
Citation: Teixeira, T.S.R.; Silveira, F.F.;

Guerra, E.M. Moving towards a

Mutant-Based Testing Tool for

Verifying Behavior Maintenance in

Test Code Refactorings. Computers

2023, 12, 230. https://doi.org/

10.3390/computers12110230

Academic Editors: Osvaldo Gervasi

and Damiano Perri

Received: 10 October 2023

Revised: 3 November 2023

Accepted: 5 November 2023

Published: 13 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Moving towards a Mutant-Based Testing Tool for Verifying
Behavior Maintenance in Test Code Refactorings
Tiago Samuel Rodrigues Teixeira 1 , Fábio Fagundes Silveira 2,* and Eduardo Martins Guerra 3

1 Technological Education Unit, Institute for Technological Research (IPT), São Paulo 05508-901, Brazil;
tiagosamfito@gmail.com

2 Science and Technology Institute, Federal University of São Paulo (UNIFESP),
São José dos Campos 12247-014, Brazil

3 Faculty of Engineering, Free University of Bozen-Bolzano (UNIBZ), 39100 Bolzano, Italy;
guerraem@gmail.com

* Correspondence: fsilveira@unifesp.br

Abstract: Evaluating mutation testing behavior can help decide whether refactoring successfully
maintains the expected initial test results. Moreover, manually performing this analytical work is both
time-consuming and prone to errors. This paper extends an approach to assess test code behavior
and proposes a tool called MeteoR. This tool comprises an IDE plugin to detect issues that may arise
during test code refactoring, reducing the effort required to perform evaluations. A preliminary
assessment was conducted to validate the tool and ensure the proposed test code refactoring approach
is adequate. By analyzing not only the mutation score but also the generated mutants in the pre- and
post-refactoring process, results show that the approach is capable of checking whether the behavior
of the mutants remains unchanged throughout the refactoring process. This proposal represents
one more step toward the practice of test code refactoring. It can improve overall software quality,
allowing developers and testers to safely refactor the test code in a scalable and automated way.

Keywords: software engineering; test code refactoring; test smells; mutation testing

1. Introduction

Refactoring software code is an essential area of software engineering that requires
safety nets of protection to avoid degradation of application behavior after code correction.
As declared by Parsai et al. [1], refactoring is not an activity that only concerns the appli-
cation code but also actively involves the test code. Meszaros [2] states that tests, when
refactored, should not change external behavior, only changes in internal design.

When refactoring the application code, automated test code serves as a safety net to
ensure the quality of the production code. However, if the test suite code itself undergoes
refactoring, the safety net it provides is lost [3]. Some researchers have suggested using
mutation testing to protect the refactored test from changing its behavior [1]. Mutation
testing is injections of intentional failures performed in the application code to validate
the behavior of the tests [4]. A study conducted by Parsai et al. [1] verified that mutation
testing allows identifying the following: (1) changes in the behavior of the refactored test
code; and (2) which part of the test code was improperly refactored. Specifically, when
evaluating changes in behavior, Parsai et al. [1] relies on comparing mutation scores before
and after refactoring. Moreover, although Parsai et al. [1] have created a mutation testing
tool named LittleDarwin (https://littledarwin.parsai.net/, accessed on 31 October 2022),
it focuses only on performing the mutation testing and does not provide any feature to
support test code refactoring. So, even if mutation testing was pointed out as an alternative
to providing safety for refactoring test code, no tool implemented an automated analysis
based on that to evaluate the refactored test behavior.

Computers 2023, 12, 230. https://doi.org/10.3390/computers12110230 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12110230
https://doi.org/10.3390/computers12110230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0009-0006-9960-4729
https://orcid.org/0000-0002-2063-2959
https://orcid.org/0000-0001-5555-3487
https://littledarwin.parsai.net/
https://doi.org/10.3390/computers12110230
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12110230?type=check_update&version=3

Computers 2023, 12, 230 2 of 14

In this paper, we propose the development of a tool called MeteoR (Mutant-based
test code Refactorings) that simplifies the evaluation of the behavior of the test mutation
during the test code refactoring. Designed as an Eclipse (https://eclipseide.org, accessed on
30 October 2022) plugin, this tool can significantly enhance safety on test code refactoring by
combining the IDE environment, mutant testing, and analysis/reporting tools. In addition
to the previous work, this work proposes the analysis of each mutation individually to
provide a more thorough assessment of the refactored test behavior.

This study presents three main contributions: (1) an extension of the approach intro-
duced by Parsai et al. [1] that incorporates an in-depth automated analysis of test mutation
behavior; (2) a proposal of a tool conception to speed up the refactoring analysis of the test
code called MeteoR; and (3) a preliminary feasibility assessment to validate the functional
aspects of the proposed tool based on the extended approach.

The remainder of this paper is organized as follows: Section 2 provides a leveling of
knowledge by presenting the theoretical aspects necessary to understand the research ques-
tion and the proposed approach. Section 3 presents the related works in the literature. Next,
in Section 4, a state-of-the-art test refactoring tool concept is described in detail. Section 5
presents a preliminary assessment of the proposed tool and approach for evaluating test
code refactoring. Section 6 discusses the results obtained from this preliminary evaluation.
Finally, in Section 7, the authors conclude on the study results and provide perspectives for
future work.

2. Background
2.1. Test Code Refactoring

As Meszaros [2] states, test code refactoring differs from application code refactoring
because there are no “automated tests” for automated tests. Challenges arise when verifying
the outcomes of refactoring: if a test fails, it is difficult to determine if the failure is due to a
refactoring error, and if it passes, there is no guarantee it will fail when it should.

This goes hand in hand with test automation because it is very complicated to refactor
the test code without having a safety net that guarantees that automated tests do not break
during their redesign states [2].

According to Guerra and Fernandes [5], when the change is applied in the test code,
the concept of the behavior of the test code is different from the behavior of the application
code, so it makes no sense to create tests to verify the behavior of the test code. That is,
the way to evaluate the application’s behavior differs from how to assess the test behavior.

