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Abstract: Software-Defined Networking (SDN) is a developing architecture that provides scalability,
flexibility, and efficient network management. However, optimal controller placement faces many
problems, which affect the performance of the overall network. To resolve the Multi-controller SDN
(MC-SDN) that is deployed in the SDN environment, we propose an approach that uses a hybrid
metaheuristic algorithm that improves network performance. Initially, the proposed SDN network is
constructed based on graph theory, which improves the connectivity and flexibility between switches
and controllers. After that, the controller selection is performed by selecting an optimal controller
from multiple controllers based on controller features using the firefly optimization algorithm (FA),
which improves the network performance. Finally, multi-controller placement is performed to reduce
the communication latency between the switch to controllers. Here, multiple controllers are placed
by considering location and distance using a hybrid metaheuristic algorithm, which includes a
harmonic search algorithm and particle swarm optimization algorithm (HSA-PSO), in which the PSO
algorithm is proposed to automatically update the harmonic search parameters. The simulation of
multi-controller placement is carried out by the CloudsimSDN network simulator, and the simulation
results demonstrate the proposed advantages in terms of propagation latency, Round Trip Time (RTT),
matrix of Time Session (TS), delay, reliability, and throughput.

Keywords: software defined networking (SDN); multi-controller; controller placement problem;
controller selection; network construction; hybrid optimization

1. Introduction

Currently, the large use of mobile devices expands the scale of the networks. Tra-
ditional networks are likely not suitable for the changing scenario, which faces network
management issues, and network flexibility issues [1]. To alleviate the issues in traditional
networking, an efficient solution was driven by Software Defined Networking (SDN). The
SDN is an emerging paradigm that supports network programmability by unravelling the
network equipment with the control layer [2]. Typically, the SDN consists of three planes,
namely the data plane, control plane, and application plane. The data plane consists of
multiple switches that collect the data as a packet from the devices and perform forwarding
to the control plane by following SDN protocols (i.e., OpenFlow) [3]. The control plane
consists of a controller, which is the heart of the SDN, that manages the whole network.
The application plane is managed by the application administrator, whose policies are
also managed by the controller [4]. A controller has the power to remove or add the rules
and policies in SDN networks. Therefore, it improves the network programmability and
supports network management [5].

Initially, the whole SDN network is managed by a single SDN controller. These
single SDN controllers are mostly suitable for small coverage networks (i.e., local area
networks) [6]. Some of the prior works exploit single SDN controllers for small coverage
networks; however, they face single-point failure and scalability issues [7]. The use of a
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single SDN controller for large area network limits with high latency, congestion, and link
failure in the network also affects the network performance [8]. To address the issues in the
single SDN controllers in terms of scalability and latency, the multi-controller concept is
introduced, which alleviates the problem of single-point failure and provides a distributed
latency-free intelligent solution to SDN networks [9]. Some of the prior work utilizes the
multi-controller SDN concept and mitigates the traditional drawback to a certain level. The
SDN multi-controller utilization is collectively called the controller placement problem [10],
which raises the question of how many controllers are needed for providing a flexible
service to the SDN network [11], and which controller is selected to be deployed in the
network [12].

The aforementioned question is also linked with the optimal placement of controllers,
satisfying switch requirements, and selecting a highly fault-tolerant controller. The selection
and placement of controllers in an optimal location decreases the latency between multi-
controllers and switches [13]. The existing works employ the heuristics approaches for
controller placement problems; however, they are still limited in considering some of
the important constraints (e.g., not considering controller fault tolerance, and/or not
considering switch requirements) [14]. The existing heuristics algorithms parameters are
faced with convergence issues, which also affect the controller placement, thus affecting
network performance [15]. Overall, the controller placement problem in a multi-controller
environment is still an open issue that needs to be investigated deeply to enhance the
network performance of SDN environments. Table 1 represents the comparison of single
controller and multi-controllers.

Table 1. Characteristics of single vs. multi-controllers.

Single SDN Controller Multi SDN Controller

Acquires the network’s global view Lack of network global view
Single point of failure No single point of failure
Poor scalability Highly scalable
Easy to deploy in legacy environments Supports both legacy and SDN environments
Subjected to high latency Less latency
Not suitable for mobile scenarios Suitable for mobile scenarios
Prone to a high link failure rate No link failure
High network congestion No network congestion

Designing an efficient methodology for optimizing the multi controllers’ placement
in an adaptable manner is a very important and challenging issue in such a complex
environment, especially due to the various related requirements. Thus, optimizing the
deployment of multiple controllers within SDN is a complex issue due to the variability
exhibited by many parameters and current operating conditions. An effective hybrid
metaheuristic-based solution is provided for controller placement problems in a SDN
environment. This research is aiming to minimize the latency between controllers, minimize
delay between switches, and maximize the controller fault tolerance rate.

This research addresses the major problems of latency between controllers to con-
trollers, and the selection of controllers. The existing works consider the latency between
controllers to switch while some work considers the latency between controller to controller.
However, they are limited with high latency as the controller was not placed in the precise
location. The existing heuristics algorithm also lacks convergence issues, which also affects
the controller placement. The selection of controllers before deployment is a major concern,
however, most works are not considering controller selection, which also leads to decreased
network performance in the SDN.

Motivated by the above problems in the existing works, this research is proposing
to provide an efficient solution for the problem. The main objective of this research is to
alleviate the issues in controller placement in a multi-controller environment. To meet this
objective, some of the sub-objectives are:
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• To improve the network scalability by constructing the network as a graph structure;
• To enhance the network performance by selecting the high fault-tolerant optimal

controller using an optimization algorithm;
• To minimize the propagation delay between inter-controllers and switches by using

hybrid metaheuristics algorithms.

The proposed MC-SDN (Multi-Controller based SDN) approach addresses Controller
Placement Problem (CPP) to improve the network performance in an SDN environment.
The network is constructed in a graph manner to increase scalability, connectivity, and
flexibility of the network, which increases the communication efficiency and reduces the
propagation delay of the link. Thus, the main contributions of this research are defined
as follows:

• First, the optimal controller is selected from multiple controllers using the Firefly
optimization algorithm (FA), which improves network performance by selecting the
optimal controller to manage the network;

• Secondly, the multi-controller placement is performed by using hybrid harmony search
algorithm and particle swarm optimization algorithm (HSA-PSO), which reduces the
communication latency between the switch to the controller by selecting an optimal
location to place the controller.

