EEGT: Energy Efficient Grid-Based Routing Protocol in Wireless Sensor Networks for IoT Applications
Abstract
:1. Introduction
- We divide the whole monitored network region into the virtual grid with different cells (clusters) in order to guarantee a balanced number of live nodes jointly in each cell.
- We select CHN in each cell by considering the combination of the residual energy and the distance from the candidate CHN to the sink device.
- We combine tree and chain routing mechanisms for discovering data transmission routes from CMs to CHN and CHNs to the sink device by using the Kruskal algorithm and the ant colony algorithm to avoid the huge energy consumption made by the long distance between sensor nodes and the sink device.
- In particular, we simulate the LEACH-C, PEGASIS, PEGCP, and EEGT routing protocols in many different scenarios. The simulation results in evidence that the network performance in terms of energy efficiency and the NL using our proposed protocol can be improved by 30%, 20%, and 10% compared with LEACH-C, PEGASIS, and PEGCP, respectively.
2. Related Work
3. System Model
3.1. Network Model
3.2. Energy Dissipation Model
4. Proposed Protocol
4.1. The Set-up Period
Algorithm 1 Grid Division |
Input: N sensor nodes with x, y positions, and current energy level Output: N sensors are distributed in logical in a grid with nodes for each cell.
|
- Average residual energy : is the average current energy level of alive sensor nodes in cell i-th at round j-th (where i range from 1 to ). This is the most important characteristic of candidate nodes to become CHN because of more energy consumed in transmitting to the sink device.
- Distance to BS (): should be considered because according to Equation (8), the longer data transmission in the distance is, the more energy consumes (equal to the distance in the exponent of four). The Euclidean distance from the node i-th to the sink device is calculated below:
- Intra and Inter cell distance (): The objective of this criterion is to minimize intra-cell communication cost between MNs and respective CHN in an MST as well as minimize inter-cell communication cost from CHNs to the sink device in a chain that consumes less energy and balances the workload between CHNs. To achieve this objective, the is defined as the total geographic distance of the candidate CHNs within their cell, which is calculated as
- Cost function: All the appropriate parameters introduced are combined in order to select suitable CHN for each cell, whose residual energy is higher than and has a maximum cost function value as Equation (17) follows:The user establishes the coefficient parameters within cost function for the heterogeneous and homogeneous network.
Algorithm 2 Cell Head Selection |
Input: number of cells, N sensors distributed in cells, and their position of them Output: List of CHNs in each cell and one or more super-CHNs.
|
4.2. MST and Chain Construction Period
Algorithm 3 MSTs and Chain Formation |
Input: List of the sensor nodes in cells, CH, super-CH Output: - MSTs for cells with CH as a root - A chain connected CHNs and the sink device.
|
4.3. Data Transmission Stage
5. Simulation and Performance Evaluation
5.1. Simulation Parameters
5.2. Simulation Scenario
- Step 1:
- Generate randomly 50 times for 50 different scenarios with the number of sensor nodes nodes in 100 × 100 m simulation area; in these 50 scenarios we remove the movement partly because we assume the sensor network is the stationary state after deployment.
- Step 2:
- Run a simulation of LEACH-C, PEGASIS, PEGCP, and EEGT protocols on the first scenario (). The simulation results are represented in the table, which indicates the proportion of alive nodes, total energy consumed, and rate of data packets received by the BS.
- Step 3:
- Select performance metrics; here, we choose the energy efficiency and network lifespan metrics to evaluate.
- Step 4:
- Run the next scenario (); we present the simulation results in the table that shows the percentage of the dead nodes, total energy consumed, and amount of data packets obtained by the sink.
- Step 5:
- Step 6:
- Compare the obtained results with previous ones. If the ratio of standard deviation is less than , then stop the simulation and go to Step 7, because if we run more simulations, the standard deviation ratio () will not change. Otherwise, go to Step 4.
- Step 7:
- Graph the simulation results based on the table medium. The rate of standard deviation with the scenario to analyze LEACH-C, PEGASIS, PEGCP, and EEGT protocol performance in terms of the percentage of alive nodes, energy consumption, and the number of data packets received by the sink with the different location according to NL.