Test code refactoring can be motivated by the following: (1) the elimination of bad
smells in the test code, or test smells (The term “test smells” was coined by Van Deursen
et al. [6] as a name for symptoms in the test code that possibly indicate a deeper problem.);
and (2) the need to refactor the application code, which may involve adapting the test code.

This work sheds light on condition (1) since the refactoring of the application code (2)
and the subsequent refactoring of the test codes are a situation that results in different sets of
mutants, making the comparison much more difficult [1]. To address the second situation,
Parsai et al. [1] suggests dividing the refactoring into two parts. First, the application code
refactoring, with the execution of the tests, ensures that the application’s behavior has not
changed. Second, in test code refactoring, it is possible to apply the suggested and detailed
concept of this study as described in Section 5.

2.2. Mutation Testing

Mutation testing is the process of injecting faults into the application source code. This
field of research dates back to the early 1970s when Lipton proposed the initial concepts of
mutation in a paper entitled “Fault Diagnosis of Computer Program” [4]. It is performed
as follows: first, a faulty application version is created by injecting a purposeful fault
(mutation). One operator (mutation operator or mutator) transforms a specific part of the
code. After the faulty versions of the software (mutants) have been generated, the test
suite is run on each of these mutants. According to Offutt and Untch [4], mutation testing

https://eclipseide.org

Computers 2023, 12, 230 3 of 14

objectively measures the suitability (effectiveness) level of analyzed test sequences, called
score mutation. It is calculated as the ratio of dead mutants (the ones detected by the test
suite) over the total number of non-equivalent ones. Equivalent mutants are semantically
equivalent to the original program. Thus, they can not be killed by any test case. A manual
process usually shows equivalence during the execution of test cases.

This score quantifies the effectiveness of the test. Mutants not detected by the tests
provide valuable information for improving the test set by identifying areas that require
additional tests. In this way, mutation testing guides the improvement of a test suite. It is
up to the developer to analyze the test logs and reports to validate whether the survival
mutants are subject to correction. Finally, the developer refactors the test code to ensure, in a
new round of mutation test execution, that previously surviving mutants have been killed.

3. Related Work

The literature review technique known as “Snowballing” [7] was applied to retrieve
the most critical articles on the subject. Some searches merged the “test refactoring” and
the “test mutation” strings in this work.

There is a vast body of literature on the subject of test mutants or test refactoring.
However, the objective of our research is not to use mutation tests directly to evaluate the
quality of test suites. Instead, the goal is to employ mutation tests according to the Parsai
et al. [1] approach to measuring the behavior and effectiveness of the refactored test code.

Pizzini [8] primarily relies on instrumentation. This involves instrumenting both
the system under test (SUT) and its tests to detect the entry and exit points of methods,
modifications in SUT class attributes, and selection and repetition structures. The resulting
instrumentation enables the creation of a code execution tree, which can be used to identify
the behavior of the SUT and its tests. During this step, the syntactic and semantic analysis of
the SUT and test code is used to identify specific points of the code, such as object creation
and modifications to the internal states of created objects. It is worth noting that this
approach may require significant effort to instrument all the code, which could discourage
some developers. Nevertheless, it provides full observability of test and application
behavior after refactoring.

Bladel and Demeyer [3]’s approach involves constructing a test behavior tree using a
technique inspired by symbolic execution. This tree is constructed for both the pre- and
post-refactoring test cases, and a comparison between them is made to determine whether
the test behavior has been preserved. The similarity between the two trees is crucial to
preserving behavior.

Regarding tools that can support behavior preservation, AlOmar et al. [9] argue that
there is significant potential to propose and improve automated tools, not only in the
context of test code refactoring but also in software refactoring in a more general sense.

Based on the related works, three primary categories of tools were identified:
Test Code Refactoring Tool: To verify changes in test behavior, Parsai et al. [1] high-

light the importance of using mutation testing to check for changes in test behavior. In con-
trast, Bladel and Demeyer [3] propose a distinct approach using symbolic execution. A tool
called T-CORE (Test Code Refactoring Tool) generates a report indicating whether test be-
havior has changed after execution. An alternative tool proposal, SafeRefactor, introduced
by Soares [10], provides valuable perspectives on assisting developers during refactoring,
despite not being a test code refactoring tool. Aljawabrah et al. [11] proposes a tool to
facilitate the visualization of test code traceability (TCT—Test-to-Code Traceability), which
can assist in the process of refactoring test code.

Test Bad Smell Detection Tool: According to van Bladel and Demeyer [12], there is
a limited number of bad smell detection tools for testing. Peruma et al. [13] propose a
tool called TSDetect (https://testsmells.org/, accessed on 18 November 2022) (Test Smell
Detector) to detect and address bad smells in code. This tool reads a .csv configuration file
containing a list of classes to be checked and identifies any bad smells. Figure 1 presents
the high-level architecture of TSDetect.

https://testsmells.org/

Computers 2023, 12, 230 4 of 14

Marinke et al. [14] proposed an architecture called EARTC (Extensible Architecture for
Refactoring Test Code). A plugin called Neutrino [14] was developed for the Eclipse IDE to
assist in refactoring the test code and the identification of bad smells, as seen in Figure 2.

Figure 1. High-level architecture of TSDetect tool [13].

Figure 2. Eclipse Neutrino plugin and the EARTC architecture idenfitying test code smells [14].

Mutation Testing Tools: Papadakis et al. [15], reported an increase in mutation testing
tools developed between 2008 and 2017, with 76 tools created for various software artifacts.
While most of these tools target implementation-level languages, the C and Java program-
ming languages are the primary focus of mutation testing tools at the implementation
level. According to Singh and Suri [16], Java has the highest number of mutation testing
tools among different languages. These tools include MuJava, PIT (or PITest), Judy, Jester,
Jumble, and Bacterio. As noted by Monteiro et al. [17], PIT is a widely-used tool for research
purposes and has also gained traction in the industry.

