Novel Optimized Strategy Based on Multi-Next-Hops Election to Reduce Video Transmission Delay for GPSR Protocol over VANETs
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Paper Contribution
1.3. Paper Organization
2. Related Works
2.1. Multipath Routing Strategies in Wireless Networks
2.2. Utilization of Artificial Intelligence in Wireless Networks
3. Materials and Methods
3.1. Multi-Next-Hops Approach Proposed for FzGR
3.1.1. Main Factors on Which MNH-FGR Is Based
3.1.2. Load Balancing Approach
Algorithm 1. Intelligent Multi-Next-Hop Algorithm of MNH-FGR |
l_bN ←∅; //Best neighbors set within the range of the sender node |
cst ← 20%; //constant |
Function mpNexthop(destx, desty) |
nexthop ← Null; |
if (l_bN is empty) |
createListBN(destx, desty); |
end if |
if (l_bN is not empty) |
nexthop ← l_bN(0); //assign to nexthop the first item on the list |
l_bN.remove(0); //remove the first item from the list |
l_bN.pushback(nexthop);//add it at the end of the same list |
end if |
return nexthop; |
End Function |
Procedure createListBN(destx,desty) |
l ← [nr1, nr2, nr3, …, nri] ε Range(SenderNode); |
nexthop; |
score, thresholdScore; |
if (l_bN is not empty) |
l_bN ←∅; |
end if |
minScore ← Infinity; |
While (l is not empty) |
nexthop = fuzzyNextHop(destx,desty,l); |
if (nexthop = null) |
exit while; |
end if |
score ← getScore(nexthop,destx,desty); |
if (score < minScore) |
minScore ← score; |
thresholdScore ← minScore ∗ (1 + cst); |
else if (thresholdScore < score) |
exit while; |
end if |
end if |
l.removeElement(nexthop); //remove nexthop from the list of neighbors |
l_bN.pushback(nexthop); //add it to the list of best neighbors |
end while |
End Procedure |
Function fuzzyNexthop(destx,desty,l) //here, l is the list of neighbors |
//that belong to the range of the sender node |
minScore ← getscore(nr1,destx,desty); |
nexthop ← nr1; |
For each l |
score ← getscore(nri, destx, desty); |
if (score < minScore) |
minScore ← score; |
nexthop ← nri; |
End if |
End for |
return nexthop; |
End Function |
3.2. Type of Multi-Next-Hops Selection
3.2.1. Disjoint Nodes
3.2.2. Disjoint Links
3.2.3. Disjoint Nodes/Links
4. Performance Evaluation
4.1. Simulation Parameters
4.2. Results and Discussion
4.2.1. QoS Measurements as a Function of Network Density
- a.
- PDR Measurement
- b.
- End-to-End Delay Measurement
- c.
- Throughput Measurement
- d.
- Overload Measurement
4.2.2. QoE Measurements
5. Neural Network for Analyzing and Optimizing the Performance of Routing Protocols
- Analysis: The trained model was used to analyze the dataset, identifying patterns and relationships between input characteristics (metrics and parameters mentioned in this study) and routing protocol performance;
- Optimization: Based on learned patterns and relationships, the DNN model can predict the optimal routing protocol for new network scenarios. By leveraging the knowledge gained from the data set, the model can make accurate predictions regarding the most appropriate routing protocol for a given scenario, thereby improving overall network performance and efficiency;
- Feature importance: The model also helps to understand which features have the greatest impact on protocol performance. By interpreting DNN results, researchers and network engineers can better understand the underlying mechanisms of different routing protocols, identifying the key factors that influence their performance.
