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Abstract: The definition of human-computer interaction (HCI) has changed in the current year
because people are interested in their various ergonomic devices ways. Many researchers have
been working to develop a hand gesture recognition system with a kinetic sensor-based dataset,
but their performance accuracy is not satisfactory. In our work, we proposed a multistage spatial
attention-based neural network for hand gesture recognition to overcome the challenges. We included
three stages in the proposed model where each stage is inherited the CNN; where we first apply a
feature extractor and a spatial attention module by using self-attention from the original dataset and
then multiply the feature vector with the attention map to highlight effective features of the dataset.
Then, we explored features concatenated with the original dataset for obtaining modality feature
embedding. In the same way, we generated a feature vector and attention map in the second stage
with the feature extraction architecture and self-attention technique. After multiplying the attention
map and features, we produced the final feature, which feeds into the third stage, a classification
module to predict the label of the correspondent hand gesture. Our model achieved 99.67%, 99.75%,
and 99.46% accuracy for the senz3D, Kinematic, and NTU datasets.

Keywords: kinematic sensor; multistage attention neural network; CNN; attention model; sign
language recognition; gesture recognition

1. Introduction

Hand gesture recognition has become a crucial part of the HCI and computer vision
research domain because of its extensive application. Every day, we consciously or sub-
consciously use numerous hand gestures to execute different tasks, but still, there are
many difficulties in collecting accurate hand gesture information and recognition. With
the wearable or vision-based device, problems can be solved by extracting a variety of
hand gesture information. Usually, different movement of the hand and fingers to express
specific information is known as hand gestures. The information depends on the hand’s
orientation, which may be specific symbols, digits, or objects. However, some have some
specific meaning for some hand gestures, and some have a universal meaning related to the
culture or context of the corresponding countries. A hand gesture can be static or dynamic:
generally, static gestures are defined as symbolic gestures that only exist in the spatial
domain. Different kinds of digits are examples of static gestures such as one, which can be
expressed by the index figure or two index and middle fingers. Static hand gestures (SHGs)
usually express the singular quality of something that does not have a different meaning
but only one meaning and includes no temporal information. On the other hand, dynamic
hand gestures (DHGs) include spatial and temporal information, which can carry broader
meaning. If we move the left hand from left to right to express the refuge of something,
our gesture contains spatial and temporal information. Therefore, DHGs can be defined
as the collection of static hand gesture sequences that can express a single meaning. Sign
language recognition, virtual reality, human–computer interaction, robotics, computer
gaming, physical science, natural science, computer engineering, and industrial areas are
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the most usable hand gesture recognition applications [1–13]. Although the information
embedding capacity of the hand gesture is lower than the speech-controlled, natural lan-
guage, it is good for considering language barriers, those suffering from vocal fatigue, and
the deaf community. Researchers have been working on the capacity of hand gestures. If
it is possible to solve the intriguing problem of hand gesture recognition, it could open
the way for more real-life applications in different fields [14]. Another advantage of hand
gestures is that they exclude physical contact with a hardware device, where the normal
input device must establish a permanent connection mechanism. Thus, using hand gestures
helps reduce the use of physical media, which can reduce extra burden, extra cost, and
complexity, and this is one of the main advantages of hand gestures [15,16].