4. MeteoR: An Integrated Tool Proposal for Test Code Refactoring

We have compiled a list of nine main stages (functionalities) that can form an inte-
grated tool model for test code refactoring, covering all the requirements gathered to this
task [3,9,13,14,17–20].

The primary stages of MeteoR are presented in Figure 3 as a sequential arrangement
of test code refactoring activities, while a detailed explanation of the roles played by each
stage can be found in Table 1.

Since our tool proposal is currently in the development phase, we are focusing specifi-
cally on implementing and integrating stages 4, 5, and 6, which are centered on validating

Computers 2023, 12, 230 5 of 14

changes in test behavior. Our research group is also working on the other stages to develop
the whole workflow of MeteoR.

Figure 3. A holistic view (workflow) of the MeteoR’s main stages (Sn). The dashed box indicates the
ongoing stages addressed in this paper.

4.1. The MeteoR Workflow

MeteoR workflow starts with cloning a project from a GIT (AlOmar et al. [9] underline
the importance of integrating this kind of tool with control version systems such as Git or
Subversion.) repository to apply the test code refactoring (Stage 1—S1—Figure 3).

Next, a list of identified bad smells in the test code is prepared using a tool, such as
TSDetect (S2), or through the developer’s own experience in recognizing the types of bad
smells that need to be corrected. In future versions, it is planned that S1 and S2 can act in
silent mode, producing a backlog that serves as the basis for the next stage.

The bad smells identified in the test code are then analyzed using a third tool to
indicate the best possible fixes (S3). Here, we use the PITest tool (S4) to generate the initial
report of the test mutants, which will serve as a baseline for comparison after refactoring.

The refactoring process is carried out using Eclipse IDE (S5) due to its wide variety
of plugins, including the PITest tool and JUnit (https://junit.org/junit5/, accessed on
28 January 2023). Once refactored, unit tests are run in either JUnit (https://junit.org/
junit5/, accessed on 28 January 2023) or TestNG (https://testng.org/doc/, accessed on
28 January 2023) to ensure 100% success in execution.

The PITest tool (S4) is used again to generate the final view of the test mutants.
Comparing the results of the two mutant test runs will determine whether there has been a
change in the behavior of the test code (S6).

Throughout the workflow, all the generated data are traceable and classified (S7) and
provide rich indicators that can be reported in an analytics dashboard (S8) or used for
prediction models (S9).

https://junit.org/junit5/
https://junit.org/junit5/
https://junit.org/junit5/
https://testng.org/doc/

Computers 2023, 12, 230 6 of 14

Table 1. Overview of MeteoR tool’s main stages.

Stage Role
S1 Source code extraction and

commit
Connectivity with the GIT tool.

S2 Identification of test smells Integration with any pre-existing tool in order to provide
quick verification of test codes that need improvement.

S3 Refactoring Perform the refactoring in an assisted way, trying to solve
the test code quality gaps with automated fix suggestions.

S4a Execution of mutation testing
Use of a tool to generate test mutants and run mutation
testing to assess the quality of project tests. Its first run will
serve as a test baseline.

S4b Reexecution of the mutation
testing

Re-run the mutation testing scenarios under the refactored
test code and compare the new results with the baseline re-
sult.

S5 IDE Plugin Integration
Orchestrate test mutation runs, collecting data, performing
analysis, and generating results reports.

S6 Assessment
Have mutants been modified? Comparing results will pro-
vide those answers. If there was no change in the state of the
mutants, then the refactoring was completed successfully.

S7 Traceability and Classifica-
tion

Catalog and identification of test mutants (killed and sur-
viving). Improve traceability in the refactoring cycles.

S8 Analytics Evaluate data and generate views to monitor the evolution
of test mutants throughout code refactorings.

S9 Mutant Validation Predictive
Models

Application of Machine Learning and AI tools to obtain in-
sights, refinement, prediction, and selection of test mutants.

Legend: S# = Stage in Figure 3.

4.2. MeteoR Software Components

To implement the stages S4, S5, and S6 outlined earlier, four essential software compo-
nents have been derived and are currently being developed. A high-level depiction of the
interactions between these components can be seen in Figure 4, while Table 2 provides a
detailed overview of the objectives of each component.

Figure 4. The four key software components of the MeteoR.

Computers 2023, 12, 230 7 of 14

Table 2. Description of MeteoR’s main software components.

Component Description

IDE Eclipse Plugin

An IDE plugin implementation provides a familiar environment
for developers to perform refactoring and analysis tasks within
a single tool. This approach will allow for a streamlined devel-
opment experience, improving productivity and reducing the
possibility of errors.

Mutation Testing Execution
Agent

Component that calls the PITest tool to generate and run mu-
tant testing.

Comparison Report Genera-
tor

The data should be compared before and after refactoring, based
on the test mutants, and a generated report indicates whether
there was any change in the test behaviors. This report not only
includes a one-to-one comparison of mutations, but it will also
evaluate the mutation scores.

Results Storage Management Local storage to maintain the results and other artifacts.

In Figure 4, the sequential order of the software components invoked is shown, start-
ing from the source code of the refactored project and ending with a successful refactoring.
In the case of an unsuccessful refactoring process, the developer should review the refac-
tored test code and either roll back the changes or conduct the refactoring again with
the necessary corrections. Figure 5 shows the component diagram that illustrates the
integration between each component.

Figure 5. MeteoR’s UML component diagram.

5. Preliminary Evaluation of the Proposed Tool

This section presents a preliminary assessment of the proposed tool and approach for
evaluating test code refactoring. It is pertinent to acknowledge that the approach delineated
in this study, owing to its innovative nature, does not lend itself to a straightforward
comparison with existing studies. Nonetheless, an in-depth discussion of its unique
attributes has been undertaken, focusing on delineating its distinct contributions concerning
the seminal work [1].

