Deepfake Attacks: Generation, Detection, Datasets, Challenges, and Research Directions
Abstract
:1. Introduction
- A summary of the state-of-the art deepfake generation and detection techniques;
- An overview of fundamental deep learning architectures used as backbone in deepfake video detection models;
- A list of existing deepfake datasets contributing to the improvement of the performance, generalization and robustness of deepfake detection models;
- A discussion of the limitations of existing techniques, challenges, and research directions in the field of deepfake detection and mitigation.
2. Related Surveys
3. Deepfake Generation
3.1. Deepfake Manipulation Types
3.2. Deepfake Generation Techniques
4. Deepfake Detection
4.1. Deepfake Detection Clues
4.1.1. Detection Based on Spatial Artifacts
4.1.2. Detection Based on Biological/Physiological Signs
4.1.3. Detection Based on Audio-Visual Inconsistencies
4.1.4. Detection Based on Convolutional Traces
4.1.5. Detection Based on Identity Information
4.1.6. Detection Based on Facial Emotions
4.1.7. Detection Based on Temporal Inconsistencies
4.1.8. Detection Based on Spatial-Temporal Features
4.2. Deep Learning Models for Deepfake Detection
5. Datasets
6. Challenges and Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hancock, J.T.; Bailenson, J.N. The Social Impact of Deepfakes. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Giansiracusa, N. How Algorithms Create and Prevent Fake News: Exploring the Impacts of Social Media, Deepfakes, GPT-3, and More; Apress: Berkeley, CA, USA, 2021; ISBN 978-1-4842-7154-4. [Google Scholar]
- Fallis, D. The Epistemic Threat of Deepfakes. Philos. Technol. 2021, 34, 623–643. [Google Scholar] [CrossRef] [PubMed]
- Karnouskos, S. Artificial Intelligence in Digital Media: The Era of Deepfakes. IEEE Trans. Technol. Soc. 2020, 1, 138–147. [Google Scholar] [CrossRef]
- Ridouani, M.; Benazzouza, S.; Salahdine, F.; Hayar, A. A Novel Secure Cooperative Cognitive Radio Network Based on Chebyshev Map. Digit. Signal Process. 2022, 126, 103482. [Google Scholar] [CrossRef]
- Whittaker, L.; Mulcahy, R.; Letheren, K.; Kietzmann, J.; Russell-Bennett, R. Mapping the Deepfake Landscape for Innovation: A Multidisciplinary Systematic Review and Future Research Agenda. Technovation 2023, 125, 102784. [Google Scholar] [CrossRef]
- Seow, J.W.; Lim, M.K.; Phan, R.C.W.; Liu, J.K. A Comprehensive Overview of Deepfake: Generation, Detection, Datasets, and Opportunities. Neurocomputing 2022, 513, 351–371. [Google Scholar] [CrossRef]
- Rana, M.S.; Nobi, M.N.; Murali, B.; Sung, A.H. Deepfake Detection: A Systematic Literature Review. IEEE Access 2022, 10, 25494–25513. [Google Scholar] [CrossRef]
- Akhtar, Z. Deepfakes Generation and Detection: A Short Survey. J. Imaging 2023, 9, 18. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Sonuç, E.; Ahmed, M.R.; Duru, A.D. Analysis Survey on Deepfake Detection and Recognition with Convolutional Neural Networks. In Proceedings of the 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 9–11 June 2022; pp. 1–7. [Google Scholar]
- Malik, A.; Kuribayashi, M.; Abdullahi, S.M.; Khan, A.N. DeepFake Detection for Human Face Images and Videos: A Survey. IEEE Access 2022, 10, 18757–18775. [Google Scholar] [CrossRef]
- Yu, P.; Xia, Z.; Fei, J.; Lu, Y. A Survey on Deepfake Video Detection. IET Biom. 2021, 10, 607–624. [Google Scholar] [CrossRef]
- Mirsky, Y.; Lee, W. The Creation and Detection of Deepfakes: A Survey. ACM Comput. Surv. 2021, 54, 1–41. [Google Scholar] [CrossRef]
- Masood, M.; Nawaz, M.; Malik, K.M.; Javed, A.; Irtaza, A. Deepfakes Generation and Detection: State-of-the-Art, Open Challenges, Countermeasures, and Way forward. Appl. Intell. 2023, 53, 3974–4026. [Google Scholar] [CrossRef]
- Das, A.; Viji, K.S.A.; Sebastian, L. A Survey on Deepfake Video Detection Techniques Using Deep Learning. In Proceedings of the 2022 Second International Conference on Next Generation Intelligent Systems (ICNGIS), Kerala, India, 29–31 July 2022; pp. 1–4. [Google Scholar]
- Lin, K.; Han, W.; Gu, Z.; Li, S. A Survey of DeepFakes Generation and Detection. In Proceedings of the 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC), Shenzhen, China, 9–11 October 2021; pp. 474–478. [Google Scholar]
- Chauhan, R.; Popli, R.; Kansal, I. A Comprehensive Review on Fake Images/Videos Detection Techniques. In Proceedings of the 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 13–14 October 2022; pp. 1–6. [Google Scholar]
- Khichi, M.; Kumar Yadav, R. A Threat of Deepfakes as a Weapon on Digital Platform and Their Detection Methods. In Proceedings of the 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Khargpur, India, 6–8 July 2021; pp. 1–8. [Google Scholar]
- Chaudhary, S.; Saifi, R.; Chauhan, N.; Agarwal, R. A Comparative Analysis of Deep Fake Techniques. In Proceedings of the 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 17–18 December 2021; pp. 300–303. [Google Scholar]
- Younus, M.A.; Hasan, T.M. Abbreviated View of Deepfake Videos Detection Techniques. In Proceedings of the 2020 6th International Engineering Conference “Sustainable Technology and Development” (IEC), Erbil, Iraq, 26–27 February 2020; pp. 115–120. [Google Scholar]