The performance of the proposed work is evaluated based on several performance
metrics such as propagation latency, Round Trip Time (RTT), matrix of Time Session (TS),
delay, reliability, throughput, cost, and fitness value.

The remainder of this paper is organized as follows. Section 2 represents the prelimi-
naries of the proposed MC-SDN method. Section 3 illustrates the literature survey, which is
followed by the problem statement in Section 4. Section 5 describes the proposed MC-SDN
method in a detailed manner. The experimental results of the proposed MC-SDN method
are explained in Section 6. Finally, Section 7 concludes the proposed MC-SDN method and
the future scope of this research.

2. Preliminaries

This section introduces the preliminary knowledge about the hybrid meta-heuristic
algorithm called Harmony Search Algorithm (HSA) and Particle Swarm Optimization
algorithm (PSO) to provide a better understanding of the proposed work.

2.1. Harmony Search Algorithm (HSA)

Harmony Search Algorithm (HSA) is a metaheuristics algorithm that is inspired by
musicians, whose aim is to improve the music by adjusting the musical instrument parame-
ters for a better harmony state. The HSA supports a wide variety of optimization problems
that perform better than the prior optimization algorithms in terms of mathematical analy-
sis [16]. The HSA algorithm solves a wide range of engineering optimization problems in
various fields such as Puzzle Solving, Routing problems and Distributed network problems.
The typical HSA consists of three steps, namely initialization, improvisation, and updating,
which can be formulated as

HNew
i =


Hi(l) ∈ {Hi(1), Hi(2), . . .,Hi(l)} R1 > hmcr

Hi(l) ∈
{

H1
i , H2

i , . . .HHMS
i

}
R1 ≤ hmcr

Hi(l) + R3 ∗ BW R2 ≤ par
, (1)

where HNew
i is a new harmony, R1, R2, and R3 are the random numbers between [0, 1],

hmcr denotes the harmony memory consideration rate, par denotes the pitch adjustment
rate, BW denotes the bandwidth, and HHMS

i denotes the harmony memory solution
of harmonic.

The HSA algorithms are mostly limited to a high convergence rate, which affects the
accuracy. Hence, some of the modifications are introduced in the HSA algorithm, which are:
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• Dynamic adaption of HSA parameters to enhance the convergence rate;
• Improved operations in terms of accuracy by combining with other optimization

algorithms (i.e., hybrid solutions);
• Set of pre-defined rules for new harmony (i.e., Hybrid harmony).

2.2. Particle Swarm Algorithm (PSO)

The particle swarm algorithm is the stochastic optimization algorithm that is inspired
by the population (i.e., behavior) of several animals such as birds’ flocks, fish schools,
etc. [17]. Various PSO algorithms are mostly correlated to two main research techniques,
such as evolutionary algorithms and artificial algorithms. This algorithm provides better
optimization results when compared with genetic optimization algorithms. It is performed
based on the swarm size of the position vector of every particle at a finite dimension with
the velocity vector. Optimal positions of every individual are experienced by the swarm
and update the optimal position of individuals from the initial state. We update the optimal
position of every individual using swarm by considering position and velocity. The position
update formula is expressed as follows

Pij(R + 1) = Pij(R) + vij(R + 1), (2)

where Pij(R) represent position of the particles, vij(R + 1) denotes the velocity of the
particles, i denotes particle and R denotes iteration. In addition, the velocity updating is
performed by considering the inertia weight to the update formula of velocity, which is
expressed as follows

vij(R + 1) = W(R)vij(R) + A1R1
(

P_Bestij − Pij(R)
)
+ A2R2

(
GBest − Pij(R)

)
, (3)

where vij(R) represent the particle velocity of iteration, W(R) represent the weight value,
A1, A2 represent the acceleration constants, R1, R2 denotes the random values between
[0, 1], and P_Best and G_Best represent the local and global position of the particles.

It overcomes the limitations of the HSA algorithm. This algorithm provides high
computational efficiency with efficient control parameters when compared with several
heuristic optimization algorithms.

3. Literature Survey

Reference [18] introduced a novel solution for the problem of controller placement in
software-defined networks. This work adopts nature-inspired algorithms such as manta
ray foraging optimization and salp swarm algorithm for problems in controller placement.
To improvise the performance of the individual algorithms, the discretization is performed
by triple operators. The discretized algorithms are utilized in a hybrid manner for controller
placement. This work solved the problem of controller placement by ensuring the latency
in the network. However, the other constraints (i.e., switch requirement, fault tolerance,
etc.) are considered for optimal controller placement.

Reference [19] introduced an effective method for the problem of controller placement
using heuristic algorithms. Initially, the delay among the switches and controllers is
analyzed and provides a delay-aware model. The delay-aware model is assessed by
three optimization algorithms, namely bat optimization algorithm, firefly algorithm, and
VARNA-based optimization algorithm. All three optimization algorithm parameters are
optimized by particle swarm optimization for improved performance. This work only
utilized limited network indicators which affected its optimality in solving the controller
placement problem.

Reference [20] introduced an optimization algorithm for controller placement in
software-defined networks. This work utilizes two algorithms for controller placement,
namely the genetic algorithm and PSO algorithm. The particle swarm optimization algo-
rithm initially selects the best controller based on the fitness values by considering its delay
constraints. The genetic algorithm is utilized to update the position and velocity of the
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controllers. This work utilizes genetic algorithm and particle swarm optimization algorithm
for controller placement; however, the genetic algorithm is limited with high computation
time consumption. Reference [21] introduced an optimized approach for the CPP. This
work adopted VARNA-based optimization algorithm, which diminishes the overall time
consumption during placement of the controller. This work outperforms the Teacher Learn-
ing Based Optimization algorithm and Jaya algorithm in terms of time consumption. This
work considers only latency as a constraint of the placement of the controller problem.
However, for a better placement, other constraints should also be considered.