Algorithm 2. Analyze and optimize routing protocols |
# Loading dataset |
X_train, y_train, X_test, y_test = load_network_dataset() |
# architecture |
model = Sequential() |
model.add(Dense(128, activation = ‘relu’, input_dim = X_train.shape [1])) |
model.add(Dense(64, activation = ‘relu’)) |
model.add(Dense(32, activation = ‘relu’)) |
model.add(Dense(1, activation = ‘sigmoid’)) |
model.compile(optimizer = ‘adam’, loss = ‘binary_crossentropy’, metrics = [‘accuracy’]) |
# Training the model |
model.fit(X_train, y_train,epochs = 100,batch_size = 32,validation_data = (X_test, y_test)) |
# Testing the model |
test_loss, test_acc = model.evaluate(X_test, y_test) |
# Predicting the optimal routing protocol for new network scenarios |
X_new = generate_network_scenario() |
optimal_protocol = model.predict(X_new) |
# Interpreting DNN results |
feature_importances = get_feature_importances(model, X_train) |
DNN Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Houssaini, Z.S.; Zaimi, I.; Drissi, M.; Oumsis, M.; Ouatik, S.E.A. Trade-off between Accuracy, Cost, and QoS Using a Beacon-on-Demand Strategy and Kalman Filtering over a VANET. Digit. Commun. Netw. 2018, 4, 13–26. [Google Scholar] [CrossRef]
- Musa, A.A.; Malami, S.I.; Alanazi, F.; Ounaies, W.; Alshammari, M.; Haruna, S.I. Sustainable Traffic Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS): Challenges and Recommendations. Sustainability 2023, 15, 9859. [Google Scholar] [CrossRef]
- Pereira, R.; Boukerche, A.; Da Silva, M.A.C.; Nakamura, L.H.V.; Freitas, H.; Rocha Filho, G.P.; Meneguette, R.I. FORESAM—FOG Paradigm-Based Resource Allocation Mechanism for Vehicular Clouds. Sensors 2021, 21, 5028. [Google Scholar] [CrossRef] [PubMed]
- Quessada, M.S.; Pereira, R.S.; Revejes, W.; Sartori, B.; Gottsfritz, E.N.; Lieira, D.D.; Da Silva, M.A.; Rocha Filho, G.P.; Meneguette, R.I. ITSMEI: An Intelligent Transport System for Monitoring Traffic and Event Information. Int. J. Distrib. Sens. Netw. 2020, 16, 155014772096375. [Google Scholar] [CrossRef]
- Naseer, K. Localization-Based System Challenges in Vehicular Ad Hoc Networks: Survey. Smart Comput. Rev. 2014, 4, 515–528. [Google Scholar] [CrossRef]
- Zaimi, I.; Houssaini, Z.S.; Boushaba, A.; Oumsis, M. An Improved GPSR Protocol to Enhance the Video Quality Transmission over Vehicular Ad Hoc Networks. In Proceedings of the 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 26–29 October 2016; pp. 146–153. [Google Scholar]
- Brennand, C.A.R.L.; Filho, G.P.R.; Maia, G.; Cunha, F.; Guidoni, D.L.; Villas, L.A. Towards a Fog-Enabled Intelligent Transportation System to Reduce Traffic Jam. Sensors 2019, 19, 3916. [Google Scholar] [CrossRef]
- Meneguette, R.I.; Filho, G.P.R.; Guidoni, D.L.; Pessin, G.; Villas, L.A.; Ueyama, J. Increasing Intelligence in Inter-Vehicle Communications to Reduce Traffic Congestions: Experiments in Urban and Highway Environments. PLoS ONE 2016, 11, e0159110. [Google Scholar] [CrossRef]
- Zaimi, I.; Boushaba, A.; Squalli Houssaini, Z.; Oumsis, M. A Fuzzy Geographical Routing Approach to Support Real-Time Multimedia Transmission for Vehicular Ad Hoc Networks. Wirel. Netw. 2019, 25, 1289–1311. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Logic. Computer 1988, 21, 83–93. [Google Scholar] [CrossRef]
- Joshua, C.J.; Jayachandran, P.; Md, A.Q.; Sivaraman, A.K.; Tee, K.F. Clustering, Routing, Scheduling, and Challenges in Bio-Inspired Parameter Tuning of Vehicular Ad Hoc Networks for Environmental Sustainability. Sustainability 2023, 15, 4767. [Google Scholar] [CrossRef]