Before implementing MeteoR, we manually reproduced all the steps of the proposed
approach to verify if the tool can achieve the expected verification of test code behavior.
That is one of the reasons for this preliminary evaluation.

To verify the correctness of a test code refactoring, we employ the approach pro-
posed by Parsai et al. [1] to determine whether it induces changes in the behavior of
test mutants. Conversely, an incorrect test code refactoring should result in test mutants’
behavior changes.

An essential difference between our study and the study conducted by Parsai et al. [1]
is that we analyzed individual mutations before and after refactoring rather than relying

Computers 2023, 12, 230 8 of 14

solely on comparing mutation scores to assess test code behavior. Section 5.4 contains a
sample table that compares all mutants generated before and after the test code refactor-
ing activity.

5.1. Methodology

The methodology employed in this study extends beyond merely comparing mutation
scores. We conduct an in-depth analysis of individual mutations before and after refactoring
to assess test code behavior. While tests serve as a reference for assessing refactorings in
source code, an equivalent set of established metrics for evaluating refactorings in test code
is notably absent. This nuanced analysis provides a more comprehensive understanding of
the impact of refactoring on test code. Given the current limitations in directly comparable
studies, we adopted a qualitative approach in our evaluation.

Our assessment methodology involves two distinct procedures to evaluate the pro-
posed approach. Here, the concept of positive and negative tests is utilized.

The positive test procedure is executed to validate the ability of a system or application
to perform correctly under valid input conditions. In our context, this verifies whether
proper test code refactoring was performed.

The negative test procedure involves testing the application by inputting invalid or
inappropriate data sets and evaluating if the software responds as intended when receiving
negative or unwanted user inputs. In the present context, the focus was on verifying
whether the approach could effectively handle an inappropriate refactoring of the test
code and respond accurately. For the case study, we selected the Apache Commons-csv
(https://github.com/apache/commons-csv, accessed on 28 January 2023) project and
applied refactorings to the CSVRecordTest class, which was then subjected to both evalua-
tion procedures.

In the positive test procedure, one or more test classes with bad smells are selected,
and mutation testing is performed in the related application classes using the PITest de-
fault operators (https://pitest.org/quickstart/mutators/, accessed on 28 January 2023).
The results are then recorded to establish a baseline, and the test code methods are properly
refactored. Mutation testing is repeated, and results are recorded and tabulated. The behav-
ior of individual mutants is then validated line by line to determine whether the refactoring
was successful, which means that there were no changes in the behavior of the test mutants.

During the negative test procedure, the case study is restored to its initial state,
and improper refactoring is performed. This refactoring affects the test’s behavior but does
not affect the test execution result, meaning the test must still pass. Subsequently, mutation
testing is conducted again, and a comparison with the baseline must show changes in the
behavior of the test mutants, indicating improper refactoring.

5.2. Positive Test Procedure Execution
5.2.1. Assessing the Bad Smells before Test Code Refactoring

Table 3 shows the report with 13 bad-smell tests of the Assertion Roulette type, as ad-
dressed by Soares et al. [21]. Assertion Roulette is a test smell that makes it difficult to
identify which assertion caused a test run failure.

Table 3. TSDetect report—Assertion Roulette bad smells detected in test files.

Relative Test File Path Number of Methods Assertion Roulette
CSVRecordTest.java 31 13
CSVDuplicateHeaderTest.java 4 2
IOUtilsTest.java 1 0

5.2.2. First Run of Pre-Refactoring Mutation Testing

Table 4 presents the report of the first run of the mutation testing (pre-refactoring).

https://github.com/apache/commons-csv
https://pitest.org/quickstart/mutators/

Computers 2023, 12, 230 9 of 14

Table 4. PITest coverage report—Mutants generated during the first run of PITest tool.

Class Line Coverage Mutation Coverage Test Strength
(Mutation Score) (Mutation Score)

CSVRecord 49/49 47/48 47/48
(0.9791) (0.9791)

5.2.3. Test Code Refactoring

A test code refactoring was applied in the CSVRecordTest class. Specifically, the test
code was refactored to extract the grouped assertions, mitigating the risk of Assertion
Roulette. Figure 6a presents this type of test smell and Figure 6b (lines 4, 8, 13, and 18) its
fixed test code refactoring.

Version November 3, 2023 submitted to Computers 9 of 15

Table 3. TSDetect report – Assertion Roulette bad smells detected in test files.

Relative test file path Number of methods Assertion roulette

CSVRecordTest.java 31 13
CSVDuplicateHeaderTest.java 4 2
IOUtilsTest.java 1 0

5.2.2. First run of pre-refactoring mutation testing 245

Table 4 presents the report of the first run of the mutation testing (pre-refactoring). 246

Table 4. PITest coverage report – Mutants generated during the first run of PITest tool.

Class Line Coverage Mutation Coverage Test Strength
(mutation score) (mutation score)

CSVRecord 49/49 47/48 47/48
(0.9791) (0.9791)

5.2.3. Test code refactoring 247

A test code refactoring was applied in the CSVRecordTest class. Specifically, the test 248

code was refactored to extract the grouped assertions, mitigating the risk of Assertion 249

Roulette. Fig. 6 (a) presents this type of test smell and Fig 6 (b) – (lines 4, 8, 13, and 18) – its 250

fixed test code refactoring. 251

a. Test code with bad smells.

1 @Test
2 public void testToString() {

3 assertNotNull (recordWithHeader.toString());

4 assertTrue (recordWithHeader.toString().contains("comment="));

5 assertTrue (recordWithHeader.toString().contains("recordNumber="));}

6 assertTrue (recordWithHeader.toString()
7 .contains("values="));}
8 }

b. Test code fixed.

