
Citation: Warnke, B.; Fischer, S.;

Groppe, S. Using Machine Learning

and Routing Protocols for Optimizing

Distributed SPARQL Queries in

Collaboration. Computers 2023, 12, 210.

https://doi.org/10.3390/

computers12100210

Academic Editors: Richard Chbeir,

Yannis Manolopoulos, Mirjana Ivanović

and Claudio Silvestri

Received: 25 August 2023

Revised: 8 October 2023

Accepted: 9 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Using Machine Learning and Routing Protocols for Optimizing
Distributed SPARQL Queries in Collaboration
Benjamin Warnke 1 , Stefan Fischer 2 and Sven Groppe 1,*

1 Institute of Information Systems, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany;
benjamin@dr-ing-warnke.de

2 Institute of Telematics (ITM), University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany;
stefan.fischer@uni-luebeck.de

* Correspondence: sven.groppe@uni-luebeck.de

Abstract: Due to increasing digitization, the amount of data in the Internet of Things (IoT) is constantly
increasing. In order to be able to process queries efficiently, strategies must, therefore, be found
to reduce the transmitted data as much as possible. SPARQL is particularly well-suited to the IoT
environment because it can handle various data structures. Due to the flexibility of data structures,
however, more data have to be joined again during processing. Therefore, a good join order is
crucial as it significantly impacts the number of intermediate results. However, computing the best
linking order is an NP-hard problem because the total number of possible linking orders increases
exponentially with the number of inputs to be combined. In addition, there are different definitions
of optimal join orders. Machine learning uses stochastic methods to achieve good results even with
complex problems quickly. Other DBMSs also consider reducing network traffic but neglect the
network topology. Network topology is crucial in IoT as devices are not evenly distributed. Therefore,
we present new techniques for collaboration between routing, application, and machine learning.
Our approach, which pushes the operators as close as possible to the data source, minimizes the
produced network traffic by 10%. Additionally, the model can reduce the number of intermediate
results by a factor of 100 in comparison to other state-of-the-art approaches.

Keywords: deep learning; semantic web database; join query optimization; reinforcement learning;
data distribution; simulator; IoT

1. Motivation

The Internet of Things (IoT) has revolutionized how we interact with the world around
us, creating a vast ecosystem of interconnected devices and sensors that generate unprece-
dented data. These data hold immense potential to drive innovation, optimize processes,
and enhance decision making across various domains. However, the heterogeneity of IoT
networks, stemming from diverse devices, data formats, communication protocols, and
resource constraints, presents substantial challenges for efficient data management and
querying [1].

There are already several research papers on semantic IoT databases [2–9]. Those
approaches commonly send their measured values to a central computer cluster over the
Internet [10–12]. However, sending data to a cluster presents several challenges. Data
transmission bottlenecks can occur, resulting in delays and reduced data processing effi-
ciency. Centralized clusters are prone to single failures, leading to system-wide failures
if not appropriately managed. Scalability becomes an issue as data volumes increase and
constant adjustments are required to meet growing demands. Data security risks are ampli-
fied as centralization increases the potential impact of security breaches or unauthorized
access. Given these issues, exploring approaches to distributed data management is critical
to overcoming the limitations associated with moving data to a centralized cluster.

Computers 2023, 12, 210. https://doi.org/10.3390/computers12100210 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12100210
https://doi.org/10.3390/computers12100210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-9982-1620
https://orcid.org/0000-0003-1292-8925
https://orcid.org/0000-0001-5196-1117
https://doi.org/10.3390/computers12100210
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12100210?type=check_update&version=2


Computers 2023, 12, 210 2 of 18

Optimizing data partitioning schemes for heterogeneous networks is vital, particu-
larly considering data access patterns. Heterogeneous networks comprise devices with
diverse capabilities and data access speeds. Tailored data partitioning strategies that align
with varying device characteristics can significantly enhance data retrieval efficiency. Op-
timized partitioning ensures that data are colocated with devices that frequently access
it, minimizing latency and optimizing data retrieval times, thereby improving the over-
all responsiveness and effectiveness of the network. There is already research looking
at heterogeneous network topologies [13]. However, their most crucial consideration is
to compute as much data as possible on strongly connected devices, similar to strongly
connected clusters.

Data reduction through multicast messages is a strategic approach that minimizes
data duplication and optimizes information dissemination across networks. By sending
a single message to multiple recipients simultaneously, multicast efficiently reduces the
volume of data traffic compared to conventional unicast transmissions. This technique is
particularly beneficial in scenarios where identical or similar information needs to reach
multiple recipients, for example, when inserting data into multiple indices. The same
approach can also be used when data are collected from multiple sources. However, the
application needs to know the multicast routes beforehand. That is why we introduced our
simulator SIMORA (SIMulating Open Routing protocols for Application interoperability on
edge devices) [14] (source code available at https://github.com/luposdate3000/SIMORA
(accessed on 20 August 2022)) in our previous work.

The optimization of join trees is a central and complex problem in modern database
management systems (DBMSs) [15]. The problem of choosing a good join order becomes
more complicated when there are more inputs since the number of possible join trees is
(2·n−2)!
(n−1)! , where n denotes the number of inputs to be joined. While in relational database

management systems (RDBMSs), the number of tables and, hence, the number of joins in
structured query language (SQL) queries is relatively low [16,17], the simple concept of
triples in the resource description framework (RDF) leads to a higher number of joins in
SPARQL queries. For example, there are reports of more than 50 joins are in a practical
setting [18]. Other applications require many joins as well [19,20]. Hence the join order
optimization of many joins becomes much more critical for SPARQL queries. Another study
reports that the join operator is one of the most frequently used operators in SPARQL [21].
Due to many possible join orders, various strategies have been developed to deal with
this problem.

For example, there are several variations of greedy algorithms [22,23]. In this category
of algorithms, the aim is to select two relations that deliver the most minor intermediate
result as quickly as possible. This procedure is then repeated until all inputs have been
merged. In practice, however, producing a slightly larger intermediate result can sometimes
be faster if a faster join algorithm is used.

Another strategy is dynamic programming [22,23]. This strategy assumes that the
optimal solution can be constructed from the optimal solutions of the subproblems. Conse-
quently, it is unnecessary to enumerate the entire join tree search space, but only a portion
of it, without missing the desired solution. Another problem with optimizing the join order
is that optimizing the query plan must take less time than simply running it as is [18].
Therefore, a balance must be found between the time required to find a good plan and
the time required to execute it. Greedy algorithms have a shorter planning time, but their
execution time is often longer.

Conversely, dynamic programming often suggests a better query plan but takes more
time, especially for many joins as they occur in SPARQL queries. Some approaches already
use machine learning in the context of join order optimization [15,24–30]. The idea is that a
machine-learning approach does not take much time to evaluate a given model. The time
required is shifted to a separate learning phase. If the data do not change significantly, a
learned model can be reused for many queries.

https://github.com/luposdate3000/SIMORA


Computers 2023, 12, 210 3 of 18

In most cases, if the estimation is good, we can combine the advantages of a short
optimization time with a short execution time. However, most of these existing approaches
only work on relational DBMSs [15,24–26]. The remaining approaches only estimate a
query’s runtime without optimizing it [27–30]. Our idea is to use machine learning for
join order optimization in SPARQL queries and focus on optimizing a large number of
joins. In addition to other approaches, we include the heterogeneous network properties in
the training.

Our main contributions are:

• An operator placement strategy, which minimizes network traffic.
• A machine learning approach for join order optimization, which reduces the network

traffic by 10% and the intermediate results by a factor of up to 100.

This contribution is an extension paper of Warnke et al. [31]. In this extension and in
contrast to [31], we use machine learning to optimize the join order, to reduce the actual
network traffic. This approach does not only reduce the network traffic even further; it also
reduces the intermediate results at the same time.