There has been a broad range of approaches for collecting hand gesture datasets.
Among them, sensor- and vision-based systems are the most ubiquitous and prevalent.
The sensor-based method includes different gloves [17] and sensors embedded with a
bend, proximity, accelerometer, gyroscopes, and inertial sensors. The vision-based method
includes RGB images, RGB video, depth images, skeleton information, and infrared-based
depth images. Because of the many limitations of the sensor-based approach, such as cost,
user comfort, data preprocessing, portability, and naturalness, the vision-based approach
is the most appropriate for the researchers [18–21]. However, using a kinetic sensor is
one of the effective ways to collect hand gesture datasets that can efficiently detect and
segment hand gesture bursts and a series of events instead of gloves [22]. Although kinetic
sensors have many problems for large areas, such as capturing the entire human body
because they typically only have 640 × 480 pixels, they can easily cover hand gestures, as
they involve a small area. Many research studies have used kinetic sensor information
for recognizing hand gestures. Furthermore, they generate RGB and depth map images;
some researchers use only RGB of kinetic sensors, while others use RGB and depth maps
as multimodal information [1,14,23–26]. Many researchers employed handcrafted feature
extraction techniques with machine learning algorithms to classify hand gestures, but
recently, most of the research employed deep learning methods. Initially, convolutional
neural networks (CNNs) are used to recognize hand gestures, but it is difficult to recog-
nize dynamic hand gestures containing spatial-temporal information. Some researchers
employed recurrent neural networks (RNNs), which are mostly similar to CNNs, although
CNNs have been more successful [27]. Recently, researchers have used long short-term
memory (LSTM) to extract long-term dependency. A combination of CNN and LSTM was
used to achieve high-performance accuracy for hand gesture recognition [28]. Long-term
dependency needs high computation complexity, which is the main problem of LSTM; by
contrast, attention-based neural networks produce short-term dependency, which needs
less computational complexity [29–31].

Recently, some researchers have used attention-based approaches to improve perfor-
mance accuracy and reduce the computational complexity of hand gesture recognition.
Another main advantage of the attention-based method is that it usually highlights the
potential feature during discards the irrelevant feature with the self-supervised learning
approach. However, very few attention-based methods are used to recognize kinetic RGB-
based hand gesture recognition, and their performance is unsatisfactory. To overcome these
challenges, we proposed a multistage spatial attention-based neural network for hand ges-
ture recognition. Our model includes three stages: The first stage includes spatial features
extracted with a self-attention mechanism, which are then multiplied and concatenated
with the extracted features and the original dataset. The same process is repeated in the
second stage to highlight the effective features, and finally, a classification module was
applied (Figure 1) to show the overview of the work. The main contribution of the study is
given below:

• We proposed a multistage, attention-based feature-fusion-based deep learning for recog-
nizing hand gestures. We implemented the model in three phases: The first two phases
are used for feature extraction, and the third phase is used for classification. The first
two phases consist of a combination of feature extractors and spatial attention modules.
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• The first phase is used to extract spatial features, and the second phase is used to
highlight effective features.

• Finally, we applied a new classification module adapted from CNNs, which demon-
strated state-of-the-art classification performance on three hand gesture datasets used
as benchmarks, and it outperformed the existing modules.

Figure 1. Working procedure of the proposed method.

The presented work is organized as follows: Section 2 summarizes the existing research
work and problems related to the presented work, Section 3 describes the three benchmark
hand gesture datasets, and Section 4 describes the architecture of the proposed system.
Section 5 shows the results obtained from the experiment with a different dataset, followed
by a discussion. In Section 6, conclusions are drawn, including our plans for future work.

