.02.008
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-mmu.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-mmu.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/intellectual-property/embedded/nios-ii/exm-mmu.html
www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://github.com/altera-opensource/linux-socfpga
https://github.com/altera-opensource/linux-socfpga
http://doi.org/10.1109/ISCA.1995

	Introduction
	Related Work
	Design Methodology
	Proposed System Architecture
	Software Infrastructure
	Multithreaded Application

	Performance Evaluation
	Performance Evaluation Metrics
	Execution Time
	Speedup
	Parallelization Efficiency

	Experimental Results and Discussion
	Evaluation Results
	Discussion

	Conclusions
	References