The remainder of this paper is organized as follows: First, we show the related work
in Section 2. Then, we explain our approach in Section 3. Afterward, we evaluate our
approach in Section 4. Finally, a conclusion is given in Section 5.

2. Related Work

In Section 2.1, we present other DBMSs, which use different join order optimization
algorithms, to compare different join order optimization implementations. We show several
existing indexing approaches in Section 2.2. In Section 2.3, we show distributed query
optimization. We introduce several existing machine learning approaches in Section 2.4. In
Section 2.5, we introduce the DBMS Luposdate3000.

2.1. SPARQL Join Order Optimizer Implementations

In this section, we present several third-party SPARQL DBMSs. We are using these
DBMSs later in the evaluation to compare different implementations of the query optimizer.
None of these DBMSs is using machine learning to optimize their join orders.

First, we use the RDF3X DBMS [32] (https://gitlab.db.in.tum.de/dbtools/rdf3x
accessed on 20 August 2022). This DBMS introduced the original RDF3X triple storage
layout, which is now used in many DBMS implementations. The join order optimizer
creates bushy join trees.

We use the Apache Jena DBMS (https://dlcdn.apache.org/jena/binaries/apache-jena-
4.5.0.tar.gz accessed on 20 August 2022) as it is a fully open-source DBMS. This DBMS
supports all SPARQL functions. Jena’s query optimizer produces only left-deep join trees.

The Ontotext GraphDB DBMS (https://graphdb.ontotext.com/documentation
accessed on 20 August 2022) is a commercial SPARQL DBMS. Similar to Jena, its op-
timizer only creates left-deep join trees. However, the number of intermediate results
produced is significantly lower than Jena’s.

2.2. Semantic IoT Database Indexing Strategies

Semantic web databases store their data in triples that have no fixed schema. The
data are stored as triples, which consist of subject, predicate, and object. This scheme
allows very flexible storage of arbitrary data. There are many approaches to how triplestore
implementations can partition and split their data. Apart from some exotic indexes, they
are often based on the hexastore [33] and RDF-3X indexes [32].

Hexastore [33] creates indexes by hashing the known constants of a triple. Therefore,
the six fully replicated indexes are S-PO, P-SO, O-SP, SP-O, SO-P, and PO-S. Sometimes
a seventh index SPO is added, where the hash consists of all three triple components.
The hyphen in the names separates the values that are part of the hash from the others.
The most basic idea for distributing this indexing scheme is to use the existing hashes for

https://gitlab.db.in.tum.de/dbtools/rdf3x
https://dlcdn.apache.org/jena/binaries/apache-jena-4.5.0.tar.gz
https://dlcdn.apache.org/jena/binaries/apache-jena-4.5.0.tar.gz
https://graphdb.ontotext.com/documentation


Computers 2023, 12, 210 4 of 18

distribution. The advantage of this partitioning is that each triple pattern can be retrieved
from a single database [5,34].

The basic idea of the RDF-3X [32] indexing scheme is a basis for many other approaches
in many different research papers. Here, the triples are stored in six indices consisting
of all S, P, and O permutations. In addition, there may be further aggregation indices,
each storing only one or two components of the triple with an additional counting column.
Including the aggregation indexes, there are twelve indexes, but only six are fully replicated.
This indexing scheme provides many opportunities for data partitioning. We partition the
RDF-3X data using subject hashing in the remainder of this paper. This partitioning has the
advantage that, combined with the ontology used, each database can store all incoming
sensor samples locally without further network communication. The advantage of reading
triples from this type of distribution is that we can run many instances of the join operator
in a fully distributed and independent manner as long as the subject is part of the join
columns. However, compared to hexastore, this distribution requires that each database
participates in each query. Hashing by subject is used in many research papers [2,35–40].

Both strategies, Hexstore and RDF-3X, have their advantages and disadvantages.
When evaluating our database in the simulator, we found that most existing data distribu-
tion strategies are optimized only for retrieval because they send too much data during
the partitioning phases. On the other hand, if the data are only stored locally, only a
tiny portion of the data is sent during insertion, but many data are sent during retrieval.
Most importantly, the type and number of indexes significantly impact this traffic. More
indexes can increase the speed of read queries and reduce the data sent when selecting
data. However, this is the worst case during insertion because each index needs all of the
data, so many replications are scattered throughout the network. Nevertheless, this paper
will focus on the SELECT queries since we can expect the most significant benefits from the
collaboration of routing protocols and databases.

2.3. Distributed Query Optimization

The task of a distributed query optimizer is to split the query so that its sub-queries can
be executed on many devices. In the case of many concurrent queries, it is also responsible
for load balancing and sharing, thus reusing intermediate results within the database.

Distributed query optimization strategies can be classified as shown in Figure 1.

Computers 2023, 1, 0 4 of 19

Centralized DecentralizedWhere is decided,
which node is used?

Static DynamicFailure recovery
for failing subqueries?

Global Local
How much information
do the optimizers have?

In Advance On Demand
When are nodes assigned

to the operators?

Figure 1. Classification of distributed query optimizers.

or two components of the triple with an additional counting column. Including the aggregation
indexes, there are twelve indexes, but only six are fully replicated. This indexing scheme
provides many opportunities for data partitioning. We partition the RDF-3X data using subject
hashing in the remainder of this paper. This partitioning has the advantage that, combined with the
ontology used, each database can store all incoming sensor samples locally without further network
communication. The advantage of reading triples from this type of distribution is that we can run
many instances of the join operator in a fully distributed and independent manner as long as the
subject is part of the join columns. However, compared to hexastore, this distribution requires
that each database participate in each query. Hashing by subject is used in many research
papers[2,36–41].

Both strategies, Hexstore and RDF-3X, have their advantages and disadvantages.
When evaluating our database in the simulator, we found that most existing data distribu-
tion strategies are optimized only for retrieval because they send too much data during the
partitioning phases. On the other hand, if the data is only stored locally, only a tiny portion
of the data is sent during insertion, but many data is sent during retrieval. Most importantly,
the type and number of indexes significantly impact this traffic. More indexes can increase
the speed of read queries and reduce the data sent when selecting data. However, this is
the worst case during insertion because each index needs all the data, so many replications
are scattered throughout the network. Nevertheless, this paper will focus on the SELECT
queries since we can expect the most significant benefits from the collaboration of routing
protocols and databases.

2.3. Distributed Query Optimization

The task of a distributed query optimizer is to split the query so that its sub-queries
can be executed on many devices. This can be seen on the left side of fig. 3. The figure itself
will be explained later. In the case of many concurrent queries, it is also responsible for
load balancing and sharing, thus reusing intermediate results within the database.

Distributed query optimization strategies can be classified as shown in fig. 1.
Modern database systems cannot access the routing protocol and cannot retrieve the

topology information directly. Workarounds exist, such as explicitly providing a file with
topology information or measuring the time it takes to send a message. However, these
approaches require manual interaction to provide the network layout or ping messages
to measure link speeds and derive the topology. If only small ping packets are used to
determine the topology, the timing measurements may not be accurate because they take
only fractions of a second. If large packets are used, much energy is wasted.

The fact that network traffic slows down query evaluation is considered in many
database systems[9,36,37,42–44]. Therefore, there are already some approaches to reducing
the network traffic.

One approach is to implement hashing to distribute the data and add some properties
that allow joining operations to be performed locally on many different devices. After that,
only the intermediate results are sent over the network. If there are many queries, this
causes much less traffic[9,36,42,43].

Figure 1. Classification of distributed query optimizers.