- Alkhodair, A.; Mohanty, S.P.; Kougianos, E. FlexiChain 3.0: Distributed Ledger Technology-Based Intelligent Transportation for Vehicular Digital Asset Exchange in Smart Cities. Sensors 2023, 23, 4114. [Google Scholar] [CrossRef]
- Jalade, S.C.; Patil, N.B. Adaptive Deep Runge Kutta Garson’s Network with Node Disjoint Local Repair Protocol Based Multipath Routing in MANET. Evol. Syst. 2023, 1–25. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Y.; Xu, X.; Fu, Q.; Chen, J.; Liu, L. A Sub-Flow Adaptive Multipath Routing Algorithm for Data Centre Network. Int. J. Comput. Intell. Syst. 2023, 16, 25. [Google Scholar] [CrossRef]
- Devipriya, K.; Hemalatha, R. Improving Quality of Service Using Multipath Routing Protocol for Delay Sensitive Applications of Internet of Things in Wireless Sensor Networks. Indian J. Sci. Technol. 2023, 16, 1538–1545. [Google Scholar] [CrossRef]
- Chandren Muniyandi, R.; Hasan, M.K.; Hammoodi, M.R.; Maroosi, A. An Improved Harmony Search Algorithm for Proactive Routing Protocol in VANET. J. Adv. Transp. 2021, 2021, 6641857. [Google Scholar] [CrossRef]
- Yang, W.; Yang, X.; Yang, S.; Yang, D. A Greedy-Based Stable Multi-Path Routing Protocol in Mobile Ad Hoc Networks. Ad Hoc Netw. 2011, 9, 662–674. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.K. Improving the MANET Routing Algorithm by GC-Efficient Neighbor Selection Algorithm. In Proceedings of the International Conference on Advancements in Computing & Management (ICACM-2019), Jaipur, India, 13–14 April 2019. [Google Scholar] [CrossRef]
- Yi, J.; Adnane, A.; David, S.; Parrein, B. Multipath Optimized Link State Routing for Mobile Ad Hoc Networks. Ad Hoc Netw. 2011, 9, 28–47. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, X.; Zhou, C.; Dong, C. Advanced Fast Recovery OLSR Protocol for UAV Swarms in the Presence of Topological Change. In Proceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Rio de Janeiro, Brazil, 24 May 2023; pp. 709–714. [Google Scholar]
- Medjiah, S.; Ahmed, T.; Asgari, A.H. Streaming Multimedia over WMSNs: An Online Multipath Routing Protocol. Int. J. Sens. Netw. 2012, 11, 10–21. [Google Scholar] [CrossRef]
- Hussein, W.A.; Ali, B.M.; Rasid, M.; Hashim, F. Smart Geographical Routing Protocol Achieving High QoS and Energy Efficiency Based for Wireless Multimedia Sensor Networks. Egypt. Inform. J. 2022, 23, 225–238. [Google Scholar] [CrossRef]
- Sermpezis, P.; Koltsidas, G.; Pavlidou, F.-N. Investigating a Junction-Based Multipath Source Routing Algorithm for VANETs. IEEE Commun. Lett. 2013, 17, 600–603. [Google Scholar] [CrossRef]
- Shunmugapriya, B.; Shenbagharaman, A.; Pappathi Jancy Rani, M. An Optimal Multipath Routing for Data Transmission Using Bird Swarm Algorithm. Res. Sq. 2023; in review. [Google Scholar] [CrossRef]
- Boushaba, A.; Benabbou, A.; Benabbou, R.; Zahi, A.; Oumsis, M. An Intelligent Multipath Optimized Link State Routing Protocol for QoS and QoE Enhancement of Video Transmission in MANETs. Computing 2016, 98, 803–825. [Google Scholar] [CrossRef]
- Goyal, P.; Rishiwal, V.; Negi, A. A Comprehensive Survey on QoS for Video Transmission in Heterogeneous Mobile Ad Hoc Network. Trans. Emerg. Telecommun. Technol. 2023, 34, e4775. [Google Scholar] [CrossRef]
- Bennis, I.; Fouchal, H.; Zytoune, O.; Aboutajdine, D. Carrier Sense Aware Multipath Geographic Routing Protocol: Carrier Sense Aware Multipath Geographic Routing Protocol. Wirel. Commun. Mob. Comput. 2016, 16, 1109–1123. [Google Scholar] [CrossRef]
- Ema, R.R.; Ahmed, M.F.; Ahmed, M.H.; Islam, T. Effect of Number of Nodes and Speed of Nodes on Performance of DSDV, AODV, AOMDV, DSR and GPSR Routing Protocols in VANET. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6 July 2019; pp. 1–6. [Google Scholar]