1 @Test
2 public void testHeaderEmptyToString(){
3 assertNotNull(recordWithHeader.toString(),

4 " Validate if record null returns empty. ");

5 }
6 @Test
7 public void testHeaderCommentToString(){
8 assertTrue(recordWithHeader.toString().contains("comment="),"

↪→ Validate if records contains comment. ");
9 }

10 @Test
11 public void testHeaderRecordNumber(){
12 assertTrue(recordWithHeader.toString().contains("recordNumber="),

13 "Validate if records contains recordNumber.");
14 }
15 @Test
16 public void testRecordValues(){
17 assertTrue(recordWithHeader.toString().contains("values="),

18 "Validate if records contains values.");
19 }

Figure 6. CSVRecordTest class before and after proper refactoring.

5.2.4. Mutation testing run 252

Table 5 displays the report of the second execution of mutation testing (post-refactoring). 253

Table 5. PITest coverage report – Mutants generated during the second run of PITest tool.

Class Line Coverage Mutation Coverage Test Strength
(mutation score) (mutation score)

CSVRecord 49/49 47/48 47/48
(0.9791) (0.9791)

Observing Table 4, it can be seen that performing a proper refactoring of the test code 254

and removing bad smells had no effect on the mutation score. 255

Figure 6. CSVRecordTest class before and after proper refactoring.

5.2.4. Mutation Testing Run

Table 5 displays the report of the second execution of mutation testing (post-refactoring).

Table 5. PITest coverage report—Mutants generated during the second run of PITest tool.

Class Line Coverage Mutation Coverage Test Strength
(Mutation Score) (Mutation Score)

CSVRecord 49/49 47/48 47/48
(0.9791) (0.9791)

Observing Table 4, it can be seen that performing a proper refactoring of the test code
and removing bad smells had no effect on the mutation score.

5.3. Negative Test Procedure Execution
5.3.1. Test Code Refactoring

During the negative test, bad smells in the test code were identified without relying
on a bad smell detection tool like TSDetect. Specifically, we found that the selected tests
exhibit non-standardized code for checking the items on the list, resulting in duplicated
and non-uniform code. As shown in Figure 7a, the same type of check is performed in three
different ways. This can make the code difficult to modify and maintain, leading to errors
and decreased productivity. Therefore, it is crucial to refactor the test code to eliminate
these bad smells and improve the overall quality of the codebase.

Computers 2023, 12, 230 10 of 14

Version November 3, 2023 submitted to Computers 10 of 15

5.3. Negative Test Procedure Execution 256

5.3.1. Test Code Refactoring 257

During the negative test, bad smells in the test code were identified without relying 258

on a bad smell detection tool like TSDetect. Specifically, we found that the selected tests 259

exhibit non-standardized code for checking the items on the list, resulting in duplicated 260

and non-uniform code. As shown in Fig. 7 (a), the same type of check is performed in three 261

different ways. This can make the code difficult to modify and maintain, leading to errors 262

and decreased productivity. Therefore, it is crucial to refactor the test code to eliminate 263

these bad smells and improve the overall quality of the codebase. 264

a. Bad smells in test code

1 @Test
2 public void testToListFor() {
3 int i = 0;
4 for (final String value : record.toList()) {

5 assertEquals(values[i], value) ;

6 i++ ;
7 }
8 }
9 @Test

10 public void testStream() {
11 final AtomicInteger i = new AtomicInteger();
12 record.stream().forEach(value −> {

13 assertEquals(values[i.get()], value) ;

14 i.incrementAndGet() ;

15 });
16 }
17 @Test
18 public void testToListForEach() {
19 final AtomicInteger i = new AtomicInteger();
20 record.toList().forEach(e −> {

21 assertEquals(values[i.getAndIncrement()] , e);

22 });
23 }

b. Test code fixed.

1 @Test
2 public void testToListFor() {
3 for(int i=0; i < record.size(); i++){

4 assertValuesAndIncrement (0, record.toList().get(0));
5 }
6 }
7 @Test
8 public void testStream() {
9 record.stream().forEach(value −> {

10 assertValuesAndIncrement (0, record.toList().get(0));
11 });
12 }
13 @Test
14 public void testToListForEach() {
15 record.toList().forEach(e −> {

16 assertValuesAndIncrement (0, record.toList().get(0));
17 });
18 }
19
20 public void assertValuesAndIncrement(int i, String value){
21 assertEquals(values[i], value);

22 ++i;

23 }

Figure 7. CSVRecordTest class before and after improper refactoring.

It shall be emphasized that the intentional correction of this verification was carried 265

out incorrectly, as evidenced in Fig. 7 (b), lines 4, 10, 16, and 22. 266

Here, a situation is simulated in which the developer improperly sets the index when 267

it comes to iterating through the elements of the lists. 268

In this situation, the developer supposedly forgot to pass the value of the variable i 269

that controls the iterations as a parameter to the assertValuesAndIncrement method. 270

Setting the value to 0 (zero), he/she changed the behavior of the test method, as it 271

stops comparing all the elements and performs the same comparison several times, always 272

with the first element in the list. 273

Although the test was incorrectly refactored, it passed successfully during the initial 274

run. However, the developer significantly modified the validation behavior, which is 275

expected to alter the behavior of the mutants during subsequent mutation testing. This 276

confirms that the developer’s procedure contains an error and indicates that the refactored 277

test is less effective than the previous non-refactored test. This way, the new code offers 278

poorer validation than the previous version. 279

5.3.2. Mutation Testing Run 280

Table 6 shows the report of the second session of the mutation testing (post-refactoring). 281

As expected, the incorrect test code refactoring caused a change in the mutation score, 282

demonstrating that the refactoring work was unsuccessful. 283

Figure 7. CSVRecordTest class before and after improper refactoring.

It shall be emphasized that the intentional correction of this verification was carried
out incorrectly, as evidenced in Figure 7b, lines 4, 10, 16, and 22.

Here, a situation is simulated in which the developer improperly sets the index when
it comes to iterating through the elements of the lists.

In this situation, the developer supposedly forgot to pass the value of the variable i
that controls the iterations as a parameter to the assertValuesAndIncrement method.