Modern database systems cannot access the routing protocol and cannot retrieve the
topology information directly. Workarounds exist, such as explicitly providing a file with
topology information or measuring the time it takes to send a message. However, these
approaches require manual interaction to provide the network layout or ping messages
to measure link speeds and derive the topology. If only small ping packets are used to
determine the topology, the timing measurements may not be accurate because they take
only fractions of a second. If large packets are used, much energy is wasted.

The fact that network traffic slows down query evaluation is considered in many
database systems [9,35,36,41–43]. Therefore, there are already some approaches to reducing
the network traffic.



Computers 2023, 12, 210 5 of 18

One approach is to implement hashing to distribute the data and add some properties
that allow joining operations to be performed locally on many different devices. After that,
only the intermediate results are sent over the network. If there are many queries, this
causes much less traffic [9,35,41,42].

Another widely used approach is duplicating data to add properties to the triple store.
The k-hop property is used in many different database systems. In the k-hop strategy,
triples are first assigned to database instances using a hash function. Then, each triple
with a path length up to k is copied to all of the original triples in that instance. Each
system uses a minor variation, mainly changing the value of k. The largest k used is three,
resulting in many triples at almost every node. This property allows queries containing path
expressions up to k in length to be evaluated locally on each node without communication.
The main disadvantage of the k-hop property is that some results are calculated multiple
times, which must be removed again to obtain a correct result [35,36,43].

2.4. Machine Learning Approaches

There are several approaches to optimizing SQL queries using machine learning
techniques. However, such techniques cannot be used directly in SPARQL environments
since all approaches define vectors and matrices whose sizes scale with the number of
tables and columns.

The ReJOIN approach [24] receives SQL queries and chooses the best join order from
the available subset. The ReJOIN enumerator is based on a reinforcement learning approach.
The backbone of ReJOIN is the Proximal Policy Optimization algorithm, to enumerate the
join trees. ReJOIN was trained on the IMDB dataset, which contains a total of 113 queries
(https://github.com/gregrahn/join-order-benchmark.git accessed on 20 August 2022).
Of these, 103 queries were used for training and 10 for analysis. This approach does not
work for SPARQL because to capture tree structure data, they encode each binary subtree
as a row vector of size n, where n is the total number of relations in the database. When
we translate SQL tables into SPARQL predicates, this vector would contain thousands of
elements, mostly zero. They create a square matrix of size n for each episode to capture
critical information about join predicates. When using large datasets, this would not fit into
memory. When using smaller datasets, this may fit into memory. However, this would be
too large to be useful as machine learning model input.

Another work [25] uses reinforcement learning to automatically choose a data storage
structure for the data. Furthermore, suitable indices and the join trees that make sense of
them are calculated.

Another article [26] explores join order selection by integrating reinforcement learning
and long short-term memory. Graph neural networks are used to capture the structures of
join trees. In addition, this work supports multi-alias table names and database schema
modification. To encode join-inputs, they use vectors of size n, where n is the number of
tables. Additionally, they use a quadratic matrix of size n to encode what should be joined
with each other. Similarly to the ReJOIN approach, this fails for SPARQL due to the massive
size of this matrix.

Another research group proposed FOOP [15], a Fully Observed Optimizer based on
the Proximal Policy Optimization Algorithm. This work uses a data-adaptive learning
query optimizer to avoid the enumeration of join orders, which is, thus, faster than dynamic
programming algorithms. Similarly to the previous optimizers, they also use bit vectors
which consist of one bit for every column in every table. Additionally, their state is a matrix
where one dimension equals such a vector, and the other is scaled with the number of joins
in a query. The memory consumption is, therefore, much better than the other approaches;
but, still, it scales with the number of predicates in SPARQL, which is too large.

Other approaches [27–30] directly predict query performance, decoupled from any
data knowledge simply by looking at the logs of previously executed queries. In their
approach, the authors regard execution time as an optimization goal. They encode the

https://github.com/gregrahn/join-order-benchmark.git


Computers 2023, 12, 210 6 of 18

queries in the form of feature vectors. Then, they measure the distance of the new feature
vector to known feature vectors to predict the new execution time.

2.5. Luposdate3000

Luposdate3000 [44] (source code available at https://github.com/luposdate3000/
luposdate3000 (accessed on 20 August 2022)) is a SPARQL DBMS with a focus on IoT. We
ensured that new features can easily extend the DBMS by design. It is entirely written in
Kotlin and can therefore be compiled to different targets, allowing it to be executed on vari-
ous platforms. The database works with the simulator SIMORA [14] to gain further insight
into semantic web databases. Luposdate3000 uses column iterators wherever possible when
evaluating queries. The overall query processing pipeline can be seen in Figure 2.

Join Order Optimizer

Logical Optimizer

Syntax

Physical Optimizer

Basic Rules
e.g., projection up

Dynamic Programming Greedy Machine Learning

Basic Rules
e.g., filter down

SPARQL String

Tokenizer

Abstract Syntax Tree (AST) Optimizations

Choose Triple Store Index

Choose Operator Implementation

Network Placement

Executable Operatorgraph Executable for Intermediates

Figure 2. Luposdate3000 Join order optimization pipeline. We added or modified the colored parts.
In blue, we highlight the added executable scheme, which only outputs statistics instead of actual
results. The modified machine learning and network placement are shown in red and green.

https://github.com/luposdate3000/luposdate3000
https://github.com/luposdate3000/luposdate3000


Computers 2023, 12, 210 7 of 18

We modified the DBMS to return the number of intermediate results for each executed
query instead of the actual results. In Figure 2, this is highlighted in blue. Additionally,
we added an interface to allow an external application to enforce a specific join tree
during execution. This interface is marked in red in Figure 2. In particular, this simplifies
interaction with the Python programming language, which plays a central role in the
machine learning community.

Luposdate3000 has two built-in join order optimizers: a greedy optimizer and one
with dynamic programming. Neither of them uses machine learning. Therefore, they
can be used to compare the quality of machine learning approaches with the greedy and
dynamic programming-based approaches. The Luposdate3000 greedy join order optimizer
uses minimalistic histograms with only one bucket. This simplicity allows the histograms
to be extracted directly from the data without additional storage overhead. It also allows
the optimizer to always use an up-to-date histogram.

The optimization process itself consists of several steps. First, the optimizer collects all
input from all consecutive joins to obtain an overview of what needs to be joined. Then,
these inputs are grouped by variable name to detect the star-shaped subtrees first. The
basic idea is that this allows merge joins to be used more frequently. In addition to the
star join pattern, many identical variable names indicate that the join will likely reduce
the number of output rows. Within each group, the optimizer looks at the estimated
number of results for each input and the estimated number of different results for each
join. The inputs are concatenated so that the estimated output cardinality remains as small
as possible. The groups with different variables must be merged in the last step. Here,
the optimizer attempts to assemble subgroups with at least one variable in common. This
strategy prevents the optimizer from choosing the Cartesian product as long as the SPARQL
query allows it. The advantage of this optimizing strategy is that the time needed to find a
join tree is linear to the number of inputs to join.

The dynamic programming-based optimizer produces better join trees. However, the
time needed to create the join tree is O(N ∗ 2R), with R as the number of inputs to join and
N as the number of join orders.

Luposdate3000 supports many widely used indexing strategies such as RDF-3X [32]
and Hexastore [33], and many partitioning schemes based on them. Each time a value
is inserted into the database or included in the output, a dictionary must be called to
translate the internal IDs into their corresponding values. A distributed environment,
especially with many devices, generates much traffic. Caching some of the last used values
is possible to reduce this traffic. In particular, ontology predicates are used in almost
every query. Therefore, we added another cache to the database containing all of the
ontology’s values. Last, we encoded small values directly in the internal dictionary IDs
so that these values could be decoded without a dictionary. Given the definition of the
benchmark scenario, these optimizations make it possible to avoid distributed dictionary
access altogether and use only local knowledge. To improve data insertion, the database
supports multi-cast-like communication.