- Kim, B.-S.; Ullah, S.; Kim, K.H.; Roh, B.; Ham, J.-H.; Kim, K.-I. An Enhanced Geographical Routing Protocol Based on Multi-Criteria Decision Making Method in Mobile Ad-Hoc Networks. Ad Hoc Netw. 2020, 103, 102157. [Google Scholar] [CrossRef]
- Alnabhan, M.M. Advanced GPSR in Mobile Ad-Hoc Networks (MANETs). Int. J. Interact. Mob. Technol. IJIM 2020, 14, 107. [Google Scholar] [CrossRef]
- Alzamzami, O.; Mahgoub, I. An Enhanced Directional Greedy Forwarding for VANETs Using Link Quality Estimation. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3 April 2016; pp. 1–7. [Google Scholar]
- Ikhlef, H.; Bourebia, S.; Melit, A. Link State Estimator for VANETs Using Neural Networks. Res. Sq. 2023; in review. [Google Scholar] [CrossRef]
- Yang, X.; Li, M.; Qian, Z.; Di, T. Improvement of GPSR Protocol in Vehicular Ad Hoc Network. IEEE Access 2018, 6, 39515–39524. [Google Scholar] [CrossRef]
- Su, B.; Tong, L. Transmission Protocol of Emergency Messages in VANET Based on the Trust Level of Nodes. IEEE Access 2023, 11, 68243–68256. [Google Scholar] [CrossRef]
- Kumar, S.; Raw, R.S.; Bansal, A.; Singh, P. UF-GPSR: Modified Geographical Routing Protocol for Flying Ad-hoc Networks. Trans. Emerg. Telecommun. Technol. 2023, 34, e4813. [Google Scholar] [CrossRef]
- Benmir, A.; Korichi, A.; Bourouis, A.; Alreshoodi, M.; Al-Jobouri, L. GeoQoE-Vanet: QoE-Aware Geographic Routing Protocol for Video Streaming over Vehicular Ad-hoc Networks. Computers 2020, 9, 45. [Google Scholar] [CrossRef]
- Zaimi, I.; Houssaini, Z.S.; Boushaba, A.; Oumsis, M. A New Improved GPSR (GPSR-kP) Routing Protocol for Multimedia Communication over Vehicular Ad hoc Network. In Proceedings of the International Conference on Big Data and Advanced Wireless Technologies, Blagoevgrad, Bulgaria, 10 November 2016; pp. 1–7. [Google Scholar]
- Yilmaz, H.B.; Chae, C.-B.; Deng, Y.; O’Shea, T.; Dai, L.; Lee, N.; Hoydis, J. Special Issue on Advances and Applications of Artificial Intelligence and Machine Learning for Wireless Communications. J. Commun. Netw. 2020, 22, 173–176. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Xiao, Y.; Liu, J. Towards Cognitive Routing Based on Deep Reinforcement Learning. arXiv 2020, arXiv:2003.12439. [Google Scholar]
- Smys, S.; Haoxiang, W. A Secure Optimization Algorithm for Quality-of-Service Improvement in Hybrid Wireless Networks. IRO J. Sustain. Wirel. Syst. 2021, 3, 1–10. [Google Scholar] [CrossRef]
- Bogale, T.E.; Wang, X.; Le, L.B. Machine Intelligence Techniques for Next-Generation Context-Aware Wireless Networks. arXiv 2018, arXiv:1801.04223. [Google Scholar]
- Pujol-Roigl, J.S.; Wu, S.; Wang, Y.; Choi, M.; Park, I. Deep Reinforcement Learning for Cell on/off Energy Saving on Wireless Networks. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7 December 2021; pp. 1–7. [Google Scholar]
- Constantin, V.-C.; Nikolaus, P.; Schmitt, J. Improving Performance Bounds for Weighted Round-Robin Schedulers under Constrained Cross-Traffic. In Proceedings of the 2022 IFIP Networking Conference (IFIP Networking), Catania, Italy, 13 June 2022; pp. 1–9. [Google Scholar]
- Visumathi, J.; Gurusubramani, S.; Mouleeswaran, S.K.; Sammeta, N. Enhancing Reliability in Multi-Path Mobile Wireless Sensor Network. In Proceedings of the 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 2 February 2023; pp. 345–349. [Google Scholar]
- Website of the United States Government. Downtown Traffic, TGR11001; District of Columbia: Washington, DC, USA.