- Sudhakar, K.N.; Shanthi, M.B. Deepfake: An Endanger to Cyber Security. In Proceedings of the 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India, 10–12 July 2023; pp. 1542–1548. [Google Scholar]
- Salman, S.; Shamsi, J.A.; Qureshi, R. Deep Fake Generation and Detection: Issues, Challenges, and Solutions. IT Prof. 2023, 25, 52–59. [Google Scholar] [CrossRef]
- Khder, M.A.; Shorman, S.; Aldoseri, D.T.; Saeed, M.M. Artificial Intelligence into Multimedia Deepfakes Creation and Detection. In Proceedings of the 2023 International Conference on IT Innovation and Knowledge Discovery (ITIKD), Manama, Bahrain, 8–9 March 2023; pp. 1–5. [Google Scholar]
- Kandari, M.; Tripathi, V.; Pant, B. A Comprehensive Review of Media Forensics and Deepfake Detection Technique. In Proceedings of the 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 15–17 March 2023; pp. 392–395. [Google Scholar]
- Boutadjine, A.; Harrag, F.; Shaalan, K.; Karboua, S. A Comprehensive Study on Multimedia DeepFakes. In Proceedings of the 2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS), BLIDA, Algeria, 6–7 March 2023; pp. 1–6. [Google Scholar]
- Mallet, J.; Dave, R.; Seliya, N.; Vanamala, M. Using Deep Learning to Detecting Deepfakes. In Proceedings of the 2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI), Toronto, ON, Canada, 26–27 November 2022; pp. 1–5. [Google Scholar]
- Alanazi, F. Comparative Analysis of Deep Fake Detection Techniques. In Proceedings of the 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN), Al-Khobar, Saudi Arabia, 4–6 December 2022; pp. 119–124. [Google Scholar]
- Xinwei, L.; Jinlin, G.; Junnan, C. An Overview of Face Deep Forgery. In Proceedings of the 2021 International Conference on Computer Engineering and Application (ICCEA), Nanjing, China, 25–27 June 2021; pp. 366–370. [Google Scholar]
- Weerawardana, M.; Fernando, T. Deepfakes Detection Methods: A Literature Survey. In Proceedings of the 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS), Negambo, Sri Lanka, 11–13 August 2021; pp. 76–81. [Google Scholar]
- Swathi, P.; Sk, S. DeepFake Creation and Detection:A Survey. In Proceedings of the 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2–4 September 2021; pp. 584–588. [Google Scholar]
- Zhang, T.; Deng, L.; Zhang, L.; Dang, X. Deep Learning in Face Synthesis: A Survey on Deepfakes. In Proceedings of the 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 14–16 August 2020; pp. 67–70. [Google Scholar]
- Shi, Y.; Liu, X.; Wei, Y.; Wu, Z.; Zuo, W. Retrieval-Based Spatially Adaptive Normalization for Semantic Image Synthesis. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11214–11223. [Google Scholar]
- Liu, M.; Ding, Y.; Xia, M.; Liu, X.; Ding, E.; Zuo, W.; Wen, S. STGAN: A Unified Selective Transfer Network for Arbitrary Image Attribute Editing. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3668–3677. [Google Scholar]
- Li, L.; Bao, J.; Yang, H.; Chen, D.; Wen, F. FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping. arXiv 2020, arXiv:1912.13457. [Google Scholar]
- Robust and Real-Time Face Swapping Based on Face Segmentation and CANDIDE-3. Available online: https://www.springerprofessional.de/robust-and-real-time-face-swapping-based-on-face-segmentation-an/15986368 (accessed on 18 July 2023).
- Ferrara, M.; Franco, A.; Maltoni, D. The Magic Passport. In Proceedings of the IEEE International Joint Conference on Biometrics, Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–7. [Google Scholar]
- Thies, J.; Zollhöfer, M.; Stamminger, M.; Theobalt, C.; Nießner, M. Face2Face: Real-Time Face Capture and Reenactment of RGB Videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Zhang, J.; Zeng, X.; Wang, M.; Pan, Y.; Liu, L.; Liu, Y.; Ding, Y.; Fan, C. FReeNet: Multi-Identity Face Reenactment. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Seattle, WA, USA, 2020; pp. 5325–5334. [Google Scholar]
- Wang, Y.; Song, L.; Wu, W.; Qian, C.; He, R.; Loy, C.C. Talking Faces: Audio-to-Video Face Generation. In Handbook of Digital Face Manipulation and Detection: From DeepFakes to Morphing Attacks; Rathgeb, C., Tolosana, R., Vera-Rodriguez, R., Busch, C., Eds.; Advances in Computer Vision and Pattern Recognition; Springer International Publishing: Cham, Switzerland, 2022; pp. 163–188. ISBN 978-3-030-87664-7. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar]
- He, Z.; Zuo, W.; Kan, M.; Shan, S.; Chen, X. AttGAN: Facial Attribute Editing by Only Changing What You Want. IEEE Trans. Image Process. 2019, 28, 5464–5478. [Google Scholar] [CrossRef] [PubMed]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–19 June 2019. [Google Scholar]
- Choi, Y.; Uh, Y.; Yoo, J.; Ha, J.-W. StarGAN v2: Diverse Image Synthesis for Multiple Domains. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Seattle, WA, USA, 2020; pp. 8185–8194. [Google Scholar]
- Choi, Y.; Uh, Y.; Yoo, J.; Ha, J.-W. StarGAN v2: Diverse Image Synthesis for Multiple Domains. Available online: https://arxiv.org/abs/1912.01865v2 (accessed on 8 October 2023).