Reference [22] proposed controller placement using an optimization algorithm in the
SDN network. Here, a controller was placed for each cluster to reduce the latency between
the switch to the controller. The proposed method calculates the maximum distance to
reduce the latency between the switch to the controller. The proposed method achieved
less latency for various types and counts of controller placement. The experimental results
demonstrate that the proposed work achieved better performance in fault tolerance com-
pared to existing works. A novel controller placement framework was proposed using
multi-criteria-based clustering method [23]. The main aim of this research was to reduce
communication latency and end-to-end delay. The proposed SDN topology is constructed
in a graph manner. Here, the controller and switches are located using the proposed
clustering approach. After that, the path between controller and switch is determined.
For that purpose, moth flame optimization was proposed. Finally, the simulation results
demonstrate that the proposed work achieved better performance compared to some other
existing approaches.

Controller placement problem was solved by VARNA optimization algorithm in
the SDN environment [24]. Initially, populations are initialized and classified into two
types of varnas based on particle superiority. Varna optimization calculates the fitness
values of the particles for two classes. Based on the fitness values, controller placement
was performed. The experimental results show that the proposed work achieved better
performance compared to other optimization algorithms. Reference [25] proposed an
approach to perform controller placement in SDN for reducing link failures. Initially, link
investigation was performed to analyze and regularize the rate of link failures. Improved
NSGA-II based heuristic algorithm was developed to reduce the controllers count to
provide an efficient solution for CPP-MLF multi-link failures. Non-dominated sorting
genetic algorithm-II (NSGA-II) is improved specifically in terms of crowding distance and
the non-dominated set using an even distribution-based operator and adaptive competition
technique to attain optimal Pareto solutions for solving the CPP-MLF. Finally, the load
variance of the controllers was evaluated to achieve efficient decisions for placing the
controllers efficiently. Experimental analysis was performed by comparing the developed
heuristic approach to several previous algorithms. However, this approach is not suitable
for large-scale networks because it leads to network load increase.

Reference [26] proposed an approach to perform efficient multi-controller placement
in SDN networks. Initially, Steiner tree was implemented for computing the inter-controller
optimally by joining the failed links’ endpoints through the shortest path by considering
controller count, controller capacity, and mapping of the switch controller. Redirecting the
flows by a specific feature is named as fast failover in the group tables of OpenFlow. Finally,
joint-controller placement is optimally performed by considering the weight parameter
of the pre- and post-failure Steiner tree to reduce the link failure. Performance evaluation
of this method was performed in terms of network synchronization cost and reconfigu-
ration of failure network, etc. Reference [27] proposed an approach to perform optimal
controller placement with optimal selection of controllers using dynamic chaotic-SALP
swarm optimization algorithm (SSOA) in an SDN network. Initially, the SSOA algorithm
was introduced with chaotic maps to improve the performance of the optimizer. Eval-
uation of optimal controllers count and connections between controllers and switches
were performed in which the optimal allocations and controllers count were performed by
chaotic SSA-based algorithms to reduce the cost during deployment and network latency.
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Extraction of random parameters by Gaussian distributed implementation of this method
is performed using Internet topology zoo and evaluation of this work by considering
several parameters.

Reference [28] proposed an approach to perform optimal placement of controllers in a
SDN environment. Initially, formalization of a comprehensive mathematical approach for
CPP selects the controllers’ location, reduces the controllers’ count, and node assignment
for each controller by considering latency during propagation, capacity of controllers, and
load balancing using a heuristic approach as NP-hard. In the heuristic approach, cluster
formation was performed between nodes to manage the network and assign controllers
for each cluster by selecting an optimal node based on the trade-off method. Finally, the
shortest path was selected by considering the network diameter. Experimental analysis
was compared with several state-of-the-art works to prove the efficient performance of this
work. Reference [29] proposed an approach to perform placement of multi-controllers in
SDN by affinity propagation. Initially, the network was partitioned by implementing a
modified-affinity propagation-based algorithm, which is a clustering algorithm that com-
putes the clusters count automatically and identification of candidate exemplars to place the
SDN controllers by considering the similarity of several parameters such as link bandwidth
and Euclidean distance. Finally, simulation was performed by constructing the network
topology using internet zoo topology to evaluate the proposed work in terms of latency be-
tween inter-controller, imbalance factors, worst case, and average case. Table 2 summarizes
the advantages and disadvantages of the related works considered in this survey.

Table 2. Advantages and disadvantages of the related work survey.

Study
Ref/No Advantages Disadvantages

[18] Solved CPP by hybrid manner method.
Ensuring the latency in the network.

Limitations (e.g., switching
requirements, fault tolerance) for
optimal controller placement.

[19]
Provides a delay-aware model by bat
optimization, firefly algorithm,
and VARNA.

Uses only utilized limited
network indicators.

[20]

Genetic and PSO algorithm were used to
select the best controller based on fitness
values by considering their
delay constraints.

The genetic algorithm limits with high
computation time consumption

[21]

It uses a VARNA-based optimization
VBO algorithm that reduces the total
time consumption during console mode.
Better than the teacher-learning-based
optimization algorithm, and the Jaya
algorithm in terms of time consumption.

This latency-only work is considered a
limitation of CPP and other limitations
of a better situation.

[22]

A controller was set up for each group to
reduce the latency between S2Cs by the
“$” method.
The proposed method achieved lower
latency for various types of controller
mode counts.
The results show that the proposed work
performed better in fault tolerance.

There is only one failure of the network
controller number 5 in terms of
path reliability.
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Table 2. Cont.

Study
Ref/No Advantages Disadvantages

[23]

They used an uncontrolled type of
flame-controlled locus optimizer for
three metrics, hop count, propagation
latency, and link utilization to
assign S2C.
They have the reliability of the path and
the best positioning of the consoles.

This focused on the clustering method,
and there are other limitations
The “k” of a few controllers and did not
specify the number of failures in the
path to the proposed framework.

[24]

They used the VBO algorithm in SDN
environment to solve CPP and to reduce
the average SDN latency so VBO
provides the best
dynamical performance.

It is based on clustering.

[25]

An improved heuristic algorithm based
on NSGA-II has been developed to
improve CPP performance in SDN and
reduce link failures for the number
of controllers.
Crowding distance and non-dominant
group adaptive competition were
determined to arrive at the optimal
Pareto solutions for the CPP-MLF
Multi-Link Failures solution.

This approach is not suitable for wide
area networks, which leads to increased
network load.