- Simargolang, M.Y.; Widarma, A. Quality of Service (QoS) for Network Performance Analysis Wireless Area Network (WLAN). CESS J. Comput. Eng. Syst. Sci. 2022, 7, 162. [Google Scholar] [CrossRef]
- Zaimi, I.; Houssaini, Z.S.; Boushaba, A.; Oumsis, M.; Aboutajdine, D. An evaluation of routing protocols for vehicular ad-hoc network considering the video stream. Wirel. Pers. Commun. 2018, 98, 945–981. [Google Scholar] [CrossRef]
- Cacheda, R.A.; García, D.C.; Cuevas, A.; Castaño, F.J.G.; Sánchez, J.H.; Koltsidas, G.; Mancuso, V.; Novella, J.I.M.; Oh, S.; Pantò, A. QoS Requirements For Multimedia Services. In Resource Management in Satellite Networks; Giambene, G., Ed.; Springer: Boston, MA, USA, 2007; pp. 67–94. ISBN 978-0-387-36897-9. [Google Scholar]
- Prakash, E.; Sangeetha, M. Role of KDD in Quality of Experience Driven Detection in Wireless Network; AIP Publishing: Melville, NY, USA, 2022; p. 020037. [Google Scholar]
- Guo, W.; Tondi, B.; Barni, M. An Overview of Backdoor Attacks Against Deep Neural Networks and Possible Defences. IEEE Open J. Signal Process. 2022, 3, 261–287. [Google Scholar] [CrossRef]
- Xu, D.; Quan, W.; Zhou, H.; Sun, D.; Baker, J.S.; Gu, Y. Explaining the Differences of Gait Patterns between High and Low-Mileage Runners with Machine Learning. Sci. Rep. 2022, 12, 2981. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Propagation model | Nakagami |
Bandwidth | 100 Mbps |
Transmission range | 250 m |
MAC protocol | IEEE 802.11p |
Routing protocols | FzGR, GPSR-2P, GPSR-kP, and MNH-FGR |
Real video file | Foreman.yuv with 300 frames YUV CIF format |
(352 × 288) | |
Background traffic | CBR/UDP |
Multimedia traffic | MPEG-4 |
CBR packet size | 512 octets |
CBR rate | 10 paquets/seconds |
Simulation time | 300 s |
Simulation range | 2500 m × 2500 m |
Number of vehicles | 20-50-100-150-200 |
Mobility model | TIGER map |
Real map | District of Columbia (WA), IDM-LC |
Nodes Density | QoS Metrics | |||
---|---|---|---|---|
PDR | Delay | Throughput | Overload | |
20 | ↑24.50% | ↑32.04% | ↑23.99% | ↓33.33% |
50 | ↑17.72% | ↑39.42% | ↑22.59% | ↓42.11% |
100 | ↑13.89% | ↑44.41% | ↑17.03% | ↓21.73% |
150 | ↑15.26% | ↑25.96% | ↑47.07% | ↓25.71% |
200 | ↑23.28% | ↑22.04% | ↑39.19% | ↓17.77% |
Routing Protocols | QoS Metrics | |||
---|---|---|---|---|
PDR | Delay | Throughput | Overload | |
GPSR-2P | ↑47.35% | ↑10.65% | ↑73.26% | ↓61.7% |
GPSR-kP | ↑26.61% | ↑44.41% | ↑47.07% | ↓42.11% |
FzGR | ↑9.63% | ↓13.64% | ↑35.55% | ↓11.76% |
Nodes Density | QoE Metrics | ||
---|---|---|---|
PSNR | VQM | SSIM | |
20 | ↑3.03% | ↓42.88% | ↑23.63% |
50 | ↑14.20% | ↓38.69% | ↑29.62% |
100 | ↑14.44% | ↓35.62% | ↑25.86% |
150 | ↑18.42% | ↓37.18% | ↑18.03% |
200 | ↑13.00% | ↓35.71% | ↑25.00% |
250 | ↑25.30% | ↓41.06% | ↑12.90% |
Routing Protocols | QoE Metrics | ||
---|---|---|---|
PSNR | VQM | SSIM | |
GPSR-2P | ↑50.00% | ↓65.29% | ↑95.00% |
GPSR-kP | ↑25.30% | ↓42.88% | ↑29.62% |
FzGR | ↑12.5% | ↓31.03% | ↑23.81% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaimi, I.; Boushaba, A.; Oumsis, M.; Jabir, B.; Aabidi, M.H.; EL Makrani, A. Novel Optimized Strategy Based on Multi-Next-Hops Election to Reduce Video Transmission Delay for GPSR Protocol over VANETs. Computers 2023, 12, 205. https://doi.org/10.3390/computers12100205
Zaimi I, Boushaba A, Oumsis M, Jabir B, Aabidi MH, EL Makrani A. Novel Optimized Strategy Based on Multi-Next-Hops Election to Reduce Video Transmission Delay for GPSR Protocol over VANETs. Computers. 2023; 12(10):205. https://doi.org/10.3390/computers12100205
Chicago/Turabian StyleZaimi, Imane, Abdelali Boushaba, Mohammed Oumsis, Brahim Jabir, Moulay Hafid Aabidi, and Adil EL Makrani. 2023. "Novel Optimized Strategy Based on Multi-Next-Hops Election to Reduce Video Transmission Delay for GPSR Protocol over VANETs" Computers 12, no. 10: 205. https://doi.org/10.3390/computers12100205
APA StyleZaimi, I., Boushaba, A., Oumsis, M., Jabir, B., Aabidi, M. H., & EL Makrani, A. (2023). Novel Optimized Strategy Based on Multi-Next-Hops Election to Reduce Video Transmission Delay for GPSR Protocol over VANETs. Computers, 12(10), 205. https://doi.org/10.3390/computers12100205