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Natsume, R.; Yatagawa, T.; Morishima, S. RSGAN: Face Swapping and Editing Using Face and Hair Representation in Latent Spaces. In Proceedings of the ACM SIGGRAPH 2018 Posters, Vancouver, BC, Canada, 12 August 2018; pp. 1–2. [Google Scholar]
- Prajwal, K.R.; Mukhopadhyay, R.; Philip, J.; Jha, A.; Namboodiri, V.; Jawahar, C.V. Towards Automatic Face-to-Face Translation. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 15 October 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1428–1436. [Google Scholar]
- FaceApp: Face Editor. Available online: https://www.faceapp.com/ (accessed on 5 October 2023).
- Reface—AI Face Swap App & Video Face Swaps. Available online: https://reface.ai/ (accessed on 5 October 2023).
- DeepBrain AI—Best AI Video Generator. Available online: https://www.deepbrain.io/ (accessed on 5 October 2023).
- Perov, I.; Gao, D.; Chervoniy, N.; Liu, K.; Marangonda, S.; Umé, C.; Dpfks, M.; Facenheim, C.S.; RP, L.; Jiang, J.; et al. DeepFaceLab: Integrated, Flexible and Extensible Face-Swapping Framework. arXiv 2021, arXiv:2005.05535. [Google Scholar]
- Make Your Own Deepfakes [Online App]. Available online: https://deepfakesweb.com/ (accessed on 5 October 2023).
- Liang, P.; Liu, G.; Xiong, Z.; Fan, H.; Zhu, H.; Zhang, X. A Facial Geometry Based Detection Model for Face Manipulation Using CNN-LSTM Architecture. Inf. Sci. 2023, 633, 370–383. [Google Scholar] [CrossRef]
- Li, G.; Zhao, X.; Cao, Y. Forensic Symmetry for DeepFakes. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1095–1110. [Google Scholar] [CrossRef]
- Hu, J.; Liao, X.; Gao, D.; Tsutsui, S.; Qin, Z.; Shou, M.Z. DeepfakeMAE: Facial Part Consistency Aware Masked Autoencoder for Deepfake Video Detection. arXiv 2023, arXiv:2303.01740. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, S.; Li, A.; Lu, W.; Gao, X.; Li, Y. MSTA-Net: Forgery Detection by Generating Manipulation Trace Based on Multi-Scale Self-Texture Attention. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4854–4866. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Ouyang, W.; Han, X.; Chen, J.; Lim, S.-N.; Jiang, Y.-G. M2TR: Multi-Modal Multi-Scale Transformers for Deepfake Detection. In Proceedings of the ICMR—International Conference on Multimedia Retrieval, Newark, NJ, USA, 27–30 June 2022; Association for Computing Machinery, Inc.: New York, NY, USA, 2022; pp. 615–623. [Google Scholar]
- Xiao, S.; Yang, J.; Lv, Z. Protecting the Trust and Credibility of Data by Tracking Forgery Trace Based on GANs. Digit. Commun. Netw. 2022, 8, 877–884. [Google Scholar] [CrossRef]
- Li, Y.; Chang, M.-C.; Lyu, S. In Ictu Oculi: Exposing AI Created Fake Videos by Detecting Eye Blinking. In Proceedings of the International Workshop on Information Forensics and Security, WIFS, Hong Kong, China, 11–13 December 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar]
- Hernandez-Ortega, J.; Tolosana, R.; Fierrez, J.; Morales, A. DeepFakesON-Phys: Deepfakes Detection Based on Heart Rate Estimation. arXiv 2020, arXiv:2010.00400. [Google Scholar]
- Cai, Z.; Stefanov, K.; Dhall, A.; Hayat, M. Do You Really Mean That? Content Driven Audio-Visual Deepfake Dataset and Multimodal Method for Temporal Forgery Localization: Anonymous Submission Paper ID 73. In Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, DICTA, Sydney, Australia, 30 November–2 December 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar]
- Yang, W.; Zhou, X.; Chen, Z.; Guo, B.; Ba, Z.; Xia, Z.; Cao, X.; Ren, K. AVoiD-DF: Audio-Visual Joint Learning for Detecting Deepfake. IEEE Trans. Inf. Forensics Secur. 2023, 18, 2015–2029. [Google Scholar] [CrossRef]
- Ilyas, H.; Javed, A.; Malik, K.M. AVFakeNet: A Unified End-to-End Dense Swin Transformer Deep Learning Model for Audio–Visual Deepfakes Detection. Appl. Soft Comput. 2023, 136, 110124. [Google Scholar] [CrossRef]
- Huang, Y.; Juefei-Xu, F.; Guo, Q.; Liu, Y.; Pu, G. FakeLocator: Robust Localization of GAN-Based Face Manipulations. IEEE Trans. Inf. Forensics Secur. 2022, 17, 2657–2672. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Lin, D.; Li, B.; Wu, J. Watching the BiG Artifacts: Exposing DeepFake Videos via Bi-Granularity Artifacts. Pattern Recogn. 2023, 135, 109179. [Google Scholar] [CrossRef]
- Guarnera, L.; Giudice, O.; Battiato, S. DeepFake Detection by Analyzing Convolutional Traces. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14 June 2020; pp. 2841–2850. [Google Scholar]
- Cho, W.; Choi, S.; Park, D.K.; Shin, I.; Choo, J. Image-to-Image Translation via Group-Wise Deep Whitening-and-Coloring Transformation. Available online: https://arxiv.org/abs/1812.09912v2 (accessed on 8 October 2023).
- Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; Choo, J. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. Available online: https://arxiv.org/abs/1711.09020v3 (accessed on 8 October 2023).
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. Available online: https://arxiv.org/abs/1912.04958v2 (accessed on 8 October 2023).