[26]

Steiner tree was implemented to
calculate the optimum internal
controller in terms of the weight
parameter to reach the failed links
through the shortest path.
The number and capacity of the
controllers are considered and mapped
into the switch.
Quick failover in OpenFlow
group tables.

There is a cost in case of network
synchronization and network
reconfiguration of the failure.

[27]

SDN’s dynamic salp swarm
optimization algorithm (SSOA) was
used to get the best performance for
optimal controller placement with
chaotic mapping.
The optimum number of controllers and
the connection between controllers and
switches have been evaluated in terms
of making the optimum number of
controller assignments in order to
reduce cost during deployment and
network latency.

It is based on extracting random
parameters.

[28]

Use a comprehensive mathematical
approach to a CPP solution, which
locates and minimizes controllers by
selecting an optimal node based on the
swap method and assigning the node to
each controller by considering
propagation latency, controllers’
capacity, and load balancing using a
heuristic approach such as NP-hard.
The shortest path was chosen by
considering the diameter of the grid.

Propagation latency between nodes to
controllers is within finite limits in case
of distribution between controllers.
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Table 2. Cont.

Study
Ref/No Advantages Disadvantages

[29]

A partitioning-based algorithm was
used for the clustering feature, where it
automatically counts the number of
clusters and selects candidate placement
of multi-controllers in SDN by
considering the similarity of several
parameters such as correlation
bandwidth and Euclidean distance and
thus calculating the latency between the
controller and imbalance factors.

Not all controllers are specified for the
purpose of partitioning and
network capacity.

4. Problem Statement

The controller placement problem is one of the vital problems in SDN networks. The
placement of the controller in the precise location would enhance the performance of the
network. There are several challenges employed during controller placement, such as high
latency during inter-controller communication, propagation delay between switches and
controllers, controller fault tolerance, and satisfying the switch requirements.

The latency between controllers is a challenging problem during controller placement.
Let the controllers (C1) and (C2), C∈C1 and C2 want to communicate with each other. The
unprecise location between these controllers during controller placement would increase
the inter-controller latency, which can be formulated as

LatC1↔C2 =
1
C ∑

C
max

C∈C1,C2
Lat, (4)

where LatC1↔C2 denotes the latency between controller C1 and C2 and max
C∈C1,C2

Lat denotes

the high latency during communication due to the imprecise placement of controllers.
The propagation delay between switches and controllers would affect the communica-

tion reliability between them. Let the switches in the network be s ∈ S, and controllers be
c ∈ C, then the propagation delay (PD) between them can be formulated as,

PDS↔C = ∑
N

max
S↔C

PD, (5)

where max
S↔C

PD denotes the increased propagation between controllers and switches and

N denotes the SDN network. Selecting a highly fault-tolerant controller is also a major
concern to be considered during controller placement. For the aforementioned problems
during controller placement, the proposed work aims to provide a precise solution for the
CPP with the following objectives. The objectives are

Minimize→ LatC1↔C2 , (6)

Minimize→ PDS↔C, (7)

Maximize→ Controller f ault tolerence. (8)

The existing works attempt to solve the issues in the controller placement. However,
an effective solution that addresses the above problems is not yet given. Latency-aware
optimal controller placement in precise location by considering link failures was introduced
by Ref. [30]. The optimized controller placement solution for the CPP by considering
the capacity of controllers was introduced by Ref. [31]. The load balancing method for
mitigating the issues during controller placement by considering delay and controller
stability was introduced by Ref. [32]. A heuristic approach for mitigating the controller
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placement problem by considering computation time was introduced by Ref. [33]. The
overall common issues employed in the above-listed papers are:

• The existing works are considering only the delay between controllers and switches.
However, the controller-to-controller communication after placement needs to be
considered for achieving a precise solution for the CPP, which increases the communi-
cation latency between controllers, and affects the SDN network performance;

• The selection of constraints during controller placement are latency between switches and
controllers, propagation delay, and link failure. However, the controller fault tolerance
rate was not considered, which also leads to degradation during controller placement;

• The existing works utilized heuristics algorithms for controller placement problems.
However, they achieve less performance in terms of latency and propagation delay,
as the parameters of the existing algorithms was not tuned effectively. In addition,
the consideration of single optimization algorithms limits them with imprecise con-
troller placement.

To overcome the shortcomings faced by the existing works, the proposed work initially
constructs the network as a graph structure to improve the scalability of the SDN network.
After that, controller selection is performed to improve the performance of controller place-
ment. The controller selection is performed by utilizing the Firefly optimization algorithm
(FA), which considers controller features. The use of this firefly optimization algorithm is
to select the optimal controller with high fault tolerance and capacity. After the selection of
optimal controllers, controller placement is done in an optimal location with awareness of
distance. The selection of optimal location for controller placement is utilized by a hybrid
algorithm called Harmony Search Algorithm (HSA) and Particle Swarm Optimization
(PSO). The PSO is utilized for HSA parameter initialization, which also improves the con-
troller placement performance. The controller placement problem minimizes the latency
between controllers and the propagation delay between switches and controllers. The
proposed work achieves the improved throughput and network performance by using
the above processes. The proposed MC-SDN model can be considered to be applicable to
generic SDN network characteristics and can be used in an efficient, flexible, scalable, and
reliable manner.

5. The Proposed Work

This section denotes the research methodologies of the proposed MC-SDN approach.
The proposed work provides scalability, reliability, and enhances the overall network
performance by three processes, which are explained as follows. Figure 1 represents the
overall system model of the proposed MC-SDN architecture with distribution mechanism
and selection of controllers by FA algorithm.

5.1. Network Construction

The network considers multiple controllers, switches, and devices. The network
topology is constructed based on an undirected graph structure, which is defined as

G = (V, E, U), (9)

where G represents the graph, U represents the number of controllers, E represents the
edges and V represents the connection between the switches and controllers. This topology
reduces the latency between switches and controllers. Here, the controllers and nodes are
the forwarding elements, therefore we assume the controller location as the node location
in the SDN environment. Hence, we need to calculate the value of k, which represents
the count of controllers to find the relation of U → V mapping, which from through
it calculate the objective function. Let us assume C = (C1, C2, . . .Cn) is the number of
controllers deployed in the network. S = (S1, S2, . . .Sn) represent the number of switches
so that V = C ∪ S. n = V represents the number of nodes and k = U represents the count
of controllers. Pc = {pc1, pc2, . . .,pcm} represents the possibilities of controller placement.