Setting the value to 0 (zero), he/she changed the behavior of the test method, as it
stops comparing all the elements and performs the same comparison several times, always
with the first element in the list.

Although the test was incorrectly refactored, it passed successfully during the initial
run. However, the developer significantly modified the validation behavior, which is
expected to alter the behavior of the mutants during subsequent mutation testing. This
confirms that the developer’s procedure contains an error and indicates that the refactored
test is less effective than the previous non-refactored test. This way, the new code offers
poorer validation than the previous version.

5.3.2. Mutation Testing Run

Table 6 shows the report of the second session of the mutation testing (post-refactoring).
As expected, the incorrect test code refactoring caused a change in the mutation score,
demonstrating that the refactoring work was unsuccessful.

Table 6. PITest coverage report—mutants generated during the second run of PITest tool after
improper refactoring.

Class Line Coverage Mutation Coverage Test Strength
(Mutation Score) (Mutation Score)

CSVRecord 49/49 46/48 46/48
(0.9583) (0.9583)

5.4. Mutation Data Compilation and Comparison

To gain a more detailed understanding of mutation behavior, we compiled all mutant
data from pre- and post-refactoring tests in worksheets (available at: https://gitlab.com/
meteortool/assessment/-/blob/main/data/Comparativo.xlsx, accessed on 28 January
2023). In doing so, we extended the Parsai et al. [1] approach, which focused only on
mutation score.

Table 7 provides consolidated data on test mutations for the CSVRecord class, grouped
by mutation operators and tool executions. Upon analyzing the data, we can observe the

https://gitlab.com/meteortool/assessment/-/blob/main/data/Comparativo.xlsx
https://gitlab.com/meteortool/assessment/-/blob/main/data/Comparativo.xlsx

Computers 2023, 12, 230 11 of 14

expected changes in mutation behavior between the first and second runs, following an
improper test code refactoring, highlighted in Table 7, row (8). To further explore the results,
we can examine the mutators (mutation operators) and the corresponding line codes that
result in the observed behavior changes, as shown in Table 8.

Analyzing the detailed behavior of each mutant pre- and post- refactoring strengthens
the original approach with this additional step. In other words, it ensures that the refactored
test code not only achieved similar mutation scores but also preserved the same mutation
structure. This situation is critical in cases of improper refactoring, where changes in the
mutation structure can indicate potential issues in the test behavior. For this reason, this is
a major contribution to this article since the Parsai et al. [1] analysis does not go into this
level of detail.

Table 7. Mutation testing data from CSVRecord (grouped by mutation operator).

1st Run 2nd Run
Mutator

Killed Survived Killed Survived
Changed conditional boundary 4 0 4 0
Negated Conditional 15 1 15 1
Removed call to 1 0 1 0
Replaced boolean return with false 5 0 5 0
Replaced boolean return with true 5 0 5 0
Replaced int return with 0 1 0 1 0
Replaced long return with 0 2 0 2 0
Replaced return value with “” 5 0 4 1
Replaced return value with Collections.emptyList 1 0 1 0
Replaced return value with null 8 0 8 0
Grand Total 47 1 46 2

Mutation Coverage 47/48 46/48
Mutation Score 0.9791 0.9583

Table 8. Detailed analysis of pre- and post-test code refactoring.

Line First Run Second Run Unchanged?

287
1. replaced int return with 0 for
org/apache/commons/csv/CSVRecord::size
→ KILLED

1. replaced int return with 0 for
org/apache/commons/csv/CSVRecord::size
→ KILLED

TRUE

297
1. replaced return value with null for
org/apache/commons/csv/CSVRecord::stream →
KILLED

1. replaced return value with null for
org/apache/commons/csv/CSVRecord::stream →
KILLED

TRUE

310
1. replaced return value with Collections.emptyList
for org/apache/commons/csv/CSVRecord::toList
→ KILLED

1. replaced return value with Collections.emptyList
for org/apache/commons/csv/CSVRecord::toList
→ KILLED

TRUE

322
1. replaced return value with null for
org/apache/commons/csv/CSVRecord::toMap →
KILLED

1. replaced return value with null for
org/apache/commons/csv/CSVRecord::toMap →
KILLED

TRUE

333
1. replaced return value with “” for
org/apache/commons/csv/CSVRecord::toString
→ KILLED

1. replaced return value with “” for
org/apache/commons/csv/CSVRecord::toString
→ SURVIVED

FALSE

344
1. replaced return value with null for
org/apache/commons/csv/CSVRecord::values →
KILLED

1. replaced return value with null for
org/apache/commons/csv/CSVRecord::values →
KILLED

TRUE

6. Result Analysis and Discussion

Results obtained in this study reinforce what Parsai et al. [1] have highlighted: mutant
testing is a safety net to guarantee a correct test code refactoring.

Computers 2023, 12, 230 12 of 14

To be able to measure whether the test code refactoring was successful, it was necessary
to produce tables for viewing and comparing the data of the behavior of the mutants from
the pre- and post-refactoring tests in the two refactoring sessions (proper and improper
sections).

In scenarios where test code refactoring involves multiple classes and test methods,
controlling and monitoring the mutation data, which can differ enormously in each section
of test code refactoring, can be challenging. This is a key indicator of the effectiveness of
our approach in analyzing and improving refactoring.

Upon comparing Table 5, which displays the mutation score after proper refactoring
of the test code, with Table 6, which displays the mutation score after improper refactoring
of the test code, it becomes evident that all mutations remain unchanged given the correct
refactoring when comparing the results of the pre- and post-refactoring.

However, in incorrect refactoring, as shown in Section 5.3, one can notice in Table 8
(row 5) the difference in the behavior of the mutants, which means an error in the refactor-
ing process.

In addition, this paper has improved the analysis activity, comparing not only the
mutation score but also all the mutants classified in the pre- and post-refactoring tables. This
approach allows us to validate each mutation and detect mutant behavior more accurately,
as stated in the previous paragraph.