- Agarwal, S.; Hu, L.; Ng, E.; Darrell, T.; Li, H.; Rohrbach, A. Watch Those Words: Video Falsification Detection Using Word-Conditioned Facial Motion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, WACV, Waikoloa, HI, USA, 2–7 January 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023; pp. 4699–4708. [Google Scholar]
- Dong, X.; Bao, J.; Chen, D.; Zhang, T.; Zhang, W.; Yu, N.; Chen, D.; Wen, F.; Guo, B. Protecting Celebrities from DeepFake with Identity Consistency Transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; IEEE Computer Society: Washington, DC, USA, 2022; Volume 2022, pp. 9458–9468. [Google Scholar]
- Nirkin, Y.; Wolf, L.; Keller, Y.; Hassner, T. DeepFake Detection Based on Discrepancies Between Faces and Their Context. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 6111–6121. [Google Scholar] [CrossRef]
- Liu, B.; Liu, B.; Ding, M.; Zhu, T.; Yu, X. TI2Net: Temporal Identity Inconsistency Network for Deepfake Detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, WACV, Waikoloa, HI, USA, 2–7 January 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023; pp. 4680–4689. [Google Scholar]
- Hosler, B.; Salvi, D.; Murray, A.; Antonacci, F.; Bestagini, P.; Tubaro, S.; Stamm, M.C. Do Deepfakes Feel Emotions? A Semantic Approach to Detecting Deepfakes via Emotional Inconsistencies. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; IEEE Computer Society: Washington, DC, USA, 2021; pp. 1013–1022. [Google Scholar]
- Conti, E.; Salvi, D.; Borrelli, C.; Hosler, B.; Bestagini, P.; Antonacci, F.; Sarti, A.; Stamm, M.C.; Tubaro, S. Deepfake Speech Detection through Emotion Recognition: A Semantic Approach. In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; Volume 2022, pp. 8962–8966. [Google Scholar]
- Zheng, Y.; Bao, J.; Chen, D.; Zeng, M.; Wen, F. Exploring Temporal Coherence for More General Video Face Forgery Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 15024–15034. [Google Scholar]
- Pei, S.; Wang, Y.; Xiao, B.; Pei, S.; Xu, Y.; Gao, Y.; Zheng, J. A Bidirectional-LSTM Method Based on Temporal Features for Deep Fake Face Detection in Videos. In Proceedings of the 2nd International Conference on Information Technology and Intelligent Control (CITIC 2022), Kunming, China, 15–17 July 2022; Nikhath, K., Ed.; SPIE: Washington, DC, USA, 2022; Volume 12346. [Google Scholar]
- Gu, Z.; Yao, T.; Chen, Y.; Yi, R.; Ding, S.; Ma, L. Region-Aware Temporal Inconsistency Learning for DeepFake Video Detection. In Proceedings of the 31th International Joint Conference on Artificial Intelligence, Vienna, Austria, 23–29 July 2022; De Raedt, L., De Raedt, L., Eds.; International Joint Conferences on Artificial Intelligence: Vienna, Austria, 2022; pp. 920–926. [Google Scholar]
- Ru, Y.; Zhou, W.; Liu, Y.; Sun, J.; Li, Q. Bita-Net: Bi-Temporal Attention Network for Facial Video Forgery Detection. In Proceedings of the 2021 IEEE International Joint Conference on Biometrics, IJCB, Shenzhen, China, 4–7 August 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar]
- Sun, Y.; Zhang, Z.; Echizen, I.; Nguyen, H.H.; Qiu, C.; Sun, L. Face Forgery Detection Based on Facial Region Displacement Trajectory Series. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, WACV, Waikoloa, HI, USA, 3–7 January 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023; pp. 633–642. [Google Scholar]
- Lu, T.; Bao, Y.; Li, L. Deepfake Video Detection Based on Improved CapsNet and Temporal–Spatial Features. Comput. Mater. Contin. 2023, 75, 715–740. [Google Scholar] [CrossRef]
- Waseem, S.; Abu-Bakar, S.R.; Omar, Z.; Ahmed, B.A.; Baloch, S. A Multi-Color Spatio-Temporal Approach for Detecting DeepFake. In Proceedings of the 2022 12th International Conference on Pattern Recognition Systems, ICPRS, Saint-Etienne, France, 7–10 June 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar]
- Matern, F.; Riess, C.; Stamminger, M. Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations. In Proceedings of the 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 83–92. [Google Scholar]
- Ciftci, U.A.; Demir, I.; Yin, L. FakeCatcher: Detection of Synthetic Portrait Videos Using Biological Signals. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 9, 1. [Google Scholar] [CrossRef]
- Benazzouza, S.; Ridouani, M.; Salahdine, F.; Hayar, A. A Novel Prediction Model for Malicious Users Detection and Spectrum Sensing Based on Stacking and Deep Learning. Sensors 2022, 22, 6477. [Google Scholar] [CrossRef]
- Verdoliva, L. Media Forensics and DeepFakes: An Overview. IEEE J. Sel. Top. Signal Process. 2020, 14, 910–932. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks; PMLR: Westminster, UK, 2020. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing between Capsules. arXiv 2017, arXiv:1710.09829. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar]
- Benazzouza, S.; Ridouani, M.; Salahdine, F.; Hayar, A. Chaotic Compressive Spectrum Sensing Based on Chebyshev Map for Cognitive Radio Networks. Symmetry 2021, 13, 429. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Honolulu, HI, USA, 2017; pp. 1800–1807. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 17–11 October 2021. [Google Scholar]
- Neimark, D.; Bar, O.; Zohar, M.; Asselmann, D. Video Transformer Network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 17–11 October 2021. [Google Scholar]