Computers 2022, 11, 111 10 of 26

Where m represents the n elements variations that are taken from the group. The calculation
of m is defined as follows

m =
n!

k!(n− k)!
. (10)

In our network, the controller is selected based on the shortest distance d (s,c) between
switch and controller from nodes s ∈ V and c ∈ V.
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5.2. Optimal Controller Selection

The controller is a core component in the SDN network, which manages the overall
network. Therefore, an optimal selection of controllers must be selected to manage the
overall network. The optimal selection of controllers is based on the controller features.
The types of controllers and features are listed in Table 3, which is provided below.

Table 3. Controller features of SDN.

Features

Controllers GUI APIs Platform of Version Modularity Language Category Legacy
Network

ONOS Excellent
NETCONF,

OVSDB,
OFREST

MAC
Windows,

Linux

Between
1.0 to 1.3 Excellent Java Disseminated Yes

ODL Excellent
OVSDB,
OFREST,

BGPSNMP

MAC
windows,

Linux

Between
1.0 to 1.3 Excellent Java Disseminated Yes
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Table 3. Cont.

Features

Controllers GUI APIs Platform of Version Modularity Language Category Legacy
Network

Flood Light Fair OVSDB,
OFREST

MAC
windows,

Linux

Between
1.0 to 1.3 Fair Java Single No

Beacon Bad OVSDB,
OFREST

MAC
windows,

Linux
1 Fair Java Single No

Ryu Fair

OVSDB,
OFREST,

NET-
CONFG

MAC
windows,

Linux

Between
1.0 to 1.5 Fair Python Single No

POX Bad OVSDB,
OFREST

MAC
windows,

Linux
1 Bad Python Single No

NOX Bad OVSDB,
OFREST Linux 1 Bad C++ Single No

The proposed controller selection method involves two steps, namely qualitative and
quantitative approaches by the optimization algorithm. The proposed work utilizes the
FA algorithm. FA is the nature-inspired algorithm, which is inspired by the beetles that
produce attractive lights from their abdomen part. The working of FA-based controller
selection is given. Initially, the controllers feature in the network are initialized, which can
be formulated as

FCn = {FC1, FC2, FC3, FC4, FC5, FC6, FC7, . . .,FCn}. (11)

The features that are highly responsible for controller selection are computed first.
For each controller in the network, their corresponding effective features are calculated by
computing the distance between them based on the attractive behavior of a firefly. Highly
effective features (i.e., controller features with the behavior of high fault tolerance) are
given much importance. The distance between the features is formulated as

FT(D) =
FC
DC

, (12)

where FT(D) is a high fault-tolerant feature based on the distance between controllers
Dc and FC denotes the controller features. The selection of highly fault-tolerant features
is computed to place the controller in the optimal position. The objective function of the
highly fault-tolerant feature can be formulated as

FTFC = f (FC). (13)

From the above FTFC , we select the controller features that are highly effective (i.e.,
highly fault-tolerant), which is based on the controller attraction coefficient being the
relatively high light absorption coefficient of a firefly, which can be formulated as

ℵ(D) = ℵ0e−γD2
, (14)

where ℵ(D) is the controller absorption coefficient used to attract the best controllers based
on the FA algorithm, ℵ0 = best high light intensity for firefly, and γ is the absorption
coefficient for absorbing a highly fault-tolerant controller. Based on the controller attractive
value ℵ, the optimal controller is a selection that can be formulated as

ℵ
(

FTFC

)
=
{
ℵ(FTFC1),ℵ(FTFC2), . . .,ℵ(FTFC7)

}
. (15)
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The pseudocode of the FA-based controller selection is given by comparing only two
controllers as an example. Based on the example, the FA optimally selects the best controller
among seven controllers and Figure 2 represents optimal controller selection using FA,
depending on the best firefly with high light intensity, which appears from their abdomen
(Algorithm 1).

Algorithm 1 Pseudocode of the FA for Optimal Controller Selection

Initialize FC
Formulate objective function using (13)
Formulate controller absorption coefficient using (14)
Initialize absorption coefficient using (15)
While all FC do
Compute controller feature distance using (12)
For FC1 = 1 to n (all n controllers)
For FC2 = 1 to n (all n controllers)
If (DFC2 > DFC1 ), select FC2 over FC1
End if
Update the ℵ(D)
End for FC2
End for FC1
Rank the controller and find the current best controller
End while
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5.3. Multi-Controller Placement

After completed controller selection, multi-controller placement is initiated. In a SDN
environment, multiple controllers are placed to reduce communication latency between the
controllers and switches. An efficient controller placement increases the performance of
the network. For optimal controller placement, we have proposed a hybrid metaheuris-
tic algorithm that includes the Harmony Search Algorithm (HSA) and Particle Swarm
Optimization (PSO). The HSA algorithm easily falls into local optima, hence we need
to periodically update the HS parameters using the PSO algorithm. The proposed HSA
includes three phases; initialization phase, improvisation phase, and updating phase. Here,
improvising is updated for three processes such as memory consideration, adjustment
of pitch, and random selection. The HSA algorithm consists of memory storage, namely
harmony memory (HM), which includes harmony vectors that store the objective function
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of HSA. First, we initialize the HM and size of the swarm for evaluating the fitness function,
which is defined as follows,

h1
1 h1

2 · · · h1
d

h2
1 h2

2 · · · h2
d

...
...

...
...

hn
1 hn

2 · · · hn
d




f1
f2
...
fn

 =


F1
F2
...

Fn

 where Fitness Function =
1

∑B
d=1 f (h)d

. (16)

Here, the fitness function is evaluated based on location and distance B and d param-
eters to provide an efficient optimal solution as follows. After completed initialization,
harmony improvisation is performed for generating a new harmony vector

[
h′1, h′1. . ., h′t

]
.

Every new harmony vector component h′j is generated using the following formula

h′j ←

 h′j ∈ PHM with Pb o f HMCR

h′j ∈ hj with Pb o f (1− HMCR)
, (17)

where HMCR represents the harmonic memory consideration rate that defines the compo-
nent selecting probability. The calculation of pitch adjustment for the selected h′j is defined
as follows

h′j ←

hn
j ∈ PHM with Pb o f PAR

h′j with Pb (1− PAR)
, (18)

where PAR represents the pitch adjustment rate and PHM represent the proposed hybrid
HSA and PSO algorithm, and h′j represent the optimal location for controller placement.

