Comparison of Automated Machine Learning (AutoML) Tools for Epileptic Seizure Detection Using Electroencephalograms (EEG)
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. AutoML Tools
3.2. Auto-Sklearn
3.3. Amazon Sagemaker
3.4. AutoGluon
4. Datasets
4.1. UC Irvine ML Repository
4.1.1. Bonn EEG Time Series Dataset
4.1.2. Zenodo EEG dataset
4.2. Performance Metrics
5. Results
5.1. UC Irvine ML Repository
5.2. Bonn EEG Time Series Dataset
5.3. Zenodo (Zen10do)
5.4. Comparison of Metrics
5.5. Best Performing Models
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Epilepsy Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/epilepsy (accessed on 2 September 2023).
- Pazgan-Simon, M.; Jaroszewicz, J.; Simon, K.; Lorenc, B.; Sitko, M.; Zarębska-Michaluk, D.; Dybowska, D.; Tudrujek-Zdunek, M.; Berak, H.; Mazur, W.; et al. Real-World Effectiveness and Safety of Direct-Acting Antivirals in Patients with Chronic Hepatitis C and Epilepsy: An Epi-Ter-2 Study in Poland. J. Pers. Med. 2023, 13, 1111. [Google Scholar] [CrossRef] [PubMed]
- Stelzle, D.; Schmidt, V.; Ngowi, B.J.; Matuja, W.; Schmutzhard, E.; Winkler, A.S. Lifetime Prevalence of Epilepsy in Urban Tanzania–A Door-To-Door Random Cluster Survey. eNeurologicalSci 2021, 24, 100352. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Shukla, R. Nanovesicular-Mediated Intranasal Drug Therapy for Neurodegenerative Disease. AAPS PharmSciTech 2023, 24, 179. [Google Scholar] [CrossRef]
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in Adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef]
- Yang, C.; Shi, Y.; Li, X.; Guan, L.; Li, H.; Lin, J. Cadherins and the Pathogenesis of Epilepsy. Cell Biochem. Funct. 2022, 40, 336–348. [Google Scholar] [CrossRef]
- Siddiqui, M.K.; Morales-Menendez, R.; Huang, X.; Hussain, N. (2020). A review of epileptic seizure detection using machine learning classifiers. Brain Inform. 2020, 7, 5. [Google Scholar] [CrossRef]
- Liu, J.; Du, Y.; Wang, X.; Yue, W.; Feng, J. Automated Machine Learning for Epileptic Seizure Detection Based on EEG Signals. Comput. Mater. Contin. 2022, 73, 1995–2011. [Google Scholar] [CrossRef]
- Malmivuo, J.; Plonsey, R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Schomer, D.L.; Lopes, F. Niedermeyer’s Electroencephalography; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Chambon, S.; Galtier, M.N.; Arnal, P.J.; Wainrib, G.; Gramfort, A. A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 758–769. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, J. Multivariate Time Series Prediction Based on Temporal Change Information Learning Method. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef]
- Kumari, N.; Anwar, S.; Bhattacharjee, V. Time Series-Dependent Feature of EEG Signals for Improved Visually Evoked Emotion Classification Using EmotionCapsNet. Neural Comput. Appl. 2022, 34, 13291–13303. [Google Scholar] [CrossRef]
- Song, X.; Xiao, F. Combining Time-Series Evidence: A Complex Network Model Based on a Visibility Graph and Belief Entropy. Appl. Intell. 2022, 52, 10706–10715. [Google Scholar] [CrossRef]
- Zigler, A.; Straw, S.; Tokuda, I.; Bronson, E.; Riede, T. Critical calls: Circadian and seasonal periodicity in vocal activity in a breeding colony of Panamanian golden frogs (Atelopus zeteki). PLoS ONE 2023, 18, e0286582. [Google Scholar] [CrossRef] [PubMed]
- Bethge, D.; Hallgarten, P.; Ozdenizci, O.; Mikut, R.; Schmidt, A.; Grosse-Puppendahl, T. Exploiting Multiple EEG Data Domains with Adversarial Learning. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Scotland, UK, 11–15 July 2022. [Google Scholar] [CrossRef]
- Mathur, P.; Chakka, V.K. Graph Signal Processing Based Cross-Subject Mental Task Classification Using Multi-Channel EEG Signals. IEEE Sens. J. 2022, 22, 7971–7978. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Wang, C.-H.; Jung, T.-P.; Wu, T.-L.; Jeng, S.-K.; Duann, J.-R.; Chen, J.-H. EEG-Based Emotion Recognition in Music Listening. IEEE Trans. Biomed. Eng. 2010, 57, 1798–1806. [Google Scholar] [CrossRef] [PubMed]
- Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B. A Review of Classification Algorithms for EEG-Based Brain–Computer Interfaces. J. Neural Eng. 2007, 4, R1–R13. [Google Scholar] [CrossRef] [PubMed]
- McShane, T. A clinical guide to epileptic syndromes and their treatment. Arch. Dis. Child. 2004, 89, 591. [Google Scholar]
- Rahmani, K.; Thapa, R.; Tsou, P.; Chetty, S.C.; Barnes, G.; Lam, C.; Tso, C.F. Assessing the Effects of Data Drift on the Performance of Machine Learning Models Used in Clinical Sepsis Prediction. Int. J. Med. Inform. 2023, 173, 104930. [Google Scholar] [CrossRef]
- Sharmila, A.; Geethanjali, P. DWT Based Detection of Epileptic Seizure from EEG Signals Using Naive Bayes and K-NN Classifiers. IEEE Access 2016, 4, 7716–7727. [Google Scholar] [CrossRef]
- Alsharef, A.; Sonia, S.; Kumar, K.; Iwendi, C. Time Series Data Modeling Using Advanced Machine Learning and AutoML. Sustainability 2022, 14, 15292. [Google Scholar] [CrossRef]
- Ahmad, I.; Wang, X.; Zhu, M.; Wang, C.; Pi, Y.; Khan, J.A.; Khan, S.; Samuel, O.W.; Chen, S.; Li, G. EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review. Comput. Intell. Neurosci. 2022, 2022, 6486570. [Google Scholar] [CrossRef]
- Dorai, D.; Ponnambalam, K. Automated epileptic seizure onset detection. In Proceedings of the 2010 International Conference on Autonomous and Intelligent Systems, AIS 2010, Varzim, Portugal, 21–23 June 2010; pp. 1–4. [Google Scholar]
- Birjandtalab, J.; Jarmale, V.N.; Nourani, M.; Harvey, J. Imbalance Learning Using Neural Networks for Seizure Detection. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, P.; Pachori, R.B.; Acharya, U.R. Dual-Tree Complex Wavelet Transform-Based Features for Automated Alcoholism Identification. Int. J. Fuzzy Syst. 2018, 20, 1297–1308. [Google Scholar] [CrossRef]
- Satapathy, S.K.; Jagadev, A.K.; Dehuri, S. Weighted majority voting based ensemble of classifiers using different machine learning techniques for classification of EEG signal to detect an epileptic seizure. Informatica. 2017, 41, 99. [Google Scholar]
- Hassan, A.R.; Subasi, A. Automatic Identification of Epileptic Seizures from EEG Signals Using Linear Programming Boosting. Comput. Methods Programs Biomed. 2016, 136, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Al-Hussaini, I.; Mitchell, C.S. SeizFt: Interpretable Machine Learning for Seizure Detection Using Wearables. Bioengineering 2023, 10, 918. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, H.; Gunn, A.J.; Unsworth, C.P.; Bennet, L. Advanced Deep Learning Spectroscopy of Scalogram Infused CNN Classifiers for Robust Identification of Post-Hypoxic Epileptiform EEG Spikes. Adv. Intell. Syst. 2020, 3, 2000198. [Google Scholar] [CrossRef]
- Raghu, S.; Sriraam, N.; Temel, Y.; Rao, S.V.; Kubben, P.L. EEG Based Multi-Class Seizure Type Classification Using Convolutional Neural Network and Transfer Learning. Neural Netw. 2020, 124, 202–212. [Google Scholar] [CrossRef]
- Zabihi, M.; Rubin, D.B.; Ack, S.E.; Gilmore, E.J.; Junior, V.M.; Zafar, S.F.; Li, Q.; Young, M.; Edlow, B.L.; Bodien, Y.G.; et al. Resting-State Electroencephalography for Continuous, Passive Prediction of Coma Recovery after Acute Brain Injury. bioRxiv 2022. [Google Scholar] [CrossRef]
- Fouladi, S.; Safaei, A.A.; Mammone, N.; Ghaderi, F.; Ebadi, M.J. Efficient Deep Neural Networks for Classification of Alzheimer’s Disease and Mild Cognitive Impairment from Scalp EEG Recordings. Cogn. Comput. 2022, 14, 1247–1268. [Google Scholar] [CrossRef]
- Yuan, J.; Ran, X.; Liu, K.; Yao, C.; Yao, Y.; Wu, H.; Liu, Q. Machine Learning Applications on Neuroimaging for Diagnosis and Prognosis of Epilepsy: A Review. J. Neurosci. Methods 2022, 368, 109441. [Google Scholar] [CrossRef]
- Sibilano, E.; Brunetti, A.; Buongiorno, D.; Lassi, M.; Grippo, A.; Bessi, V.; Micera, S.; Mazzoni, A.; Bevilacqua, V. An Attention- Based Deep Learning Approach for the Classification of Subjective Cognitive Decline and Mild Cognitive Impairment Using Resting-State EEG. J. Neural Eng. 2023, 20, 016048. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. Available online: http://dl.acm.org/citation.cfm?id=2078195 (accessed on 11 June 2023).