- Zhao, C.; Wang, C.; Hu, G.; Chen, H.; Liu, C.; Tang, J. ISTVT: Interpretable Spatial-Temporal Video Transformer for Deepfake Detection. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1335–1348. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, X.; Ni, R.; Yang, S.; Zhao, Y.; Kot, A.C. Augmented Multi-Scale Spatiotemporal Inconsistency Magnifier for Generalized DeepFake Detection. IEEE Trans Multimed. 2023, 99, 1–13. [Google Scholar] [CrossRef]
- Yang, Z.; Liang, J.; Xu, Y.; Zhang, X.; He, R. Masked Relation Learning for DeepFake Detection. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1696–1708. [Google Scholar] [CrossRef]
- Shang, Z.; Xie, H.; Yu, L.; Zha, Z.; Zhang, Y. Constructing Spatio-Temporal Graphs for Face Forgery Detection. ACM Trans. Web 2023, 17, 1–25. [Google Scholar] [CrossRef]
- Rajalaxmi, R.R.; Sudharsana, P.P.; Rithani, A.M.; Preethika, S.; Dhivakar, P.; Gothai, E. Deepfake Detection Using Inception-ResNet-V2 Network. In Proceedings of the 2023 7th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 23–25 February 2023; pp. 580–586. [Google Scholar]
- Korshunov, P.; Jain, A.; Marcel, S. Custom Attribution Loss for Improving Generalization and Interpretability of Deepfake Detection. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; IEEE: Singapore, 2022; pp. 8972–8976. [Google Scholar]
- Patel, Y.; Tanwar, S.; Bhattacharya, P.; Gupta, R.; Alsuwian, T.M.; Davison, I.E.; Mazibuko, T.F. An Improved Dense CNN Architecture for Deepfake Image Detection. IEEE Access 2023, 11, 22081–22095. [Google Scholar] [CrossRef]
- Pang, G.; Zhang, B.; Teng, Z.; Qi, Z.; Fan, J. MRE-Net: Multi-Rate Excitation Network for Deepfake Video Detection. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 3663–3676. [Google Scholar] [CrossRef]
- Mehra, A.; Agarwal, A.; Vatsa, M.; Singh, R. Motion Magnified 3-D Residual-in-Dense Network for DeepFake Detection. IEEE Trans. Biom. Behav. Iden. Sci. 2023, 5, 39–52. [Google Scholar] [CrossRef]
- Lin, H.; Huang, W.; Luo, W.; Lu, W. DeepFake Detection with Multi-Scale Convolution and Vision Transformer. Digit. Signal Process. Rev. J. 2023, 134, 103895. [Google Scholar] [CrossRef]
- Khalid, F.; Akbar, M.H.; Gul, S. SWYNT: Swin Y-Net Transformers for Deepfake Detection. In Proceedings of the 2023 International Conference on Robotics and Automation in Industry (ICRAI), Peshawar, Pakistan, 3–5 March 2023; pp. 1–6. [Google Scholar]
- Zhuang, W.; Chu, Q.; Tan, Z.; Liu, Q.; Yuan, H.; Miao, C.; Luo, Z.; Yu, N. UIA-ViT: Unsupervised Inconsistency-Aware Method Based on Vision Transformer for Face Forgery Detection. In European Conference on Computer Vision; Avidan, S., Brostow, G., Cisse, M., Farinella, G., Hassner, T., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; Volume 13665, pp. 391–407. [Google Scholar]
- Yan, Z.; Sun, P.; Lang, Y.; Du, S.; Zhang, S.; Wang, W. Landmark Enhanced Multimodal Graph Learning for Deepfake Video Detection. arXiv 2022, arXiv:2209.05419. [Google Scholar] [CrossRef]
- Saealal, M.S.; Ibrahim, M.Z.; Shapiai, M.I.; Fadilah, N. In-the-Wild Deepfake Detection Using Adaptable CNN Models with Visual Class Activation Mapping for Improved Accuracy. In Proceedings of the 2023 5th International Conference on Computer Communication and the Internet (ICCCI), Fujisawa, Japan, 23–25 June 2023; IEEE: Fujisawa, Japan, 2023; pp. 9–14. [Google Scholar]
- Xu, Y.; Raja, K.; Pedersen, M. Supervised Contrastive Learning for Generalizable and Explainable DeepFakes Detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, WACVW, Waikoloa, HI, USA, 4–8 January 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 379–389. [Google Scholar]
- Xia, Z.; Qiao, T.; Xu, M.; Wu, X.; Han, L.; Chen, Y. Deepfake Video Detection Based on MesoNet with Preprocessing Module. Symmetry 2022, 14, 939. [Google Scholar] [CrossRef]
- Wu, N.; Jin, X.; Jiang, Q.; Wang, P.; Zhang, Y.; Yao, S.; Zhou, W. Multisemantic Path Neural Network for Deepfake Detection. Secur. Commun. Netw. 2022, 2022, 4976848. [Google Scholar] [CrossRef]
- Wu, H.; Wang, P.; Wang, X.; Xiang, J.; Gong, R. GGViT:Multistream Vision Transformer Network in Face2Face Facial Reenactment Detection. In Proceedings of the 2022 26th International Conference on Pattern Recognition, Montreal, QC, Canada, 21–25 August 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; Volume 2022, pp. 2335–2341. [Google Scholar]
- Cozzolino, D.; Pianese, A.; Nießner, M.; Verdoliva, L. Audio-Visual Person-of-Interest DeepFake Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 943–952. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Wu, X.; Ma, Y.; Song, Z.; Wu, M. Face Forgery Detection Based on the Improved Siamese Network. Secur. Commun. Netw. 2022, 2022, 5169873. [Google Scholar] [CrossRef]
- Saealal, M.S.; Ibrahim, M.Z.; Mulvaney, D.J.; Shapiai, M.I.; Fadilah, N. Using Cascade CNN-LSTM-FCNs to Identify AIaltered Video Based on Eye State Sequence. PLoS ONE 2022, 17, e0278989. [Google Scholar] [CrossRef]
- Rössler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Niessner, M. FaceForensics++: Learning to Detect Manipulated Facial Images. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 November 2019; pp. 1–11. [Google Scholar]
- GitHub—Deepfakes/Faceswap: Deepfakes Software for All. Available online: https://github.com/deepfakes/faceswap (accessed on 10 October 2023).
- GitHub—MarekKowalski/FaceSwap: 3D Face Swapping Implemented in Python. Available online: https://github.com/MarekKowalski/FaceSwap/ (accessed on 10 October 2023).