3. Our Approach

In our approach, the routing and application layers are tightly coupled. We use the
same modifications to the routing layer as in our earlier article [31]. Therefore, we assume
that the routing protocol has the necessary information to find the next DBMS on the path
to a given DBMS. Therefore, we begin this section by explaining how this information can
be used to optimize operator distribution. Finally, the reduced network traffic can further
train the model to improve the order of joins.

3.1. Query Distribution

Figure 3 shows the processing pipeline of a SPARQL query. This whole chapter
explains the details. First, the SPARQL string query must be converted into an operator
graph. This conversion is carried out by tokenizing the string and logical optimization. In



Computers 2023, 12, 210 8 of 18

our case, this is join order optimization using machine learning. The optimization goal is
often defined as the estimated execution time, but other metrics, such as network traffic,
are also achievable goals.

operator
graph

device
topology

operator
parts

operator-mapping

routing-table (global)

forward-table

operator parts1 operator parts2 operator parts3

SPARQL-string

A

B C

D E

b c

d e

a 1

2 3

4 5

A
B

C D

E

a

b

c d
e

b c

d e

operator C D E
device 3 4 5

1 2 3 4 5
1
2
3
4
5

1 2 3 2 2
1 2 1 4 5
1 1 3 1 1
2 2 2 4 2
2 2 2 2 5

de
vi

ce

target

operator A B C D E
device ? ? 3 2 2

A B D E C

machine learning

sp
lit

require
local data

targetdevice
next

deviceunassigned
operator

assign
device

ex
ec

ute

loca
lly

forw
ard

to
2

forwardto 3

each
device

join

triple storeintermediate

device

Figure 3. Routing-assisted join order optimization in comparison to state-of-the-art static join order
optimization. Small letters indicate data streams. Capital letters indicate Operators in the operator
graph. Numbers are addresses of devices.

After logical optimization, we divide the graph into many parts, with one for each
operator. At each point where the operator graph is divided, we add matching send and
receive operators, indicated by arrows in the figure. These send-and-receive operators
ensure that the operator graph can be executed in a distributed manner.

Then, these parts must be assigned to the devices. The operators for triple store
access must be executed on specific devices because they require local data. In the figure,
this is represented by the operator mapping table. All other operators could be executed
anywhere. Our goal is to shorten the data paths. Therefore, we need to work with the



Computers 2023, 12, 210 9 of 18

local routing table of our current device. In our example, device 1 is only connected
to devices 2 and 3. It cannot send all triple-store operators directly to their destination.
Therefore, for each triple store operator, we compute the next device through which it must
be routed to reach its destination. This functionality must also be provided within the
routing protocol. Therefore, it is helpful if the routing protocol provides these functions. To
check where the other operators should be sent, we consider all of the inputs of an operator.
This operator is also sent if all inputs are routed to the same device. This process is repeated
until each operator is assigned a destination. Operators whose inputs are sent to different
devices are calculated locally on the current device. This step is repeated on each device, to
which operators are passed until all operators are executed locally on the current device. In
this way, the operator graph is adapted to the topology.

During or after the evaluation of a join operator, it is possible to switch the target
device again if the result set is larger than the input set. In this case, the input streams and
operators are forwarded to the parent DBMS instance. While this increases the CPU load
since the join operator must be repeated, it reduces the network load since less data must
be sent. This extension can be applied to any operator placement strategy.

3.2. Machine Learning Strategy

There are many different types of machine learning approaches [45]. In the context
of join order optimization, manually labeling good or bad join orders does not make
sense. Therefore, we are using a reinforcement learning approach, which can improve its
model through exploration. Reinforcement learning algorithms are fundamentally online
learning approaches. However, there are multiple variations of offline learning as well [45].
In our context, there are three reasons to stop training when the model reaches a good
enough state:

• The training requires much CPU or GPU time to update its model. By freezing the
model, the required computations can be significantly reduced.

• The statistics data can be removed after training, freeing up much storage space. When
the model needs to be retrained because of many updates or different queries, these
statistics would be outdated, so there is no reason to keep them after the training.

• We have modified the query executor to return intermediate results instead of the
actual response for each query. Counting every intermediate result also requires time
and resources, so we want to avoid it. The idea of different details in the data for
training and evaluation is also used in other algorithms [46].

3.3. Reinforcement Learning for Join Order Optimization in SPARQL (ReJOOSp)

While the number of tables in SQL is small, the number of predicates in SPARQL is
very high. This is a significant difference in possible encoding for machine learning. In SQL,
it is enough to say which tables should be joined. On the other hand, in SPARQL, the triple
patterns must be explicitly connected, dramatically increasing the input size for machine
learning and making it harder for the model to learn what is essential. Figure 4 shows
an example query with two subject–subject joins and one subject–object join. A plausible
approach would be to join the subject–subject joins independently from each other first.
The assumption here is, that a subject–subject join is often a 1 to 1 join. Additionally, those
joins can be evaluated independently. Afterward, both intermediate results are joined.

Computers 2023, 1, 0 10 of 19

1SELECT * WHERE {
2? s1 : p1 ? o1 .
3? s1 : p2 ? so .
4? so : p3 ? o2 .
5? so : p4 ? o3 .
6}

Figure 4. Example SPARQL query.

• We have modified the query executor to return intermediate results instead of the
actual response for each query. Counting every intermediate result also requires time
and resources, so we want to avoid it. The idea of different details in the data for
training and evaluation is also used in other algorithms[48].

3.3. Reinforcement learning for join order optimization in SPARQL (ReJOOSp)

While the number of tables in SQL is small, the number of predicates in SPARQL is
very high. This is a significant difference in possible encoding for machine learning. In SQL,
it is enough to say which tables should be joined. On the other hand, in SPARQL, the triple
patterns must be explicitly connected, dramatically increasing the input size for machine
learning and making it harder for the model to learn what is essential. Figure 4 shows
an example query with two subject-subject joins and one subject-object join. A plausible
approach would be to join the subject-subject joins independently from each other first.
The assumption here is, that a subject-subject join is often a 1 to 1 join. Additionally, those
joins can be evaluated independently. Afterward, both intermediate results are joined.

We use the Stable Baselines 3[49] framework because there are many more open-
source contributors than other frameworks. Especially there is a community addon[50] that
extends the built-in PPO model with the possibility of masking. Applying masks to the
available actions is crucial for the model to produce good join trees. We use the default MLP
policy with two layers and 64 nodes, also used in other join-order optimizing articles[51].
Using more layers increases the number of learning steps required since the model must
first learn how to use these hidden layers.

We need to keep the training phase short. Otherwise, the changes in the dataset will
immediately render the newly trained model useless. We want to treat the machine learning
model as a black box. This allows us to focus on encoding the query and computing a reward. The
reward should reflect the quality of the join tree compared to other previously executed join trees.
Therefore, the algorithm needs to know the best and worst case. Calculating the reward for joins
with up to 5 inputs is straightforward, as traversing all join trees and keeping statistics on the good
and the bad is possible.

However, since the model is intended to work with larger joins, for example, with 20
join inputs, this approach will not work as it is impossible to collect statistics on all possible
join trees. To solve this problem, we extend the machine learning pipeline to the concept as
shown in fig. 5.

The default optimizer is initially used to initialize the statistics for each SPARQL query.
These statistics only map the query to the total network traffic volume. These statistics do
not contain specific join orders. Consequently, the model could not learn the competitor’s
strategies. Furthermore, whenever we calculate a new reward during training, we extend
these statistics with the number of intermediate results produced by the current join plan.
All these statistics about queries and their generated intermediate result counts are stored
in a separate SQL DBMS. These statistics will continually improve as the model is trained.
The reward calculation function can be seen in Figure 6. The variables vmax and vmin refer
to the min and max network traffic for this specific query, while vcurrent refers to the traffic
for the current join plan. Even if the actual best and worst case is unknown, this estimation
is good enough to train the model.