The new hybrid harmony vector is calculated based on the value of objective function
at every P_Best. If the new harmony vector objective value is better than the objective
value of the worst harmony, the new harmony vector is considered in PHM. The worst
harmony vector value is rejected from PHM. The optimal position for controller placement
is determined based on the best particles in the swarm, which is defined as P_Best. It
generates n number of iterations, and the best particle among all is considered as G_Best.
The position and velocity of all the particles are updated for each velocity. The current
velocity and position are calculated by used Equations (2) and (3) above.

The calculation of weight value is defined as follows

W = Wu − (Wu −Wl)

(
i

Imax

)
, (19)

where Imax represent the total count of iterations and i represent the current iteration, and
Wu and Wl represent the upper and lower limit of the weight values. These processes are
continued until the termination criteria are met. Table 4 describes the parameters of the
HSA algorithm. Figure 3 illustrates the flow of multi-controller placement.

Table 4. (HSA) parameters.

Parameter Names Parameter Symbols Value

Harmony Memory
Consideration Rate HMCR 0.8

pitch Adjusting Rate PAR 0.2
Random Rand 0.1
HS iteration H(I) 100
Harmony Memory HM 5
Minimum bandwidth BW 0.1 mbps
Maximum bandwidth MBW 0.4 mbps
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6. Experimental Results

The experimental analysis of the proposed MC-SDN method is described in this
section, which was carried out for evaluating the performance. This section also con-
sists of four subsections, namely simulation setup, use case, comparative analysis, and
research summary.

6.1. Simulation Setup

Implementation of proposed MC-SDN method by CloudSimSDN simulation tool
with NetBeans 12.5 integrated development environment (IDE) kit to perform simulation
with several entities such as devices, SDN switches, hosts, SDN controller, and cloud.
This simulation tool is suitable for performing modeling and simulation of cloud entities
and services including its services, in which this simulator is an open-source simulator
established by the cloud computing and distribution systems laboratory at Melbourne
University. Initially, the CloudSim environment is created with switches of SDN controllers
and hosts. Table 5 illustrates the system configurations and Table 6 shows the parameters
configuration of the proposed MC-SDN method.

The simulation environment of this MC-SDN method is illustrated in Figure 4, which
consists of hosts, SDN switches, and multi-controllers. Hosts send the data to the controller
via switches. The optimal controller is selected from the number of SDN controllers based
on numerous packet features. The optimal controller is cloned into seven controllers to
perform multi-controller placement. Location and distance are considered to place the
multi-controller efficiently to reduce the controller placement problem. Optimal controller
selection and multi-controller placement increase the communication efficiency between
the switches to controllers as well as controllers to controllers.
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Table 5. System configurations.

Software Specifications Operating System Windows 10 Pro (64 bits)

IDE NetBeans 12.5
Development Kit JDK 1.8

Network Simulator CloudSimSDN
Language Java

Topology Type Undirected Graph
No. of Topology 3

Hardware Specifications Hard Disk 1 T
CPU Intel (R) Core (TM) i7-4590S @ 3.00 GHZ
RAM 8 GB

Table 6. Parameter configurations.

Cloud Server Operating System Windows 10 Pro (64 bits)

Bandwidth 100,000 downlinks and uplinks
RAM 64 GB
Delay 900 ms
MIPS 44,800

Devices Delay 1 ms
MIPS 1500
RAM 4 GB

SDN Number of controllers 7
Number of switches 28

Switch Delay 5 µs
Bandwidth Variable
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6.2. Use Case: VANET

In recent times, the SDN has given its applications to Vehicular Ad networks (VANET).
The mobile nature of the VANET environment has faced severe challenges in terms of
network management. The VANET along with SDN called Software-Defined Vehicular
Network (SDVNs) provides network management capability with the help of controllers.

The SDVN environment needs multi controllers, which should be placed in an optimal
location to reduce the end-to-end processing delay in the SDVN environment. The proposed
MC-SDN approach is easily adaptable to VANET environment in terms of mobility and
reliability. Figure 5 denotes the diagrammatic representation of the SDVN environment,
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which consists of a large number of mobile vehicles that enable a various number of
operations such as emergency messages, traffic rules, etc. Initially, the network graph is
constructed to manage the network and provides high scalability. The appropriate high
fault-tolerant controller is selected based on controller features by using the FA algorithm
to provide effective services in the SDVN environment. Finally, the selected controller is
placed in multiple optimal locations by using hybrid optimization algorithms. The optimal
placement of controllers reduces the latency between controllers and controllers to switches
to provide seamless communication between them.
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6.3. Comparative Analysis

Comparison of the proposed MC-SDN method with several existing methods such
as Simulated Annealing Failure Foresight Capacitated Controller Placement Problem (SA-
FFCCPP) [31] and Garter Snake Optimization Capacitated Controller Placement Problem
(GSOCCPP) [33] is performed in this subsection to evaluate their performance. The eval-
uation of these methods is performed by considering several performance metrics such
as propagation delay, average round-trip time (RTT), matrix of time Session (TS), average
delay, reliability, and throughput, respectively.

6.3.1. Impact of Propagation Delay

Propagation delay is one of the important metrics that is used to evaluate the delay
between switches and controllers during propagation. Propagation delay (

1 
 

Ƥđ ą) is defined
as the ratio between the distance (ň) (m) and the propagation speed (Ó) (m/s) in which the
formulation of propagation delay is represented as follows

1 
 

Ƥđ ą =
ň

Ó
. (20)

Figure 6 illustrates the comparison of the propagation delay of the proposed MC-SDN
method with several existing approaches such as GSOCCPP and SA-FFCCP methods in
terms of the number of iterations. An SDN network with low propagation delay attains
efficient communication between switches and controllers. The propagation delay decreases
when increasing the number of iterations. In the previous methods, controller placement
was performed by considering only the distance between switches and controllers. In
addition, poor tuning of algorithms leads to poor controller placement, which increases the
propagation delay. In the proposed MC-SDN method, controller placement is performed
by considering the distance using a hybrid optimization algorithm that increases the
performance of controller placement, which reduces the propagation delay. The graphical
results show that the proposed MC-SDN method achieves low propagation latency (11
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to 20 ms) when compared with SA-FFCCPP (22 to 40 ms) and GSOCCPP (27 to 45 ms)
methods. Table 7 describes the variation of propagation delay between the proposed
MC-SDN method and previous approaches.
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Table 7. Numerical analysis of propagation delay (ms).