- Thies, J.; Zollhöfer, M.; Nießner, M. Deferred Neural Rendering: Image Synthesis Using Neural Textures. Available online: https://arxiv.org/abs/1904.12356v1 (accessed on 10 October 2023).
- Li, Y.; Yang, X.; Sun, P.; Qi, H.; Lyu, S. Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3204–3213. [Google Scholar]
- Dolhansky, B.; Bitton, J.; Pflaum, B.; Lu, J.; Howes, R.; Wang, M.; Ferrer, C.C. The DeepFake Detection Challenge (DFDC) Dataset. arXiv 2020, arXiv:2006.07397. [Google Scholar]
- GitHub—Cuihaoleo/Kaggle-Dfdc: 2nd Place Solution for Kaggle Deepfake Detection Challenge. Available online: https://github.com/cuihaoleo/kaggle-dfdc (accessed on 10 October 2023).
- Nirkin, Y.; Keller, Y.; Hassner, T. FSGAN: Subject Agnostic Face Swapping and Reenactment. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Jiang, L.; Li, R.; Wu, W.; Qian, C.; Loy, C.C. DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Zi, B.; Chang, M.; Chen, J.; Ma, X.; Jiang, Y.-G. WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 2382–2390. [Google Scholar] [CrossRef]
- Le, T.-N.; Nguyen, H.H.; Yamagishi, J.; Echizen, I. OpenForensics: Large-Scale Challenging Dataset for Multi-Face Forgery Detection and Segmentation In-the-Wild. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 10097–10107. [Google Scholar]
- Kwon, P.; You, J.; Nam, G.; Park, S.; Chae, G. KoDF: A Large-Scale Korean DeepFake Detection Dataset. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 10724–10733. [Google Scholar]
- Siarohin, A.; Lathuilière, S.; Tulyakov, S.; Ricci, E.; Sebe, N. First Order Motion Model for Image Animation. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Yi, R.; Ye, Z.; Zhang, J.; Bao, H.; Liu, Y.-J. Audio-Driven Talking Face Video Generation with Learning-Based Personalized Head Pose. arXiv 2020, arXiv:2002.10137. [Google Scholar]
- Prajwal, K.R.; Mukhopadhyay, R.; Namboodiri, V.; Jawahar, C.V. A Lip Sync Expert Is all You Need for Speech to Lip Generation in the Wild. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12 October 2020; pp. 484–492. [Google Scholar]
- Khalid, H.; Tariq, S.; Woo, S.S. FakeAVCeleb: A Novel Audio-Video Multimodal Deepfake Dataset. arXiv 2021, arXiv:2108.05080. [Google Scholar]
- Jia, Y.; Zhang, Y.; Weiss, R.J.; Wang, Q.; Shen, J.; Ren, F.; Chen, Z.; Nguyen, P.; Pang, R.; Moreno, I.L.; et al. Transfer Learning from Speaker Verification to Multispeaker Text-to-Speech Synthesis. Available online: https://arxiv.org/abs/1806.04558v4 (accessed on 10 October 2023).
- Korshunov, P.; Marcel, S. DeepFakes: A New Threat to Face Recognition? Assessment and Detection. arXiv 2018, arXiv:1812.08685. [Google Scholar]
- Yang, X.; Li, Y.; Lyu, S. Exposing Deep Fakes Using Inconsistent Head Poses. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8261–8265. [Google Scholar]
- Contributing Data to Deepfake Detection Research—Google Research Blog. Available online: https://blog.research.google/2019/09/contributing-data-to-deepfake-detection.html (accessed on 5 October 2023).
- Wang, Y.; Chen, X.; Zhu, J.; Chu, W.; Tai, Y.; Wang, C.; Li, J.; Wu, Y.; Huang, F.; Ji, R. HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping. arXiv 2021, arXiv:2106.09965. [Google Scholar]
- He, Y.; Gan, B.; Chen, S.; Zhou, Y.; Yin, G.; Song, L.; Sheng, L.; Shao, J.; Liu, Z. ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 21–25 June 2021; IEEE Computer Society: Washington, DC, USA, 2021; pp. 4358–4367. [Google Scholar]
Author | Title | Covered | Not Covered |
---|---|---|---|
Sudhakar and Shanthi [21] | Deepfake: An Endanger to Cyber Security | Deepfake generation | Deepfake types |
Deepfake detection | Datasets | ||
Salman et al. [22] | Deepfake Generation and Detection: Issues, Challenges, and Solutions | Audio–visual Deepfake generation | Datasets |
Deepfake detection | |||
Khder et al. [23] | Artificial Intelligence into Multimedia Deepfakes Creation and Detection | Deepfake types | Datasets |
Deepfake generation | |||
Deepfake detection | |||
Kandari et al. [24] | A Comprehensive Review of Media Forensics and Deepfake Detection Technique | Forensic-based deepfake detection methods | Deepfake types |
Deepfake generation | |||
Datasets | |||
Boutadjine et al. [25] | A comprehensive study on multimedia Deepfakes | Deepfake generation | Deepfake types |
Deepfake detection | |||
Datasets | |||
Threats and limitations | |||
Mallet et al. [26] | Using Deep Learning to Detecting Deepfakes | Deepfake detection | Deepfake generation |