Figure 4. Example SPARQL query.



Computers 2023, 12, 210 10 of 18

We use the Stable Baselines 3 [47] framework because there are many more open-
source contributors than other frameworks. Especially, there is a community add-on [48]
that extends the built-in PPO model with the possibility of masking. Applying masks to the
available actions is crucial for the model to produce good join trees. We use the default MLP
policy with two layers and 64 nodes, also used in other join order optimizing articles [49].
Using more layers increases the number of learning steps required since the model must
first learn how to use these hidden layers.

We need to keep the training phase short. Otherwise, the changes in the dataset will
immediately render the newly trained model useless. We want to treat the machine learning
model as a black box. This allows us to focus on encoding the query and computing a
reward. The reward should reflect the quality of the join tree compared to other previously
executed join trees. Therefore, the algorithm needs to know the best and worst case.
Calculating the reward for joins with up to five inputs is straightforward, as traversing all
join trees and keeping statistics on the good and the bad is possible.

However, since the model is intended to work with larger joins, for example, with
20 join inputs, this approach will not work, as it is impossible to collect statistics on all
possible join trees. To solve this problem, we extend the machine learning pipeline to the
concept shown in Figure 5.

prepare

train

use

synthetic
data

real
world
data

training
queries

evaluation
queries

query
generator

build-in
optimizer

operator-placement
execute

intermediate
result count

network
traffic

operator-placement
execute

calculate
reward

PPO model

execute

fixed
join order

updat
e

current

min/max

re
w

ar
d

fixed
join order

Figure 5. Machine learning concept. The blue component uses an external SQL DBMS. The red
components are executed within Luposdate3000. The white components are implemented in Python.

The default optimizer is initially used to initialize the statistics for each SPARQL query.
These statistics only map the query to the total network traffic volume. These statistics do
not contain specific join orders. Consequently, the model could not learn the competitor’s



Computers 2023, 12, 210 11 of 18

strategies. Furthermore, whenever we calculate a new reward during training, we extend
these statistics with the number of intermediate results produced by the current join plan.
All of these statistics about queries and their generated intermediate result counts are stored
in a separate SQL DBMS. These statistics will continually improve as the model is trained.
The reward calculation function can be seen in Figure 6. The variables vmax and vmin refer
to the min and max network traffic for this specific query, while vcurrent refers to the traffic
for the current join plan. Even if the actual best and worst case is unknown, this estimation
is good enough to train the model.

Computers 2023, 1, 0 11 of 19

prepare

train

use

synthetic
data

real
world
data

training
queries

evaluation
queries

query
generator

build-in
optimizer

details in fig. 2

operator-placement
execute

details in fig. 3
intermediate
result count

network
traffic

operator-placement
execute

details in fig. 3

calculate
reward

details in fig. 6

PPO model
details in fig. 7

execute

fixed
join order

updat
e

current

min/max

re
w

ar
d

fixed
join order

Figure 5. Machine learning concept. The blue component uses an external SQL DBMS. The red
components are executed within Luposdate3000. The white components are implemented in Python.

r =





0 if vmax = vmin

−10 if vcurrent = null

min
(

10,− log
(

vcurrent−vmin
vmax−vmin

))
otherwise

Figure 6. Our reward function uses vmin and vmax from the statistics, which refer to the currently
known best and worst-case network traffic volume. vcurrent may receive a null value when it runs
into a timeout. This null value is not considered when calculating the known worst case.

Figure 6. Our reward function uses vmin and vmax from the statistics, which refer to the currently
known best- and worst-case network traffic volume. vcurrent may receive a null value when it runs
into a timeout. This null value is not considered when calculating the known worst case.

A logarithmic reward function and a minimum compensate for the potentially high
variation between different join trees. We generally want to reward good join trees and
penalize those whose intermediate results are very high, or the DBMS decides to abort our
benchmark because it takes too long.

To explain our machine learning approach, ReJOOSp, in detail, we show the internal
state of the essential variables in Figure 7. This figure should give an overview of how the
join tree is constructed. The details of ReJOOSp are explained in the following. Each row
in the figure shows a time step. The essential step in the initialization is the definition of
the observation matrix. This observation matrix is created by using a transformation of the
SPARQL query, which is placing the triple patterns on the diagonal of a square matrix. This
matrix is necessary for the neural network to remember which inputs have already been
connected. The remaining cells of this square matrix are marked as empty. The matrix size
is chosen such that it is able to represent the largest desired join. This means that the matrix
size is quadratic in the maximum number of joins allowed. Even if this seems to be a large
matrix, it is still small compared to approaches from relational database systems, where the
matrix size is quadratic to the number of tables. The purpose of the matrix is that each join
is mapped to a sequence of numbers of the same size. The DBMS itself does not need this
observation matrix.

We define the possible actions as a list of pairs of rows in the matrix that could be
joined. To further reduce the machine learning search space, we ignore the difference
between the left and right input of the join operator. For the example in Figure 4 with four
triple patterns, this list of possible actions can be seen in the top row of Figure 7, next to
the observation matrix. In Figure 7, the invalid actions are marked in gray. The Cartesian
products are shown in red. The machine learning model now receives the matrix and the
action list and selects a new action until only one action is possible. Then, this last action is
applied, and the join tree is complete. For each selected action, the step function is executed.

The step function first calculates which two inputs are to be joined. The action ID is
looked up in the action list to do this. Then, the observation matrix is updated. Therefore,
the values from the matrix line of the right join input are copied to the matrix line of the left
join input. All empty fields are skipped so that existing data are not overwritten. Finally,
the right hand side join input row is marked as invalid, to prevent it from being considered
for joining again. Then, we append our currently selected join step to the join step list. This
list of join steps is the target of ReJOOSp, as it is the only output passed to the DBMS at
the end. The DBMS can use this list to build the join tree shown in the right column of
Figure 7. We are finished when the entire matrix, except for the first row, is cleared. The
matrix always ends up in this state, regardless of the chosen join order.



Computers 2023, 12, 210 12 of 18

C
om

puters
2023,1,0

12
of19

Machinelearning view DBMS view
Observation Possible actions

Shared view
Join steps Join tree

ac
ti

on
5

ac
ti

on
0

ac
ti

on
1

(s1, : p1, o1) − − −
− (s1, : p2, so) − −
− − (so, : p3, o2) −
− − − (so, : p4, o3)

ID join
- 0 (0, 1)
1 (0, 2)
2 (0, 3)
3 (1, 2)
4 (1, 3)
5 (2, 3)

[] 0 1 2 3

(s1, : p1, o1) − − −
− (s1, : p2, so) − −
− − (so, : p3, o2) (so, : p4, o3)

−−− −−− −−− −−−

ID join
- 0 (0, 1)
1 (0, 2)
2 (0, 3)
3 (1, 2)
4 (1, 3)
5 (2, 3)

[(2, 3)]

0 1 2 3

-1

(s1, : p1, o1) (s1, : p2, so) − −
−−− −−− −−− −−−
− − (so, : p3, o2) (so, : p4, o3)

−−− −−− −−− −−−

ID join
0 (0, 1)
1 (0, 2)
2 (0, 3)
3 (1, 2)
4 (1, 3)
5 (2, 3)

[(2, 3), (0, 1)]

0 1 2 3

-1-2

(s1, : p1, o1) (s1, : p2, so) (so, : p3, o2) (so, : p4, o3)
−−− −−− −−− −−−
−−− −−− −−− −−−
−−− −−− −−− −−−

ID join
0 (0, 1)
1 (0, 2)
2 (0, 3)
3 (1, 2)
4 (1, 3)
5 (2, 3)

[(2, 3), (0, 1), (−1,−2)]

0 1 2 3

-1-2

-3

Figure
7.O

verview
ofJoin

O
rd

er
O

ptim
ization.T

he
gray

actions
are

invalid
because

the
contained

relations
are

already
joined.T

he
red

actions
are

cartesian
products,w

hich
are

avoided.