2. Related Work

There are several studies on hand gesture recognition. To implement the hand gesture
recognition system, researchers have used different schemes, the most common of which
are handcrafted signals, and machine learning and deep learning algorithms have also
been used. Machine-learning-based algorithms can be classified into statistical-based and
rule-based approaches. Among the statistical-based methods, Iwai et al. employed a glove-
based machine learning system to classify hand gestures [32]. Firstly, they extracted features
with the nearest-neighbour approach and then employed a decision tree algorithm for clas-
sification. Wilson et al. applied a statistical-based hidden Markov model to recognize hand
gestures, where they include a global parametric variation of the output probabilities [33].
In the same way, Kyu et al. extracted input patterns with the likelihood threshold method
and generated a confirmation approach to match the gesture pattern with the statistical
HMM model [34]. In addition, various particle filtering and condensation algorithms
have been used to recognize hand gestures [35,36]. In rule-based methods, fuzzy rules are
used to extract features, which are then compared with the encoding rules, and the best
match scores are produced to recognize hand gestures [29]. Marin et al. applied a feature
extraction technique based on the position and orientation of the fingertips, employed the
SVM algorithm and achieved 89.70% accuracy with SVM [14]. In another study, Marin et al.
employed distance handcrafted feature extraction based on the centroid, the curvature
of hand contour, and hand shape convex [24]. After that, they applied different feature
selections to the potential spatial features and the SVM and a random forest algorithm as
a classifier, where the SVM produced 96.30% accuracy for the kinetic sensor RGB images.
Recently, researchers have applied deep learning algorithms to recognize hand gestures;
among them, Nagi et al. applied deep learning algorithms to recognize hand gestures [37].
They mainly focused on the CNN’s specific layer, namely the max-pooling layer, and
achieved good performance with the RGB hand gesture dataset [37]. The main problem of
these studies is the confusion in the detection of hand gestures that involve variations in
orientation and partial occlusions. To overcome this challenge, Tao et al. applied a CNN
model with multiview augmentation to recognize kinetic-sensor-based hand gestures for
the American sign language (ASL) [38]. Furthermore, these methods achieved good perfor-
mance, but one of their limitations is that they usually consider only spatial information.
Because of the temporal information in DHH, recently, researchers have used two-stream
networks, 3DCNN and RNN, to overcome this challenge [27]. Based on the recent work,
researchers decided that long short-term memory (LSTM) is one RNN network that can
learn long-term dependency [27,28]. The combined system of CNN and LSTM network
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had a high level of performance for leap motion and kinetic devices compared to the other
method [39]. The main drawback of LSTM is the long-term dependency, which can increase
the computational complexity of the system. To solve the long-term dependency, attention-
based neural networks use a different layer of CNN in parallel and produce short-term
dependency. As a consequence, attention-based architecture reduces the computational
complexity of the system [29–31]. In this study, we proposed a multistage, attention-based
neural network architecture to recognize hand gestures to increase performance and reduce
computational complexity.

3. Dataset

To evaluate our model, we used three datasets. Each dataset contains multimodal
information; however, we only used the RGB modality in this study. These are the Senz3D,
NTU, and Kinetice datasets, which are described in Sections 3.1–3.3.

3.1. Creative Senz3d Dataset

The creative senz3D dataset is one of the challenging datasets for hand gesture recog-
nition, comprising RGB images and depth maps, which LibHand uses, and we collected
this from the following link https://lttm.dei.unipd.it//downloads/gesture/index.html
(accessed on 8 June 2022). A creative Senz3D camera is used to generate this dataset,
also known as SoftKinetic DepthSense 325 [26,40,41]. There are 11 different gestures in
the dataset, which 4 different people perform. Each person repeats individual gestures
30 times, and a total of 1320 samples are thus acquired. In total, 3200 samples are collected
for each of the individual gestures combined with RGB and depth maps. These samples
contain different orientations and variations in the position based on the fingers. A sample
RGB image for each gesture is visualized in Figure 2, which clearly shows the various
gestures included in this dataset, such as gestures with the closest fingers touching each
other and the same number of raised fingers. The RGB images have a 640 × 480 resolution,
and we used only RGB images in this study.

Figure 2. RGB sample frame for each gesture for the Senz3D dataset.

3.2. NTU Dataset

Another challenging gesture dataset is the NTU hand digit dataset, which is also
collected with a kinetic sensor consisting of RGB images and depth maps [1,25]. There
are 10 gestures (decimal digits 0 to 9) included in the dataset, which are collected from
10 individuals. There are 1000 images in the dataset, and each image’s size has a 640 × 480
resolution. This dataset is considered the most challenging for achieving high performance
because it includes images with complex backgrounds such as cluttered backgrounds, mul-
tiple variations in pose, and multiple articulations and orientations. Figure 3 demonstrates
the sample of each gesture.

https://lttm.dei.unipd.it//downloads/gesture/index.html
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Figure 3. Sample image of the 10 gestures in the NTU dataset.