- Ge, P. Analysis on Approaches and Structures of Automated Machine Learning Frameworks. In Proceedings of the 2020 International Conference on Communications, Information System and Computer Engineering (CISCE), Kuala Lumpur, Malaysia, 3–5 July 2020; pp. 474–477. [Google Scholar] [CrossRef]
- Iwendi, C.; Huescas, C.G.Y.; Chakraborty, C.; Mohan, S. COVID-19 Health Analysis and Prediction Using Machine Learning Algorithms for Mexico and Brazil Patients. J. Exp. Theor. Artif. Intell. 2022, 1–21. [Google Scholar] [CrossRef]
- Park, J.B.; Lee, K.H.; Kwak, J.Y.; Cho, C.S. Deployment Framework Design Techniques for Optimized Neural Network Applications. In Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2022. [Google Scholar] [CrossRef]
- Ji, Z.; He, Z.; Gui, Y.; Li, J.; Tan, Y.; Wu, B.; Xu, R.-H.; Wang, J. Research and Application Validation of a Feature Wavelength Selection Method Based on Acousto-Optic Tunable Filter (AOTF) and Automatic Machine Learning (AutoML). Materials 2022, 15, 2826. [Google Scholar] [CrossRef] [PubMed]
- Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data. 2020. Available online: https://arxiv.org/abs/2003.06505 (accessed on 22 August 2023).
- UC Irvine ML Repository. Epileptic Seizures Dataset. Available online: https://www.kaggle.com/datasets/chaditya95/epileptic-seizures-dataset (accessed on 27 February 2023).
- Bonn EEG Time Series Dataset. Available online: https://repositori.upf.edu/handle/10230/42894 (accessed on 18 May 2023).
- Panwar, S. Single Electrode EEG Data of Healthy and Epileptic Patients. 2020. Available online: https://zenodo.org/record/3684992 (accessed on 18 May 2023).
- Panwar, S.; Joshi, S.D.; Gupta, A.; Agarwal, A. Automated epilepsy diagnosis using EEG with test set evaluation. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Movahed, R.A.; Jahromi, G.P.; Shahyad, S.; Meftahi, G.H. A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis. J. Neurosci. Methods 2021, 358, 109209. [Google Scholar] [CrossRef] [PubMed]
- Hussein, R.; Palangi, H.; Ward, R.K.; Wang, Z.J. Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals. Clin. Neurophysiol. 2019, 130, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Mir, W.A.; Anjum, M.; Izharuddin, I.; Shahab, S. Deep-EEG: An Optimized and Robust Framework and Method for EEG-Based Diagnosis of Epileptic Seizure. Diagnostics 2023, 13, 773. [Google Scholar] [CrossRef]
- Wei, L.; Boutouil, H.; Gerbatin, R.R.; Mamad, O.; Heiland, M.; Reschke, C.R.; Del Gallo, F.; Fabene, P.F.; Henshall, D.C.; Lowery, M.; et al. Detection of spontaneous seizures in EEGs in multiple experimental mouse models of epilepsy. J. Neural Eng. 2021, 18, 056060. [Google Scholar] [CrossRef]
- Vishwanath, M.; Jafarlou, S.; Shin, I.; Lim, M.M.; Dutt, N.; Rahmani, A.M.; Cao, H. Investigation of machine learning approaches for traumatic brain injury classification via EEG assessment in mice. Sensors 2020, 20, 2027. [Google Scholar] [CrossRef]
- Hara, S.; Kawahara, Y.; Washio, T.; von Bünau, P.; Tokunaga, T.; Yumoto, K. Separation of stationary and non-stationary sources with a generalized eigenvalue problem. Neural Netw. 2012, 33, 7–20. [Google Scholar] [CrossRef]
- Miladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P.P.; Accardo, A. Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study. Comput. Methods Programs Biomed. 2021, 198, 105808. [Google Scholar] [CrossRef] [PubMed]
Title 1 | Title 2 | Title 3 | Title 4 | Title 5 |
---|---|---|---|---|
UC Irvine | 9200 | 2300 | 9200 | 11,500 |
Bonn | 4097 | 200 | 300 | 500 |
Zenedo | 4097 | 400 | 400 | 800 |
Class | Description | Patient State | Number of Samples | Type |
---|---|---|---|---|
1 | Seizure activity is recorded from epileptic patients (EP) | General Epilepsy | 2300 | epileptic (2300 samples) |
2 | The tumor was observed in EP | PE (without seizures) | 2300 | non-epileptic (9200 samples) |
3 | EEG signal was captured from a healthy brain region in EP | PE (without seizures) | 2300 | |
4 | EEG signal recorded with eyes open of healthy patients | Healthy | 2300 | |
5 | EEG signal recorded with eyes closed of healthy patients | Healthy | 2300 |
AutoML | Accuracy | F1 Score | Recall | Precision |
---|---|---|---|---|
AutoGluon | 0.98 | 0.96 | 0.94 | 0.97 |
Auto-Sklearn | 0.98 | 0.95 | 0.93 | 0.97 |
Amazon Sagemaker | 0.98 | 0.96 | 0.95 | 0.97 |
AutoML | Accuracy | F1 Score | Recall | Precision |
---|---|---|---|---|
AutoGluon | 0.76 | 0.72 | 0.76 | 0.69 |
Auto-Sklearn | 0.85 | 0.95 | 1 | 0.74 |
Amazon Sagemaker | 0.93 | 0.96 | 0.90 | 0.96 |
AutoML | Accuracy | F1 Score | Recall | Precision |
---|---|---|---|---|
AutoGluon | 0.81 | 0.80 | 0.76 | 0.84 |
Auto-Sklearn | 0.95 | 0.95 | 0.93 | 0.96 |
Amazon Sagemaker | 0.91 | 0.88 | 0.85 | 0.91 |
Dataset | AutoGluon | Auto-Sklearn | Amazon Sagemaker |
---|---|---|---|
UC Irvine ML Repository | WeightedEnsembleL2 | GradientBoosting | WeightedEnsembleL2FULL |
Bonn EEG time series | WeightedEnsembleL2 | RandomForest | WeightedEnsembleL2FULL |
Zenodo | WeightedEnsembleL2 | KNearestNeighbors | WeightedEnsembleL2FULL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenkala, S.; Marry, R.; Gopovaram, S.R.; Akinci, T.C.; Topsakal, O. Comparison of Automated Machine Learning (AutoML) Tools for Epileptic Seizure Detection Using Electroencephalograms (EEG). Computers 2023, 12, 197. https://doi.org/10.3390/computers12100197
Lenkala S, Marry R, Gopovaram SR, Akinci TC, Topsakal O. Comparison of Automated Machine Learning (AutoML) Tools for Epileptic Seizure Detection Using Electroencephalograms (EEG). Computers. 2023; 12(10):197. https://doi.org/10.3390/computers12100197
Chicago/Turabian StyleLenkala, Swetha, Revathi Marry, Susmitha Reddy Gopovaram, Tahir Cetin Akinci, and Oguzhan Topsakal. 2023. "Comparison of Automated Machine Learning (AutoML) Tools for Epileptic Seizure Detection Using Electroencephalograms (EEG)" Computers 12, no. 10: 197. https://doi.org/10.3390/computers12100197
APA StyleLenkala, S., Marry, R., Gopovaram, S. R., Akinci, T. C., & Topsakal, O. (2023). Comparison of Automated Machine Learning (AutoML) Tools for Epileptic Seizure Detection Using Electroencephalograms (EEG). Computers, 12(10), 197. https://doi.org/10.3390/computers12100197