Figure 7. Overview of join order optimization. The gray actions are invalid because the contained
relations are already joined. The red actions are Cartesian products, which are avoided.

3.4. Weak Points

The machine learning model is expected to work best on queries with the same or
similar number of joins as in the training set. When the join count per query is highly
varied, multiple models targeting different numbers of joins in a query should be trained.
However, it should be noted that traditional approaches cannot deliver good join orders
for queries with many joins.

The model needs to be retrained when the data change too much. It costs a lot
of computation time whenever a model needs to be retrained. However, optimizing
individual queries is cheaper, and the join orders are better than other approaches, such
that the computational overhead is reduced at other places in the DBMS.

4. Evaluation

SIMORA [14] (source code available at https://github.com/luposdate3000/SIMORA
(accessed on 20 August 2022) ) is used to simulate the DBMS in a reproducible randomized
topology. This topology was chosen because it is the most realistic one. We apply the
operator placement strategy as described in the previous section. We also use that placement
strategy when evaluating the join orders given by other DBMSs. The distributed parking
scenario benchmark [50] generates 9923 triples to obtain and compare plausible network
loads. Since the insertion is independent of the join order, the data transmission to store the
data is not included. Due to the simulation component, the execution is much slower, so
only joins with up to six triple patterns can be analyzed.

https://github.com/luposdate3000/SIMORA


Computers 2023, 12, 210 13 of 18

The smaller number of triple patterns allows, as a side effect, for a much shorter
training phase. During all measurements, the DBMS distributed the data based on subject
hashes because this allows many star-shaped join operators to be executed locally. Figure 8
shows the reward received by the model after x iterations. After about 8192 steps, each
model frequently receives a high reward. Frequent high rewards indicate that the model is
finished with the training phase.

0

2

4

6

8

10

1000 10, 000 100, 000

re
w

ar
d

training steps

3-3
3-4

4-4
3-5

4-5
5-5

3-6
4-6

5-6
6-6

Figure 8. This figure shows the reward for the model after x training steps. The displayed graphs use
an average running function reset after logarithmic increasing distances. The graph names of the
models contain the number of triple patterns used during training.

In the current implementation, the training and testing phase queries are disjointed.
The evaluation of the evaluation query set confirms that the quality of the join orders does
not improve significantly with extended training. Using a maximum of six triple patterns
has the advantage of executing all possible join orders and storing their intermediate results
and network traffic. To avoid bad results, a timeout of one minute is applied. In addition,
all join orders with Cartesian products are terminated immediately. If a query fails this
way, the reward calculation assumes twice the worst-case number of intermediate results
and network traffic. These complete statistical data are used to evaluate the quality of the
join trees computed by the different algorithms.

First, the results for the evaluation based on intermediate results are shown in Figure 9.
The optimizers from Jena and GraphDB consider only left-deep join orders. However,
if only three triple patterns exist, this still matches all possibilities. Nevertheless, these
two optimizers always produce about 100 times more intermediates than necessary. The
optimizer of RDF3X achieves much better results. It can always select the best case for
three triple pattern queries and frequently for five triple patterns. However, the four and
six triple-pattern queries achieve bad results like the previous optimizers.



Computers 2023, 12, 210 14 of 18

0.1

1

10

100

1000

T I T I T I T I

graphdb
jena

rdf3x
LUPOSDATE3000 dp nc

LUPOSDATE3000 dp
LUPOSDATE3000 greedy

model trained on 3-3
model trained on 3-4

model trained on 3-5
model trained on 3-6
model trained on 4-4
model trained on 4-5
model trained on 4-6
model trained on 5-5
model trained on 5-6
model trained on 6-6

evaluated on 6evaluated on 5evaluated on 4evaluated on 3

Figure 9. All optimizers were evaluated based on the produced intermediate results. The X-axis
shows which evaluation was performed on how many triple patterns. I means intermediate results,
and T means network traffic. The Y-axis shows the average factor between the best join order and the
chosen join order of a given join order optimizer. A factor of 1 is achieved if the optimizer always
chooses the best case. The models are trained on joins with the number of triple patterns specified in
their labels.

Luposdate3000 provides two optimizers: dynamic programming (dp in the figure)
and greedy programming. The dynamic programming optimizer can optionally cluster
the triple patterns by variable names, which reduces the search space, and increases the
optimization speed. In the figure, the optimizer marked with nc is not using clustering
by variable names. In the context of three triple patterns, all LUPOSDATE3000 built-in
optimizers always choose the best join order. However, with more triple patterns, the
optimizer achieves a similar quality to the other optimizers without ML. When trained on
network traffic, the ML models almost always choose the optimal join order. However,
when the reward function during training is based on intermediate results, the optimizer
creates unnecessary work.

Next, Figure 10 shows the results for the same queries, but this time the ranking is
based on network traffic. The overhead factor is generally much lower than the previous
figure showing the intermediate results. This reduction is achieved by the dynamic oper-
ator relocation, which first executes the join. Then, the bytes of the input are compared
with those of the output. Finally, the option with fewer bytes is chosen and sent over
the network.

Consequently, the only overhead is the operator graph size, sent twice for every device
on the path. Since only the network traffic counts in this comparison, and the smaller
number is always chosen, there is no advantage for any specific optimizer. Without this
optimization, the bad join orders would be much worse than they are now. It is also possible
that the ranking between excellent and bad join orders changes by turning off this feature.
However, in that case, the absolute number of bytes sent through the network will increase,
so those join orders can not be called optimal anymore.



Computers 2023, 12, 210 15 of 18

1

1.1

1.2

T I T I T I T I

graphdb
jena

rdf3x
LUPOSDATE3000 dp nc

LUPOSDATE3000 dp
LUPOSDATE3000 greedy

model trained on 3-3
model trained on 3-4

model trained on 3-5
model trained on 3-6
model trained on 4-4
model trained on 4-5
model trained on 4-6
model trained on 5-5
model trained on 5-6
model trained on 6-6

evaluated on 6evaluated on 5evaluated on 4evaluated on 3

Figure 10. All optimizers were evaluated based on the network traffic. The X-axis shows which
evaluation was performed on how many triple patterns. I means intermediate results, and T means
network traffic. The Y-axis shows the average factor between the best join order and the chosen join
order of a given join order optimizer. A factor of 1 is achieved if the optimizer always chooses the
best case. The models are trained on joins with the number of triple patterns specified in their labels.

The exciting part of this figure is that the trained model almost always achieves less
network traffic than the state-of-the-art static optimizers. When the models are trained
on network traffic, their result is almost optimal. They are also slightly better than those
models trained on intermediate results. The best possible results were achieved with the
model, which trained on all possible mixed triple pattern sizes. Consequently, the figure
also shows that overfitting occurs if the models are trained on small query sets, slightly
decreasing the quality.

5. Summary and Future Work

We discovered that we can improve the join order quality by using the network traffic
volume to train the machine learning model. Our strategy, which pushes the operators
as close as possible to the data source, minimizes the produced network traffic by 10%.
Alternatively, the model can reduce the number of intermediate results by a factor of 100.