3.3. Kinetic and Leap Motion Gestures

This is another challenging hand gesture dataset for American sign language (ASL)
collected using a kinetic sensor and leap motion [14,24]. There are 10 gestures contained
in the dataset collected from 14 people. Each gesture is collected 10 times from each
individual, and a total of 1400 different data samples are contained in the dataset. Figure 4
shows the sample of each gesture. This dataset collects RGB and depth maps for each
gesture during the recording time, but we used only RGB images in this study. Without
any assumption, a kinetic sensor is used to collect the dataset. We downloaded the dataset
from the following link: It is available at https://lttm.dei.unipd.it/downloads/gesture
(accessed on 8 June 2022).

Figure 4. Gestures from American Sign Language (ASL) are contained in the database acquired for
experimental results.

4. Proposed Method

Figure 5 shows the proposed method workflow architecture, mainly a modified version
of FusAtNet [19,23,42]. The main objective of this study is pixel-based classification by
extracting multistage spatial information. The RGB image is written as X = {Xi

R}n
i=1,

where xi
R ∈ RM×N×C and m = 160, n = 160 expresses the image width and height, and C = 3

is the number of channels of the RGB image. Furthermore, attention modules solved the
problems associated with long dependency. In addition, attention modules were used to
select and highlight the hotspots of the extracted features to increase the inter-class variance,
and as a consequence, the performance and accuracy of the system were automatically
improved. Our proposed method was developed in three stages: In the first stage, RGB
data passed through the attention module and the feature extractor module, and then we
multiplied the output to emphasize the effective information by masking operation. In the
second stage, the output of the first stage passed through the second feature extractor and
second spatial attention module. We combined the output of these two modules to highlight
the important section judiciously and produced the final feature for the classification. We
passed the resultant highlighted feature through the classification module. There was a
total of six CNN modules employed in our system in the three phases.

https://lttm.dei.unipd.it/downloads/gesture
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In the first phase, an RGB image was used as input of spatial attention A f t and feature
extractor Ff , and then we multiplied the output, which produced Mt. After that, we
concatenated Mt with the original image Xi

R, which produced Mc. The second phase
took Mc as input, which was then passed through the second feature extractor Fs and the
second attention module Ast, and again these two were multiplied to highlight or select
the effective feature with the spatial attention module, which is known as the final feature
Fss. In all modules, CNN layers were used, where the size of the kernel was fixed as 3 × 3,
ReLU activation function and softmax activation function were only used in the last layer
of the classification module.

Figure 5. Working flow diagram of the proposed method.

4.1. First-Stage Feature Extractor

The first feature extractor module consisted of CNN’s six convolution layers, where
spatial features were generated from the RGB images. Each of the convolution operations
was employed here with the zero-padding operation. Batch normalization layers were
applied after each convolution operation to normalize the value of every mini-batch value.
We can represent the feature extractor module as FF

(
θFf , xi

R

)
where the weight of the

module is represented by θFf [23]. The feature extractor output was 160 × 160 × 1024.

4.2. First-Stage Spatial Attention Module

In this study, we employed an attention model to produce the spatial attention model,
which can be defined by A f t

(
θA f t , Xi

R

)
, where the weights of the model are denoted by

θA f t [23]. This module included six CNN convolution layers used to produce the spatial
attention mask from the original dataset. In addition, 128 filters were included in the first
three layers and 256 in the remaining three layers. After the second and fourth convolution
layers, we used two residual layers to pass the original information. To normalize the
output of the convolution layer in each batch, we used batch normalization after each
convolution layer. The shape of the output of this module was 160 × 160 × 1024, and it
was multiplied by Ff to extract spatially highlighted features denoted by MT , which can be
expressed as the following Equation (1):