Methods Number of Iterations

GSOCCPP 36.2 ± 0.5
SA-FFCCPP 31.3 ± 0.3

MC-SDN 15.5 ± 0.1

6.3.2. Impact of Average Round-Trip Time (RTT)

This metric is used to measure the time taken between the devices to transmit and
receive the packets from source to destination. It is measured by the difference between the
packet return time (ζ) to the packet sending time (δ) and it is evaluated in ms, in which
the formulation of RTT (η) is represented as follows

η = ζ − δ (21)

Figure 7 represents the comparison of average RTT between the proposed MC-SDN
method with several state-of-the-art works concerning the number of iterations. Low RTT
in a network achieves high throughput. Average RTT increases by increasing the number
of iterations. Controller placement was considered in the previous works, however, lack
of considering the efficient controller leads to high RTT. In the proposed work, optimal
controller is selected by using the FA algorithm by considering numerous controller features,
which reduce the RTT when compared with the state-of-the-art works. The comparative
results prove that the proposed MC-SDN method achieves low RTT when compared with
other existing approaches. The proposed MC-SDN method achieves an average RTT of
about 11 ms, which is 4 ms lower than the SA-FFCCPP method and 8 ms lower than the
GSOCCPP method. The changes in average RTT of the proposed MC-SDN method and
several existing methods are described in Table 8.
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Table 8. Numerical analysis of average RTT (ms).

Methods Number of Iterations

GSOCCPP 14.7 ± 0.4
SA-FFCCPP 10.95 ± 0.2

MC-SDN 7.3 ± 0.1

6.3.3. Impact of Matrix of Time Session (TS)

The matrix of TS (ψ) is used to calculate the amount of time taken for performing
efficient communication between switches to controllers. It is measured by the number of
switches and the position of servers in the ratio between the amount of time taken for a
specific Session (

1 
 

Ϛ ) to the overall Session count (

1 
 

Ϭ ), which is formulated as follows

ψ =

1 
 

Ϛ 

1 
 

Ϭ . (22)

Figure 8 shows the comparative analysis of the matrix of time session between the
proposed MC-SDN approach to several existing works for the number of iterations. A
network with low matrix of time session achieves better transmission efficiency. In the
previous works, controller placement was performed by considering the shortest distance
between the switches and controllers. However, the lack of considering the controllers’
optimal increases the time for every session. In addition, a single controller also leads to
high matrix of time session. To overcome these issues, optimal controller is selected in the
network based on packet features using the FA algorithm, which reduces the matrix of
time session efficiently when compared with existing works. From the figure, it proves
that the proposed MC-SDN method achieves low matrix of time session in the range of
about 300 for 100 number of iterations, which is 60 greater than SA-FFCCPP and 120 greater
than GSOCCPP methods. The graphical variations of matrix of TS between the proposed
MC-SDN method and the state-of-the-art works are illustrated in Table 9.
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Table 9. Numerical analysis of the matrix of time session (TS).

Methods Number of Iterations

GSOCCPP 309.2 ± 0.5
SA-FFCCPP 246.5 ± 0.4

MC-SDN 203.5 ± 0.1

6.3.4. Impact of Average Delay

Average delay (₫) is defined as the amount of additional time taken for packet delivery
from data to the control plane in the proposed MC-SDN method. Average delay is measured
by the ratio of actual packet size (H) to the amount of bandwidth available (

1 
 

ῧ ), which is
formulated below.

₫ =
H

1 
 

ῧ 
. (23)

The comparison of the proposed MC-SDN method with several state-of-the-art works
in terms of average delay with respect to the number of iterations is shown in Figure 9.
A network with low average delay achieves a high packet delivery ratio. Average delay
increases with respect to the increase of iterations. In the proposed MC-SDN method, low
average delay is achieved by using the hybrid optimization algorithm, which consists of the
HSA and PSO algorithms, and provides better results for placement of controllers, which
reduces the average delay, whereas the previous methods perform controller placement by
using a single optimization algorithm, which reduces the precision of controller placement
and reduces the average delay. The results show that the proposed MC-SDN method
achieves low average delay when compared with previous works. The proposed MC-SDN
method has an average delay of about 100 ms, which is 30 ms faster than the SA-FFCCPP
method and 60 ms faster than the GSOCCPP method. The average delay graphical changes
of the proposed MC-SDN and other approaches are described in Table 10.

Table 10. Numerical analysis of average delay (ms).

Methods Number of Iterations

GSOCCPP 108.3 ± 0.4
SA-FFCCPP 95.3 ± 0.3

MC-SDN 78.8 ± 0.1
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6.3.5. Impact of Reliability

This metric is used to evaluate the effectiveness of the proposed MC-SDN method in
terms of efficient optimal placement of controllers. A network with high reliability provides
efficient communication with high accuracy.

RL = max ∑v∈V ∑s∈S p(v, s). (24)

RL represents the reliability to minimize the control path between the MC-S and p(v, s)
indicates the available probability of the control path.

Figure 10 illustrates the comparison of the proposed MC-SDN method and several
previous works in terms of reliability to the number of iterations. Increasing the number
of iterations increases the reliability. In the existing methods, controller placement was
performed with poorly tuned optimization algorithms and inefficient communication
between controller to controller in the SDN network, which reduces the reliability of the
network. In the proposed MC-SDN method, these problems are addressed, and performed
efficiently tuned hybrid algorithms for placing the controllers and optimal selection of
controllers to perform efficient communication between controller to controller, which
increases the reliability when compared with state-of-the-art approaches. From the figure,
it is clearly shown that the proposed MC-SDN method achieves high reliability when
compared with other previous works. The proposed MC-SDN method attains a reliability
of about 0.95 for 100 iterations, which are 0.07 greater than the SA-FFCCPP method and 0.11
greater than the GSOCCPP method for the same number of iterations. Table 11 describes
the reliability variations of the proposed MC-SDN method and several existing works.