Although we cannot definitively state that this method eliminates the threat of the
masking effect, as noted by Parsai et al. [1], this allows us to ensure that the refactored
code maintains the same mutation structure in addition to achieving similar mutation
scores. By closely examining each mutation behavior, it is possible to detect and resolve
any potential issues that may arise during the refactoring process, thereby improving the
overall reliability and robustness of the code.

Developing an integrated tool to facilitate the implementation of the concepts pre-
sented in this study is viable and necessary to assist developers in performing test code
refactoring. Noteworthy data are presented below, emphasizing the benefits of automat-
ing this type of work. By automating the analysis process, efficiency can be improved,
and the potential for errors in test refactoring can be reduced, ultimately resulting in
higher-quality code.

In the present study, each execution of the mutation tests required approximately
12 min to validate eight application classes. That is, it took around 36 min to run the
mutation testing for both executions. In total, 782 mutations were generated, and 5231 tests
were performed, with an average of 6.69 tests per mutation.

Consequently, several key lessons were learned and opportunities for consideration
during the implementation of the integrated tool have been identified, including the
following:

1. Ensure to isolate the tests only for the relevant classes within the scope of the refactor-
ing.

2. Evaluate the possibility of improving the parallelism to accelerate the generation and
treatment of mutants.

3. Consider preventing the modification of productive classes while the test classes are
refactored.

4. Reuse the previously generated mutants as much as possible; it is believed that there
will be a decrease in the computational cost of changing the code for generating
mutations and compiling the project, that is, evaluating how these mutants can be
maintained so that a complete build is not necessary for each new execution of the
mutation testing.

7. Conclusions

This study highlights the importance of developing solutions that simplify the obser-
vation of mutation test behavior in test code to confirm the quality of refactorings.

Computers 2023, 12, 230 13 of 14

The investigation achieved its three primary objectives, as evidenced by the results.
First, we extended the approach of Parsai et al. [1] by incorporating an in-depth automated
analysis of test mutation behavior. Second, a tool conception was presented to speed up
the test code refactoring based not only on mutation score but also analyzing the detailed
behavior of each mutant pre- and post-refactoring. To address these issues, an integrated
tool concept, called MeteoR, was proposed to refactor the test code and to analyze its quality
cohesively. Finally, we evaluated the feasibility of the expanded approach by conducting
a preliminary assessment that simulates some of the tool’s capabilities. The assessment
validated the approach and revealed that MeteoR is able to verify problems in the test code
refactoring process.

This paper focused on addressing the critical challenges associated with mutant
testing analysis and refactoring, accelerating the refactoring of the test code, and ensuring
its robustness. In summary, this study has made progress toward proposing a tool for
specifically monitoring the behavior of test code refactoring.

In the future, providing tools that can perform refactoring by integrating test code
correction and behavior verification autonomously would be crucial to avoid the need for
additional human effort and rework to analyze the correctness of the refactoring activity. We
understand the importance of comprehensive validation and are committed to making it a
top priority in all our future work. We plan to extend the validation to multiple classes and
possibly different programming languages to provide a more comprehensive assessment
of our approach. Although the current validation is limited, it serves the purpose of this
particular manuscript and lays the groundwork for more extensive future studies. Moving
forward, the following steps of this research involve finalizing the stages S4, S5, and S6,
testing, and publishing a stable version of the tool for community use. The plan is to
establish a Continuous Integration (CI) pipeline with the necessary DevOps mechanisms
and best practices, ensuring the efficient delivery of the tool.

Author Contributions: Conceptualization, E.M.G. and F.T.S.; methodology, E.M.G. and T.S.R.T.;
software, T.S.R.T.; validation, T.S.R.T., E.M.G. and F.F.S.; investigation, T.S.R.T., E.M.G. and F.F.S.;
writing—original draft preparation, T.S.R.T. and F.T.S.; writing—review and editing, F.T.S. and E.M.G.;
supervision, E.M.G. and F.T.S.; funding acquisition, F.T.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP) grant number 2023/04581-0.

Data Availability Statement: The data presented in this study are openly available in the gitlab
repository, in the following link: https://gitlab.com/meteortool/assessment/-/blob/main/data/
Comparativo.xlsx, accessed on 10 March 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IDE Integrated Development Environment
SUT System Under Testing
TCT Test-to-Code Traceability
UML Unified Modeling Language

References
1. Parsai, A.; Murgia, A.; Soetens, Q.D.; Demeyer, S. Mutation Testing as a Safety Net for Test Code Refactoring. In Proceedings of

the Scientific Workshop Proceedings of the XP2015 (XP ’15 workshops), Helsinki, Finland, 25–29 May 2015. [CrossRef]
2. Meszaros, G. xUnit Test Patterns: Refactoring Test Code; Pearson Education: London, UK, 2007.
3. Bladel, B.v.; Demeyer, S. Test Behaviour Detection as a Test Refactoring Safety. In Proceedings of the 2nd International Workshop

on Refactoring (IWoR 2018), Montpellier, France, 4 September 2018; pp. 22–25. [CrossRef]
4. Offutt, A.J.; Untch, R.H. Mutation 2000: Uniting the Orthogonal; Springer: Boston, MA, USA, 2001; pp. 34–44. [CrossRef]

https://gitlab.com/meteortool/assessment/-/blob/main/data/Comparativo.xlsx
https://gitlab.com/meteortool/assessment/-/blob/main/data/Comparativo.xlsx
http://doi.org/10.1145/2764979.2764987
http://dx.doi.org/10.1145/3242163.3242168
http://dx.doi.org/10.1007/978-1-4757-5939-6_7

Computers 2023, 12, 230 14 of 14

5. Guerra, E.M.; Fernandes, C.T. Refactoring Test Code Safely. In Proceedings of the International Conference on Software
Engineering Advances (ICSEA 2007), Cap Esterel, France, 25–31 August 2007; p. 44. [CrossRef]

6. Van Deursen, A.; Moonen, L.; Van Den Bergh, A.; Kok, G. Refactoring test code. In Proceedings of the 2nd International
Conference on eXtreme Programming and Flexible Processes in Software Engineering (XP2001), Villasimius, Sardinia, Italy, 20–23
May 2001.

7. Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings
of the 18th International Conference on Evaluation and Assessment in Software Engineering (EASE ’14), London, UK, 13–14 May
2014. [CrossRef]

8. Pizzini, A. Behavior-based test smells refactoring: Toward an automatic approach to refactoring Eager Test and Lazy Test
smells. In Proceedings of the 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), Pittsburgh, PA, USA, 22–24 May 2022; pp. 261–263. [CrossRef]

9. AlOmar, E.A.; Mkaouer, M.W.; Newman, C.; Ouni, A. On Preserving the Behavior in Software Refactoring: A Systematic Mapping
Study. Inf. Softw. Technol. 2021, 140, 106675. [CrossRef]

10. Soares, G. Making program refactoring safer. In Proceedings of the 2010 ACM/IEEE 32nd International Conference on Software
Engineering, Cape Town, South Africa, 2–8 May 2010; Volume 2, pp. 521–522. [CrossRef]

11. Aljawabrah, N.; Gergely, T.; Misra, S.; Fernandez-Sanz, L. Automated Recovery and Visualization of Test-to-Code Traceability
(TCT) Links: An Evaluation. IEEE Access 2021, 9, 40111–40123. [CrossRef]

12. van Bladel, B.; Demeyer, S. Test Refactoring: A Research Agenda. In Proceedings of the Proceedings SATToSE, Madrid, Spain,
7–9 June 2017.

13. Peruma, A.; Almalki, K.; Newman, C.D.; Mkaouer, M.W.; Ouni, A.; Palomba, F. TsDetect: An Open Source Test Smells Detection
Tool. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2020), Virtual Event USA, 8–13 November 2020; pp. 1650–1654. [CrossRef]

14. Marinke, R.; Guerra, E.M.; Fagundes Silveira, F.; Azevedo, R.M.; Nascimento, W.; de Almeida, R.S.; Rodrigues Demboscki, B.;
da Silva, T.S. Towards an Extensible Architecture for Refactoring Test Code. In Computational Science and Its Applications–ICCSA
2019, Proceedings of the 19th International Conference, Saint Petersburg, Russia, 1–4 July 2019; Misra, S., Gervasi, O., Murgante, B.,
Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A., Taniar, D., Apduhan, B.O., Tarantino, E., Eds.; Springer: Cham, Switzerland,
2019; pp. 456–471.

15. Papadakis, M.; Kintis, M.; Zhang, J.; Jia, Y.; Traon, Y.L.; Harman, M. Chapter Six-Mutation Testing Advances: An Analysis and
Survey. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2019; Volume 112, pp. 275–378. [CrossRef]

16. Singh, D.; Suri, B. Mutation testing tools- An empirical study. In Proceedings of the Third International Conference on
Computational Intelligence and Information Technology (CIIT 2013), Mumbai, India, 18–19 October 2013; pp. 230–239. [CrossRef]

17. Monteiro, R.; Durelli, V.H.S.; Eler, M.; Endo, A. An Empirical Analysis of Two Mutation Testing Tools for Java. In Proceedings of
the 7th Brazilian Symposium on Systematic and Automated Software Testing (SAST ’22), Uberlandia, Brazil, 3–7 October 2022;
pp. 49–58. [CrossRef]

18. Offutt, J. A mutation carol: Past, present and future. Inf. Softw. Technol. 2011, 53, 1098–1107. [CrossRef]
19. Zhu, Q.; Zaidman, A.; Panichella, A. How to kill them all: An exploratory study on the impact of code observability on mutation

testing. J. Syst. Softw. 2021, 173, 110864. [CrossRef]
20. Ojdanic, M.; Soremekun, E.; Degiovanni, R.; Papadakis, M.; Le Traon, Y. Mutation Testing in Evolving Systems: Studying the

Relevance of Mutants to Code Evolution. ACM Trans. Softw. Eng. Methodol. 2022, 32, 1–39. [CrossRef]
21. Soares, E.; Ribeiro, M.; Amaral, G.; Gheyi, R.; Fernandes, L.; Garcia, A.; Fonseca, B.; Santos, A. Refactoring Test Smells: A

Perspective from Open-Source Developers. In Proceedings of the 5th Brazilian Symposium on Systematic and Automated
Software Testing (SAST 20), Natal, Brazil, 20–21 October 2020; pp. 50–59. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICSEA.2007.57
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1145/3510454.3517059
http://dx.doi.org/10.1016/j.infsof.2021.106675
http://dx.doi.org/10.1145/1810295.1810461
http://dx.doi.org/10.1109/ACCESS.2021.3063158
http://dx.doi.org/10.1145/3368089.3417921
http://dx.doi.org/10.1016/bs.adcom.2018.03.015
http://dx.doi.org/10.1049/cp.2013.2596
http://dx.doi.org/10.1145/3559744.3559751
http://dx.doi.org/10.1016/j.infsof.2011.03.007
http://dx.doi.org/10.1016/j.jss.2020.110864
http://dx.doi.org/10.1145/3530786
http://dx.doi.org/10.1145/3425174.3425212

	Introduction
	Background
	Test Code Refactoring
	Mutation Testing

	Related Work
	MeteoR: An Integrated Tool Proposal for Test Code Refactoring
	The MeteoR Workflow
	MeteoR Software Components

	Preliminary Evaluation of the Proposed Tool
	Methodology
	Positive Test Procedure Execution
	Assessing the Bad Smells before Test Code Refactoring
	First Run of Pre-Refactoring Mutation Testing
	Test Code Refactoring
	Mutation Testing Run

	Negative Test Procedure Execution
	Test Code Refactoring
	Mutation Testing Run

	Mutation Data Compilation and Comparison

	Result Analysis and Discussion
	Conclusions
	References