In the future, the machine learning approach could be extended to predict when it
has to be retrained due to changes in the data. Several components of this work can be
exchanged, such as the dataset, the triple store indices, the topology, the routing protocols,
and the encodings for machine learning. Also, using quantum computing instead of
traditional machine learning could be considered.

Author Contributions: Software, B.W.; Writing—original draft, Benjamin Warnke; Writing—review
& editing, S.F. and S.G.; Visualization, B.W.; Supervision, S.G.; Project administration, S.F. and S.G.;
Funding acquisition, S.F. and S.G. All authors have read and agreed to the published version of
the manuscript.



Computers 2023, 12, 210 16 of 18

Funding: This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)—Project-ID 422053062.

German Research Foundation

Funded by

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Groppe, S. Emergent models, frameworks, and hardware technologies for Big data analytics. J. Supercomput. 2020, 76, 1800–1827.

[CrossRef]
2. Zeng, K.; Yang, J.; Wang, H.; Shao, B.; Wang, Z. A distributed graph engine for web scale RDF data. Proc. VLDB Endow. 2013,

6, 265–276. [CrossRef]
3. Rohloff, K.; Schantz, R.E. Clause-iteration with MapReduce to scalably query datagraphs in the SHARD graph-store. In

Proceedings of the Fourth International Workshop on Data-Intensive Distributed Computing, New York, NY, USA, 17 June 2011;
pp. 35–44. [CrossRef]

4. Haziiev, E. DISE: A Distributed in-Memory SPARQL Processing Engine over Tensor Data. In Proceedings of the 2020 IEEE 14th
International Conference on Semantic Computing (ICSC), San Diego, CA, USA, 3–5 February 2020. [CrossRef]

5. Hammoud, M.; Rabbou, D.A.; Nouri, R.; Beheshti, S.M.R.; Sakr, S. DREAM: Distributed RDF engine with adaptive query planner
and minimal communication. Proc. VLDB Endow. 2015, 8, 654–665. [CrossRef]

6. Harbi, R.; Abdelaziz, I.; Kalnis, P.; Mamoulis, N. Evaluating SPARQL Queries on Massive RDF Datasets. Proc. VLDB Endow. 2015,
8, 1859–1859. [CrossRef]

7. Rohloff, K.; Schantz, R.E. High-performance, massively scalable distributed systems using the MapReduce software framework:
The SHARD triple-store. In Programming Support Innovations for Emerging Distributed Applications; Association for Computing
Machinery: New York, NY, USA, 2010; pp. 1–5.

8. Shao, B.; Wang, H.; Li, Y. Trinity: A Distributed Graph Engine on a Memory Cloud. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, New York, New York, USA, 22–27 June 2013.

9. Gurajada, S.; Seufert, S.; Miliaraki, I.; Theobald, M. TriAD: A distributed shared-nothing RDF engine based on asynchronous
message passing. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, Utah,
19 September 2014; pp. 289–300.

10. Zhu, C.; Leung, V.C.M.; Wang, K.; Yang, L.T.; Zhang, Y. Multi-Method Data Delivery for Green Sensor-Cloud. IEEE Commun.
Mag. 2017, 55, 176–182. [CrossRef]

11. Hassan, M.M.; Song, B.; Huh, E.N. A Framework of Sensor-Cloud Integration Opportunities and Challenges. In Proceedings of
the 3rd International Conference on Ubiquitous Information Management and Communication, Suwon, Republic of Korea, 15–16
January 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 618–626. [CrossRef]

12. Dash, S.K.; Sahoo, J.P.; Mohapatra, S.; Pati, S.P. Sensor-Cloud: Assimilation of Wireless Sensor Network and the Cloud. In
Proceedings of the Advances in Computer Science and Information Technology. Networks and Communications, Bangalore, India, 2–4
January 2012; Meghanathan, N., Chaki, N., Nagamalai, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 455–464.

13. Mach, W.; Schikuta, E. Optimized Workflow Orchestration of Database Aggregate Operations on Heterogenous Grids. In
Proceedings of the 2008 37th International Conference on Parallel Processing, Portland, OR, USA, 9–12 September 2008;
pp. 214–221.

14. Warnke, B.; Sehgelmeble, Y.C.; Mantler, J.; Groppe, S.; Fischer, S. SIMORA: SIMulating Open Routing protocols for Application
interoperability on edge devices. In Proceedings of the 6th IEEE ICFEC, Messina, Italy, 16–19 May 2022; IEEE Computer Society
Press: Washington, DC, USA, 2022.

15. Heitz, J.; Stockinger, K. Join Query Optimization with Deep Reinforcement Learning Algorithms. arXiv 2019, arXiv:1911.11689.
16. Lu, H.; Chan, H.C.; Wei, K.K. A survey on usage of SQL. ACM SIGMOD Rec. 1993, 22, 60–65. [CrossRef]
17. Zolaktaf, Z.; Milani, M.; Pottinger, R. Facilitating SQL query composition and analysis. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, Portland, OR, USA, 31 May 2020; pp. 209–224.
18. Gubichev, A.; Neumann, T. Exploiting the query structure for efficient join ordering in SPARQL queries. In Proceedings of the

EDBT, Athens, Greece, 24–28 March 2014; pp. 439–450.

http://doi.org/10.1007/s11227-018-2277-x
http://dx.doi.org/10.14778/2535570.2488333
http://dx.doi.org/10.1145/1996014.1996021
http://dx.doi.org/10.6084/M9.FIGSHARE.10055387
http://dx.doi.org/10.14778/2735703.2735705
http://dx.doi.org/10.14778/2824032.2824083
http://dx.doi.org/10.1109/MCOM.2017.1600822
http://dx.doi.org/10.1145/1516241.1516350
http://dx.doi.org/10.1145/166635.166656


Computers 2023, 12, 210 17 of 18

19. Paasche, S.; Groppe, S. Generating SPARQL-Constraints for Consistency Checking in Industry 4.0 Scenarios. Open J. Internet
Things (OJIOT) 2022, 8, 80–90.

20. Paasche, S.; Groppe, S. Enhancing Data Quality and Process Optimization for Smart Manufacturing Lines in Industry 4.0
Scenarios. In Proceedings of the International Workshop on Big Data in Emergent Distributed Environments (BiDEDE ’22),
Seattle, WA, USA, 18 June 2023.

21. Arias, M.; Fernández, J.D.; Martínez-Prieto, M.A.; de la Fuente, P. An Empirical Study of Real-World SPARQL Queries. arXiv
2011, arXiv:1103.5043.

22. Allam, J.R. Evaluation of a Greedy Join-Order Optimization Approach Using the IMDB Dataset. Ph.D. Thesis, University of
Magdeburg, Magdeburg, Germany, 2018.

23. Lan, H.; Bao, Z.; Peng, Y. A Survey on Advancing the DBMS Query Optimizer: Cardinality Estimation, Cost Model, and Plan
Enumeration. Data Sci. Eng. 2021, 6, 86–101. [CrossRef]

24. Marcus, R.; Papaemmanouil, O. Deep Reinforcement Learning for Join Order Enumeration. In Proceedings of the First International
Workshop on Exploiting Artificial Intelligence Techniques for Data Management, Houston, TX, USA, 10 June 2018; Association for
Computing Machinery: New York, NY, USA, 2018. [CrossRef]

25. Wang, H.; Qi, Z.; Zheng, L.; Feng, Y.; Ouyang, J.; Zhang, H.; Zhang, X.; Shen, Z.; Liu, S. April: An Automatic Graph Data
Management System Based on Reinforcement Learning. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management, Virtual Event, 19–25 October 2020; Volume 20, pp. 3465–3468.

26. Yu, X.; Li, G.; Chai, C.; Tang, N. Reinforcement Learning with Tree-LSTM for Join Order Selection. In Proceedings of the 2020
IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; pp. 1297–1308.