Table 11. Numerical analysis of reliability.

Methods Number of Iterations

GSOCCPP 0.75 ± 0.5
SA-FFCCPP 0.79 ± 0.4

MC-SDN 0.88 ± 0.1
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6.3.6. Impact of Throughput

Throughput (W) of the network is defined as the amount of data delivered to the
receiver from the transmitter (ű) within a specific amount of time (ξ). The throughput
calculation is formulated below.

W =
ű

ξ
. (25)

Figure 11 represents the comparison of throughput between several previous methods
and the proposed MC-SDN method in terms of number of switches in the network. A
network with high throughput attains a high packet delivery rate. The figure shows that
the throughput increased by increasing the number of switches. The comparative results
show that the proposed MC-SDN method achieves high throughput when compared with
previous approaches. In the existing methods, controller placement was performed by
considering some constraints like communication latency, propagation delay, etc. However,
lack of considering the fault-tolerant rate reduces the throughput of the network. In
the proposed MC-SDN method, optimal controller selection is performed using the FA
algorithm by considering numerous packet features that provide a high fault tolerance
rate, which increases the throughput when compared with state-of-the-art works. From the
figure, it is proved that the proposed MC-SDN method achieves high throughput of about
300 k response/s, which is 30 k response/s higher than the SA-FFCCPP approach and 60 k
response/s higher than the GSOCCPP approach. The throughput variations between the
proposed MC-SDN method and other existing methods are described in Table 12.

Table 12. Numerical analysis of throughput (response/s) (k).

Methods Number of Switches

GSOCCPP 150.2 ± 0.3
SA-FFCCPP 165.7 ± 0.2

MC-SDN 197.1 ± 0.1
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6.3.7. Impact of Cost

This metric is used to determine the cost of the entire network based on time. A
network with low cost that achieves all the necessities provides efficient Quality of Service
(QoS). Figure 12 illustrates the comparison of cost with respect to time for the proposed
MC-SDN method and several previous approaches. The graph shows that the cost increases
with increasing time. In the previous methods, controller-to-controller communication was
not efficiently performed, which is more time consuming and increases the cost.
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In the proposed MC-SDN method, the communications between switches to con-
trollers and controllers to controllers are efficiently performed by selecting an optimal
controller and placing multi-controllers using FA for selecting optimal controllers by con-
sidering location and distance, and multi-controller placement is performed using hybrid
optimization algorithms by considering packet features to overcome these issues, which
provide efficient communication that results in low cost when compared with previous
approaches. The comparative results show that the proposed MC-SDN method achieves a



Computers 2022, 11, 111 23 of 26

low cost of about 45, which is 15 lower than the SA-FFCCPP method and 25 lower than the
GSOCCPP method. Table 13 describes the cost variation of the proposed MC-SDN method
and other previous methods.

Table 13. Numerical analysis of cost.

Methods Number of Switches

GSOCCPP 47.5 ± 0.4
SA-FFCCPP 37.5 ± 0.2

MC-SDN 26.8 ± 0.1

6.3.8. Impact of Fitness Value

This metric is one of the important metrics used to analyze the fitness value of the
proposed MC-SDN method. Fitness value is calculated by evaluating the optimal solution
for the controller placement problem for analyzing the solutions’ goodness (i.e., fitness)
to the problem. An optimization with a high fitness value provides an efficient optimal
solution. Figure 13 illustrates the comparison of fitness value between the previous ap-
proaches and the proposed MC-SDN method in terms of number of iterations. The graph
clearly shows that the fitness value decreases when the number of iterations increases. In
the SA-FFCCPP method, the authors used a simulated annealing optimization algorithm
and in the GSOCCPP method the authors implemented the garter snake optimization
algorithm for providing solutions to controller placement. However, the fitness value
of these algorithms does not fit the controller placement problem efficiently due to poor
adaptation mechanisms and accuracy.
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To overcome these problems, we use hybrid optimization algorithms (i.e., HSA and
PSO), which are optimization algorithms that increase the fitness value when compared
with other existing works by dynamic adaptation to increase the convergence rate, which
increases the controller placement accuracy. The graphical results show that the proposed
MC-SDN method achieves a high fitness value when compared with several existing works.
The proposed MC-SDN attains a high fitness value with an average of about 22.5, which is
4.5 greater than the SA-FFCCPP method and 6 greater than the GSOCCPP method. The
variation of fitness values for the proposed MC-SDN method and other previous methods
are described in Table 14.
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Table 14. Numerical analysis of fitness values.

Methods Number of Switches

GSOCCPP 16.4 ± 0.5
SA-FFCCPP 18.2 ± 0.4

MC-SDN 22.5 ± 0.1

6.4. Research Summary

This section emphasizes the discussion on the performance of the proposed MC-SDN
approach. The overall method is proposed to alleviate the existing problems in SDN con-
troller placement. The construction of network as graphical structure supports the network
scalability and improves the throughput rate. The overall network performance is enhanced
by selecting an optimal controller considering various controller features, which utilize an
optimization algorithm. The selected optimal controllers are distributed and placed in an
optimal location by using a hybrid metaheuristics algorithm, which considers the latency
between controllers and the delay between controllers and switches, respectively.

7. Conclusions and Future Work

A hybrid metaheuristic algorithm is proposed in this research to deploy multiple
controllers effectively, in order to reduce communication and propagation latency and
improve throughput and reliability. Initially, network construction is performed to improve
the scalability and connectivity between switches and controllers. After that, the optimal
controller is selected based on controller features using a optimization algorithm, which
improves the network performance in a SDN environment. Finally, multiple controllers
are placed based on the selected controller using a hybrid metaheuristic algorithm, which
increases the convergence rate that reduces deployment latency and communication la-
tency in the environment. The simulation is performed by CloudsimSDN simulation tool,
and the simulation result shows that the proposed MC-SDN approach achieved superior
performance in multi-controller placement compared to other state-of-the-art works. In
the future, we plan to increase the security during multi-controller placement in a SDN
environment. In addition, the issue of in-band or out-of-band control approaches will be
considered more thoroughly in order to better adjust the proposed methodology in the
SDN environments.
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