Mt

(
Xi

R

)
= FF

(
θFf , xi

R

)⊗
A f t

(
θA f t , Xi

R

)
(1)

4.3. Second-Stage Feature Extractor

This block is almost the same as the feature extractor module Fs, which can be written
as Fs

(
Xi

R) = FsθFs , xi
R
)

and the weight of the architecture is represented by θFs [23]. This
feature vector was fed with the spatially highlighted Mt features associated with the
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original dataset X, and its output size was 160 × 160 × 1024, which can be written using
the following Equation (2):

Fs

(
Xi

R

)
= Fs

(
θFs , xi

R

)⊗
Mt

(
Xi

R

)
(2)

Here, concatenation along the channel axis is represented by the
⊗

notation.

4.4. Second-Stage Spatial Attention Module

Ast is another architecture, which can be written as Ast
(
θAst , Xi

R
)
, where the weight

of the architecture is denoted by θAst [23]. The main purpose of this block was to create
an attention mask for the RGB modality and input to keep it the same as Fs. The working
function of the block can be expressed by the following Equation (3):

Ast

(
Xi

R

)
= Ast

(
θAst , Xi

R
⊗

Mt

(
Xi

R

))
(3)

The output of the block was 160 × 160 × 1024, which was multiplied with Fs using
the following Equation (4):

Fss

(
Xi

R

)
= Fs

(
Xi

R

)⊗
Ast

(
Xi

R

)
(4)

Here, Fss was considered the final spatial feature of the proposed method, which was
sent to the classification block.

4.5. Classification Architecture

In the final architecture, we used a classification block that took the final feature
Fss as input [19]. The architecture had nine convolutional neural network layers, where
the first three layers consisted of 96 filters each, and the next five layers consisted of 192
layers. The ninth layer contained C filters, where C is the total number of classes, and
the size of the layer was 1× 1, and excluding the last layer, all the layers were operated
through the ReLu activation. We used the same padding for the first eight layers and valid
padding for the ninth layer. There were four drop-out layers, two max-pooling layers, and
one batch normalization layer. Finally, instead of the flattened layer, we applied global
average pooling associated with the softmax activation function used as a final layer. The
classification architecture can be written as F

(
θ f , Fss

(
xi

R
))

, where θ f is the classification
weight. The shape of the output of this block was None × C.

4.6. Inference and Training

The final output from the F was associated with the categorical cross-entropy loss used
as backpropagation for training the proposed network in an end-to-end fashion shown in
Equation (5).

LF = −E(Xi
R ,yi)

[
yilog

[
F
(

θ f , Fss

(
Xi

R

))]]
(5)

Here, classification loss is denoted by LF. In the testing phase, the test set of the dataset
was xj

R, which was fed into the model and executed the same instruction as the training
samples [23]. The output of the final feature module layer Fss was sent to the classification
block F to predict the class label.

5. Experimental Results

This section analyses our experimental results after evaluating the proposed model
with the three hand gesture datasets. In Section 5.1, we describe the experimental setting,
and in Section 5.2, the performance of the Senz3D and NTU datasets is evaluated. Section 5.3
involves the performance evaluation for the Kinematic dataset. We discuss performance
accuracy and state-of-the-art comparison in each section.