27. Hasan, R.; Gandon, F. A Machine Learning Approach to SPARQL Query Performance Prediction. In Proceedings of the 2014
IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Warsaw, Poland, 11–14
August 2014; IEEE Computer Society: Washington, DC, USA, 2014; WI-IAT ’14, Volume 01, pp. 266–273. [CrossRef]

28. Ganapathi, A.; Kuno, H.; Dayal, U.; Wiener, J.L.; Fox, A.; Jordan, M.; Patterson, D. Predicting Multiple Metrics for Queries: Better
Decisions Enabled by Machine Learning. In Proceedings of the 2009 IEEE 25th International Conference on Data Engineering,
Shanghai, China, 29 March–2 April 2009; pp. 592–603. [CrossRef]

29. Gupta, C.; Mehta, A.; Dayal, U. PQR: Predicting Query Execution Times for Autonomous Workload Management. In Proceed-
ings of the International Conference on Autonomic Computing, Chicago, IL, USA, 2–6 June 2008; Strassner, J., Dobson, S.A.,
Fortes, J.A.B., Goswami, K.K., Eds.; IEEE Computer Society: Washington, DC, USA, 2008; pp. 13–22.

30. Zhang, W.E.; Sheng, Q.Z.; Qin, Y.; Taylor, K.; Yao, L. Learning-Based SPARQL Query Performance Modeling and Prediction; Springer
Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; Volume 21, pp. 1015–1035. [CrossRef]

31. Warnke, B.; Groppe, S.; Fischer, S. Distributed SPARQL queries in collaboration with the routing protocol. In Proceedings
of the International Database Engineered Applications Symposium Conference (IDEAS 2023), Heraklion, Crete, Greece, 5–7 May 2023;
Association for Computing Machinery: New York, NY, USA, 2023. [CrossRef]

32. Neumann, T.; Weikum, G. The RDF3X engine for scalable management of RDF data. VLDB J. 2010, 19, 91–113. [CrossRef]
33. Weiss, C.; Karras, P.; Bernstein, A. Hexastore: Sextuple indexing for semantic web data management. Proc. VLDB Endow. 2008,

1, 1008–1019. [CrossRef]
34. Papailiou, N.; Konstantinou, I.; Tsoumakos, D.; Karras, P.; Koziris, N. H2 RDF+: High-performance distributed joins over

large-scale RDF graphs. In Proceedings of the 2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA,
6–9 October 2013; pp. 255–263.

35. Abdelaziz, I.; Harbi, R.; Khayyat, Z.; Kalnis, P. A Survey and Experimental Comparison of Distributed SPARQL Engines for Very
Large RDF Data. Proc. VLDB Endow. 2017, 10, 2049–2060. [CrossRef]

36. Harbi, R.; Abdelaziz, I.; Kalnis, P.; Mamoulis, N.; Ebrahim, Y.; Sahli, M. Accelerating SPARQL queries by exploiting hash-based
locality and adaptive partitioning. VLDB J. 2016, 25, 355–380. [CrossRef]

37. Vidal, M.E.; Ruckhaus, E.; Lampo, T.; Martinez, A.; Sierra, J.; Polleres, A. Efficiently joining group patterns in SPARQL queries.
In Proceedings of the Extended Semantic Web Conference, Heraklion, Crete, Greece, 30 May–2 June 2010; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 228–242.

38. Bilidas, D.; Koubarakis, M. In-memory parallelization of join queries over large ontological hierarchies. Distrib. Parallel Databases
2020, 39, 545–582. [CrossRef]

39. Peng, P.; Zou, L.; Ozsu, M.T.; Chen, L.; Zhao, D. Processing SPARQL queries over distributed RDF graphs. VLDB J. 2016,
25, 243–268. [CrossRef]

40. Schatzle, A.; Przyjaciel-Zablocki, M.; Skilevic, S.; Lausen, G. S2RDF: RDF Querying with SPARQL on Spark. arXiv 2015,
arXiv:1512.07021.

41. Ramesh, S.; Papapetrou, O.; Siberski, W. Optimizing distributed joins with bloom filters. In Proceedings of the International
Conference on Distributed Computing and Internet Technology, New Delhi, India, 10–12 December 2008; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 145–156.

42. Groppe, J.; Groppe, S. Parallelizing join computations of SPARQL queries for large semantic web databases. In Proceedings of
the 2011 ACM Symposium on Applied Computing, TaiChung, Taiwan, 21–24 March 2011; pp. 1681–1686.

http://dx.doi.org/10.1007/s41019-020-00149-7
http://dx.doi.org/10.1145/3211954.3211957
http://dx.doi.org/10.1109/WI-IAT.2014.43
http://dx.doi.org/10.1109/ICDE.2009.130
http://dx.doi.org/10.1007/s11280-017-0498-1
http://dx.doi.org/10.1145/3589462.3589497
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.14778/1453856.1453965
http://dx.doi.org/10.14778/3151106.3151109
http://dx.doi.org/10.1007/s00778-016-0420-y
http://dx.doi.org/10.1007/s10619-020-07305-y
http://dx.doi.org/10.1007/s00778-015-0415-0


Computers 2023, 12, 210 18 of 18

43. Francois, G.; Kaoudi, Z.; Manolescu, I.; Quiane-Ruiz, J.A.; Zampetakis, S. Cliquesquare: Flat plans for massively parallel RDF
queries. In Proceedings of the 2015 IEEE 31st International Conference on Data Engineering, Seoul, Korea, 13–17 April 2015;
pp. 771–782.

44. Warnke, B.; Rehan, M.W.; Fischer, S.; Groppe, S. Flexible data partitioning schemes for parallel merge joins in semantic web
queries. BTW 2021, P-311, 237–256. [CrossRef]

45. Levine, S.; Kumar, A.; Tucker, G.; Fu, J. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems.
arXiv 2020, arXiv:2005.01643.

46. Lample, G.; Chaplot, D.S. Playing FPS Games with Deep Reinforcement Learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [CrossRef]

47. Hill, A.; Raffin, A.; Ernestus, M.; Gleave, A.; Kanervisto, A.; Traore, R.; Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; et al. Stable
Baselines. 2018. Available online: https://github.com/hill-a/stable-baselines (accessed on 20 August 2022)

48. Huang, S.; Ontañón, S. A Closer Look at Invalid Action Masking in Policy Gradient Algorithms. Int. FLAIRS Conf. Proc. 2022, 35.
[CrossRef]

49. Krishnan, S.; Yang, Z.; Goldberg, K.; Hellerstein, J.M.; Stoica, I. Learning to Optimize Join Queries With Deep Reinforcement
Learning. arXiv 2018, arXiv:1808.03196.

50. Warnke, B.; Mantler, J.; Groppe, S.; Sehgelmeble, Y.C.; Fischer, S. A SPARQL benchmark for distributed databases in IoT
environments. In Proceedings of the Thirty-Fifth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2022,
Hutchinson Island, Jensen Beach, FL, USA,15–18 May 2022; ACM: New York, NY, USA, 2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.18420/btw2021-12
http://dx.doi.org/10.1609/aaai.v31i1.10827
https://github.com/hill-a/stable-baselines
http://dx.doi.org/10.32473/flairs.v35i.130584
http://dx.doi.org/10.1145/3530050.3532929

	Motivation
	Related Work
	SPARQL Join Order Optimizer Implementations
	Semantic IoT Database Indexing Strategies
	Distributed Query Optimization
	Machine Learning Approaches
	Luposdate3000

	Our Approach
	Query Distribution
	Machine Learning Strategy
	Reinforcement Learning for Join Order Optimization in SPARQL (ReJOOSp)
	Weak Points

	Evaluation
	Summary and Future Work
	References