Datasets | Deepfake types | ||
Limitations | |||
Das et al. [15] | A Survey on Deepfake Video-Detection Techniques Using Deep Learning | Deep learning-based detection models | Deepfake types |
Deepfake generation | |||
Datasets | |||
Alanazi [27] | Comparative Analysis of Deepfake Detection Techniques | Deepfake creation | Datasets |
Deepfake detection | |||
Xinwei et al. [28] | An Overview of Face Deep Forgery | Deepfake generation | Deepfake detection |
Deepfake types | |||
Datasets | |||
Weerawardana and Fernando [29] | Deepfakes Detection Methods: A Literature Survey | Deepfake detection | Deepfake types |
Limitations | Deepfake generation | ||
P and Sk [30] | Deepfake Creation and Detection: A Survey | Deepfake generation | Deepfake types |
Deepfake detection | Datasets | ||
Lin et al. [16] | A Survey of Deepfakes Generation and Detection | Deepfake types | Future trends |
Deepfake generation | |||
Deepfake detection | |||
Datasets | |||
Khichi and Kumar Yadav [18] | A Threat of Deepfakes as a Weapon on Digital Platforms and their Detection Methods | Deepfake generation | Datasets |
Deepfake detection | |||
Limitations and future trends | |||
Chaudhary et al. [19] | A Comparative Analysis of Deepfake Techniques | Deepfake creation | Deepfake types |
Deepfake detection | |||
Future directions | |||
Datasets | |||
Zhang et al. [31] | Deep Learning in Face Synthesis: A Survey on Deepfakes | Deepfake types | Datasets |
Deepfake generation | Deepfake detection | ||
Younus and Hasan [20] | Abbreviated View of Deepfake Videos Detection Techniques | Deepfake generation | Deepfake types |
Deepfake detection | Datasets |
Author | Features | Technique | Intra-Dataset Performance (%) | Dataset |
---|---|---|---|---|
Zhao et al. [97] | Spatial temporal | Xception, Video Transformer | ACC (DF = 98.9 F2F = 96.1 FS = 97.5 NT = 92.1) | FF++(LQ) |
ACC (DF = 99.6 F2F = 99.6 FS = 100 NT = 96.8) | FF++(HQ) | |||
ACC = 99.8 | Celeb-DF | |||
ACC = 92.1 | DFDC | |||
Yu et al. [98] | Spatial temporal | Global Inconsistency View, Multi-timescale Local Inconsistency View | ACC = 98.86 AUC = 99.89 | FF++ |
ACC = 98.78 AUC = 99.81 | DFD | |||
ACC = 95.93 AUC = 98.96 | DFDC | |||
ACC = 99.64 AUC = 99.78 | Celeb-DF | |||
ACC = 98.94 AUC = 99.27 | DFR1.0 | |||
Yang, Z. et al. [99] | Attentional features from facial regions | 3D-CNN, TGCN, Spatial-temporal Attention, Masked Relation Learner | ACC = 91.81 | FF++(LQ) |
ACC = 93.82 | FF++(HQ) | |||
AUC = 99.96 | Celeb-DF | |||
AUC = 99.11 | DFDC | |||
Yang, W. et al. [62] | Audio-Visual Features | Temporal-Spatial Encoder, Multi-Modal Joint-Decoder | ACC = 95.3 AUC = 97.6 | DefakeAVMiT |
ACC = 83.7 AUC = 89.2 | FakeAVCeleb | |||
ACC = 91.4 AUC = 94.8 | DFDC | |||
Shang et al. [100] | Spatial temporal | Temporal convolutional network, Spatial Relation Graph Convolution Units, Temporal Attention Convolution Units | ACC (DF = 99.29 F2F = 97.14 FS = 100 NT = 95.36) | FF++(HQ), Celeb-DF, DFDC |
Rajalaxmi et al. [101] | Spatial inconsistencies | Inception-ResNet-V2 | ACC = 98.37 | DFDC |
Korshunov et al. [102] | Spatial temporal | Xception | ACC = 100.00 | Celeb-DF |
ACC = 99.14 | FF++ | |||
AUC = 99.93 | DFR1.0 | |||
AUC = 96.57 | HifiFace | |||
Patel et al. [103] | Temporal inconsistencies | Dense CNN | ACC = 97.2 | CelebA, FFHQ, GDWCT, AttGAN, STARGAN, StyleGAN, StyleGAN2 |
Pang et al. [104] | Spatial temporal | Bipartite Group Sampling, Inconsistency Excitation, Longstanding Inconsistency Excitation, | ACC = 85.61 AUC = 91.23 | WildDeepfake |
ACC = 97.76 AUC = 99.57 | FF++(HQ) | |||
ACC = 91.60 AUC = 96.55 | FF++(LQ) | |||
ACC = 97.35 AUC = 99.75 | DFDC | |||
Mehra et al. [105] | Spatial temporal | 3D-Residual-in-Dense Net | ACC (DF = 98.57 F2F = 97.84 FS = 94.62 NT = 96.05) | FF++ |
AUC= 92.93 | Celeb-DF | |||
Lu et al. [81] | Spatial temporal | VGG Capsule Networks | ACC = 94.07 | Celeb-DF, FF++ |
Liu et al. [73] | Identity information | Encoder, RNN | AUC (FF++ = 99.95) | FF++, DFD, DFR1.0, Celeb-DF |
Lin et al. [106] | Face semantic information | EfficientNet-b4 ViT | AUC = 99.80 | Celeb-DF |
AUC = 88.47 | DFDC | |||
ACC = 90.74 AUC = 94.86 | FF++(LQ) | |||
ACC = 82.63 | WildDeepfake | |||
Liang et al. [53] | Facial geometry features | Facial geometry prior module, CNN-LSTM | ACC = 99.60 | FF++ |
ACC = 97.00 | DFR1.0 | |||
ACC = 82.84 | Celeb-DF | |||
ACC = 94.68 | DFD | |||