Computers 2023, 12, 13 8 of 11

5.1. Experimental Setting

We used three datasets to evaluate our model. Each dataset was split into two sets:
70% for training and 30% for testing. Based on the ratio, there were 924 samples considered
for training, and 396 samples were considered for testing in the Senz3D dataset. In the
same way, for the NTU hand gesture digit dataset, 700 and 300 samples were considered
for training and testing, respectively. The kinematic dataset also had the same number of
samples for training and testing as the NTU dataset. We used the TensorFlow framework
of python programming [43] to implement the experiment in the Google Colab Pro edition
environment. There are 25GB GPU in the processing RAM in the environment, known as
Tesla P100 [44]. Tensorflow is considered a boon for deep learning models due to being an
open-source software program, providing computational graphics, and having adaptability
and compatibility with minimum resources. We used the OpenCV python package for
the initial image processing task [45]. In addition, the pickle package was used to convert
the image dataset into a byte stream for storage. Pandas and Numpy were used for the
mathematical and statistical processing of the dataset, and both provide flexibility during
matrix manipulation. Matplotlib was used to plot the various types of graph figures [45].
The training was performed for each dataset for 1000 epochs, while we used 0.000005 as
the initial learning rate on the account of higher fluctuation during the use of the Adam
optimizer with Nesterov momentum [46,47]. However, we used various parameter tuning
operations for the learning rate and optimizers for the 10 and 11 classes of this study.

5.2. Performance Result of the Senz3D and NTU Dataset

Table 1 demonstrates the comparative performance of the proposed model with the
state-of-the-art system. We compared our results with five of the most related models,
namely GestureGAN [48], PoseGAN [49], Ma et al. [50], Yan et al. [51], and PG2 [31]; all
of these models were implemented for NTU and Senz3D dataset by the authors in [48].
Ren et al. employed a template-matching approach for recognizing hand gestures, where
they achieved 93.20% accuracy [22]. The authors of [41] applied a pose-guided person
generation network (PG2), which included a U-Net-like network and produced 93.66%
accuracy for the NTU and 98.73% for the Senz3D dataset. The authors in [51] first converted
the RGB image into a skeleton and then achieved 95.33% accuracy for the NTU and 99.49%
for the Senz3D dataset. In the same way, authors in [49,50] found 95.86% and 96.12% for the
NTU dataset and 99.05% and 99.54% accuracy for the Senz3D dataset. The authors in [48]
applied the hand gesture generative adversarial network (GestureGAN). They included
a single generator and a discriminator, which took the RGB image as the input and the
skeleton of the RGB as the target image. They achieved 96.66% accuracy for the NTU
dataset and 99.74% accuracy for the Senz3D dataset.

Table 1. Performance results of the Senz3D and NTU dataset with state-of-the-art comparison.

Method NTU (%) Senz3D (%)

Zhou Ren [22] 93.20 Na

PG2 [41] 93.66 98.73

Yan et al. [51] 95.33 99.49

Ma et al. [50] 95.86 99.05

PoseGAN [49] 96.12 99.54

GestureGan [48] 96.66 99.74

Proposed Model 99.67 99.75

5.3. Performance Results of the Kinematic Dataset

Marin et al. employed different feature extraction techniques based on the position and
orientation of the fingertips and employed the SVM algorithm, achieving 89.70% accuracy
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with SVM [14]. Marin et al. applied a feature extraction technique to extract various
distance-based features, namely centroid, the curvature of hand contour, and hand shape
convex [24]. After that, to select potential features, they applied different feature selections
and applied the SVM and a random forest algorithm as a classifier, which produced 96.30%
accuracy for the kinetic sensor RGB images. In comparison, our proposed model achieved
99.46% accuracy, which is higher than the existing models shown in Table 2.

Table 2. Performance results of the kinematic dataset and state-of-the-art comparison.

Method KLP (%)

SVM [14] 89.70

SVM [24] 96.30

Proposed Model 99.46

6. Conclusions

We introduced a novel, multistage, spatial attention-based neural network for hand
gesture recognition aiming to produce high performance and generalized properties. In
our proposed architecture, multistage attention-learning models were used to learn the
joint representation of the RGB modality. We employed a residual connection in the first
and second stages to enhance the features by recovering missing values. The performance
accuracy achieved for multiple datasets proved the efficiency of the proposed multistage
network. In future work, we plan to extend this multistage neural network model to
develop hand gesture recognition from a video dataset. We also plan to use multimodalities
to improve our proposed system’s accuracy and efficiency.
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