Khalid et al. [107] | Spatial inconsistencies | Swin Y-Net Transformers | ACC (DF = 97.12 F2F = 95.73 FS = 92.10 NT = 79.90) | FF++ |
AUC (DF = 97.00 F2F = 97.00 FS = 93.00 NT = 83.00) | ||||
ACC = 97.91 AUC = 98.00 | Celeb-DF | |||
Chen et al. [65] | Bi-granularity artifacts | ResNet-18decoder | Celeb-DF AUC = 99.80 FF++ AUC = 99.39 | Celeb-DF, FF++ DFD, DFDC-P, UADFV, DFTIMIT, WildDeepfake |
Agarwal et al. [70] | Identity information | Action Units | AUC = 97.00 | World Leaders Dataset, Wav2Lip, FaceSwap YouTube |
Cai et al. [61] | Audio-visual inconsistencies | 3DCNN 2DCNN | ACC = 99.00 | LAV-DF |
ACC = 84.60 | DFDC | |||
Zhuang et al. [108] | Spatial inconsistencies | Vision Transformer | FF++ AUC = 99.33 | FF++, Celeb-DF, DFD, DFDC |
Yan et al. [109] | Spatial temporal frequency features | GNN | AUC = 91.90 ACC = 89.70 | FF++(LQ) |
AUC = 99.50 ACC = 97.80 | F++(HQ) | |||
Saealal et al. [110] | Spatial temporal | VGG11 | AUC = 0.9446 | OpenForensics |
Xu et al. [111] | Spatial inconsistencies | Supervised contrastive model, Xception | ACC = 93.47 | FF++ |
Xia et al. [112] | Image texture | MesoNet | ACC = 94.10 AUC = 97.40 | FF++ |
ACC = 94.90 AUC = 94.30 | Celeb-DF | |||
AUC = 96.50 | UADFV | |||
AUC = 84.30 | DFD | |||
Wu, N. et al. [113] | Semantic features | Multisemantic path neural network | ACC = 76.31 | FF++(LQ) |
ACC = 94.21 | F++(HQ) | |||
AUC = 99.52 | TIMIT(LQ) | |||
AUC = 99.12 | TIMIT(HQ) | |||
Wu, H. et al. [114] | Spatial inconsistencies | Multistream Vision Transformer Network | ACC = 89.04 | FF++(LQ) |
ACC = 99.31 | FF++(HQ) | |||
Waseem et al. [82] | Spatial temporal | XceptionNet and 3DCNN | FF++ ACC (DF = 95.55 F2F = 77.05 NT = 75.35) | FF++, DFTIMIT, DFD |
Cozzolino et al. [115] | Audio-visual inconsistencies | ResNet-50 | Avg AUC = 94.6 | DFDC, DFTIMIT, FakeAVCeleb, KoDF |
Wang, J. et al. [57] | Spatial-frequency domain | Multi-modal Multi-scale Transformers | ACC = 92.89 AUC = 95.31 | FF++(LQ) |
ACC = 97.93 AUC = 99.51 | FF++(HQ) | |||
AUC = 99.80 | Celeb-DF | |||
AUC = 91.20 | SR-DF | |||
Wang, B. et al. [116] | Image grey space features | CNN Siamese network | ACC (DF = 84.14 F2F = 98.62 FS = 99.49 NT = 98.90) | FF++(LQ) |
ACC (DF = 95.79 F2F = 97.12 FS = 97.37 NT = 84.71) | FF++(HQ) | |||
Saealal et al. [117] | Biological signals (Eye blinking) | Cascade CNN-LSTM-FCNs | ACC (DF = 94.65 F2F = 90.37 FS = 91.54 NT = 86.76) | FF++ |
Dataset | Year Released | Real Content | Fake Content | Generation Method | Modality |
---|---|---|---|---|---|
FaceForensics ++ [118] | 2019 | 1000 | 4000 | DeepFakes [119], Face2Face2 [37], FaceSwap [120], NeuralTextures [121], FaceShifter [34] | Visual |
Celeb-DF (v2) [122] | 2020 | 590 | 5639 | DeepFake [122] | Visual |
DFDC [123] | 2020 | 23,654 | 104,500 | DFAE, MM/NN, FaceSwap [120], NTH [124], FSGAN [125] | Audio/Visual |
DeeperForensics-1.0 [126] | 2020 | 48,475 | 11,000 | DF-VAE [126] | Visual |
WildDeepfake [127] | 2020 | 3805 | 3509 | Curated online | Visual |
OpenForensics [128] | 2021 | 45,473 | 70,325 | GAN based | Visual |
KoDF [129] | 2021 | 62,166 | 175,776 | FaceSwap [120], DeepFaceLab [51], FSGAN [125], FOMM [130], ATFHP [131], Wav2Lip [132] | Visual |
FakeAVCeleb [133] | 2021 | 500 | 19,500 | FaceSwap [120], FSGAN [125], SV2TTS [134], Wav2Lip [132] | Audio/Visual |
DeepfakeTIMIT [135] | 2018 | 640 | 320 | GAN based | Audio/Visual |
UADFV [136] | 2018 | 49 | 49 | DeepFakes [119] | Visual |
DFD [137] | 2019 | 360 | 3000 | DeepFakes [119] | Visual |
HiFiFace [138] | 2021 | - | 1000 | HifiFace [138] | Visual |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naitali, A.; Ridouani, M.; Salahdine, F.; Kaabouch, N. Deepfake Attacks: Generation, Detection, Datasets, Challenges, and Research Directions. Computers 2023, 12, 216. https://doi.org/10.3390/computers12100216
Naitali A, Ridouani M, Salahdine F, Kaabouch N. Deepfake Attacks: Generation, Detection, Datasets, Challenges, and Research Directions. Computers. 2023; 12(10):216. https://doi.org/10.3390/computers12100216
Chicago/Turabian StyleNaitali, Amal, Mohammed Ridouani, Fatima Salahdine, and Naima Kaabouch. 2023. "Deepfake Attacks: Generation, Detection, Datasets, Challenges, and Research Directions" Computers 12, no. 10: 216. https://doi.org/10.3390/computers12100216
APA StyleNaitali, A., Ridouani, M., Salahdine, F., & Kaabouch, N. (2023). Deepfake Attacks: Generation, Detection, Datasets, Challenges, and Research Directions. Computers, 12(10), 216. https://doi.org/10.3390/computers12100216