5.3. Simulation Results and Analysis
5.3.1. Homogeneous Network Model
5.3.2. Heterogeneous Network Model
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abidoye, A.P.; Obagbuwa, I.C. Models for integrating wireless sensor networks into the Internet of Things. IET Wirel. Sens. Syst. 2017, 7, 65–72. [Google Scholar] [CrossRef]
- Kandris, D.; Nakas, C.; Vomvas, D.; Koulouras, G. Applications of Wireless Sensor Networks: An Up-to-Date Survey. Appl. Syst. Innov. 2020, 3, 14. [Google Scholar] [CrossRef]
- Wan, L.; Han, G.; Shu, L.; Feng, N.; Zhu, C.; Lloret, J. Distributed Parameter Estimation for Mobile Wireless Sensor Network Based on Cloud Computing in Battlefield Surveillance System. IEEE Access 2015, 3, 1729–1739. [Google Scholar] [CrossRef]
- Harsh, D.; Achyut, S. Wireless Sensor Network Application for IoT-Based Healthcare System. In Data Driven Approach Towards Disruptive Technologies; Springer: Singapore, 2021; pp. 287–307. [Google Scholar]
- Suhail, I.; Pillai, S. IoT enabled applications for Healthcare decisions. In Proceedings of the International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand, 23–25 March 2022; pp. 47–54. [Google Scholar]
- Lloret, J.; Parra, L. Industrial Internet of Things. In Mobile Networks and Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Ahmed, N.; De, D.; Hussain, M.I. Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas. IEEE Internet Things J. 2018, 5, 4890–4899. [Google Scholar] [CrossRef]
- Camacho, F.; Cárdenas, C.; Muñoz, D. Emerging technologies and research challenges for intelligent transportation systems: 5G, HetNets, and SDN. Int. J. Interact. Des. Manuf. (IJIDeM) 2018, 12, 327–335. [Google Scholar] [CrossRef]
- Alphonsa, A.; Ravi, G. Earthquake Early Warning System by IOT using Wireless Sensor Networks. In Proceedings of the International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 23–25 March 2016; pp. 1201–1205. [Google Scholar]
- Negara, J.G.P.; Emanuel, A.W.R. A Conceptual Smart City Framework for Future Industrial City in Indonesia. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 2019, 10, 453–457. [Google Scholar] [CrossRef]
- Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.W. Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022, 22, 2087. [Google Scholar] [CrossRef]
- Xu, C.; Xiong, Z.; Zhao, G.; Yu, S. An Energy-Efficient Region Source Routing Protocol for Lifetime Maximization in WSN. IEEE Access 2019, 7, 135277–135289. [Google Scholar] [CrossRef]
- Kuo, Y.W.; Li, C.L.; Jhang, J.H.; Lin, S. Design of a wireless sensor network based IoT platform for wide area and heterogeneous applications. IEEE Sens. J. 2018, 18, 5187–5197. [Google Scholar] [CrossRef]
- Tsipis, A.; Papamichail, A.; Angelis, I.; Koufoudakis, G.; Tsoumanis, G.; Oikonomou, K. An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting. Energies 2020, 13, 3693. [Google Scholar] [CrossRef]
- Din, I.U.; Hassan, S.; Khan, M.K.; Atiquzzaman, M.; Ahmed, S.H. The Internet of Things: A Review of Enabled Technologies and Future Challenges. IEEE Access 2019, 7, 7606–7640. [Google Scholar] [CrossRef]
- Chenaru, O.; Mihai, V.; Popescu, D.; Ichim, L. Integration of WSN, IoT and Cloud Computing in Distributed Monitoring System for Aging Persons in Active Life. In Proceedings of the 26th Mediterranean Conference on Control and Automation (MED), Zadar, Croatia, 19–22 June 2018; pp. 1–6. [Google Scholar]
- Wei, X.; Wu, L. A New Proposed Sensor Cloud Architecture Based on Fog Computing for Internet of Things. In Proceedings of the International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, GA, USA, 14–17 July 2019; pp. 615–620. [Google Scholar]
- Kamgueu, P.O.; Nataf, E.; Djotio, T. Architecture for an efficient integration of wireless sensor networks to the Internet through Internet of Things gateways. Int. J. Distrib. Sens. Netw. 2017, 13, 1–13. [Google Scholar] [CrossRef]
- Jawhar, I.; Mohamed, N.; Jaroodi, J.A. Networking architectures and protocols for smart city systems. J. Internet Serv. Appl. 2018, 9, 26. [Google Scholar] [CrossRef]
- Ying, Z.; Peisong, L.; Lin, M. Research on Improved Low-Energy Adaptive Clustering Hierarchy Protocol in Wireless Sensor Networks. Wirel. Sens. Netw. 2018, 23, 613–619. [Google Scholar]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef]
- Lindsey, S.; Raghavendra, C.S. PEGASIS: Power-Efficient GAthering in Sensor Information System. In Proceedings of the IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 9–16 March 2002; pp. 1125–1130. [Google Scholar]
- Ahmed, E.F.; Omar, M.A.; Wan, T.C.; Altahir, A.A. EESRA: Energy Efficient Scalable Routing Algorithm for Wireless Sensor Networks. IEEE Access 2019, 7, 96974–96983. [Google Scholar] [CrossRef]
- Daneshvar, S.M.H.; Mohajer, P.A.A.; Mazinani, S.M. Energy-Efficient Routing in WSN: A Centralized Cluster-Based Approach via Grey Wolf Optimizer. IEEE Access 2019, 7, 170019–170031. [Google Scholar] [CrossRef]
- Fatima, B.; Derdour, M. Maximizing WSN Life Using Power Efficient Grid-Chain Routing Protocol (PEGCP). Wirel. Pers. Commun. 2021, 117, 1007–1023. [Google Scholar]
- Wang, Y.; Zhang, G. EMEECP-IOT: Enhanced Multitier Energy-Efficient Clustering Protocol Integrated with Internet of Things-Based Secure Heterogeneous Wireless Sensor Network (HWSN). Secur. Commun. Netw. 2022, 2022, 1667988. [Google Scholar] [CrossRef]
- Anchitaalagammai, J.V.; Jayasankar, T.; Selvaraj, P.; Sikkandar, M.Y.; Zakarya, M.; Elhoseny, M.; Shankar, K. Energy Efficient Cluster-Based Optimal Resource Management in IoT Environment. Comput. Mater. Contin. 2022, 70, 1247–1261. [Google Scholar] [CrossRef]
- Jaiswal, K.; Anand, V. EOMR: An Energy-Efficient Optimal Multi-path Routin gProtocol to Improve QoS in Wireless Sensor Network for IoT Applications. Wirel. Pers. Commun. 2020, 111, 2493–2515. [Google Scholar] [CrossRef]
- Sankaran, K.S.; Vasudevan, N.; Verghese, A. ACIAR: Application-centric information-aware routing technique for IOT platform assisted by wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4815–4825. [Google Scholar] [CrossRef]
- Shukla, A.; Tripathi, S. A multi-tier based clustering framework for scalable and energy efficient WSN-assisted IoT network. Wirel. Netw. 2020, 26, 3471–3493. [Google Scholar] [CrossRef]
- Rani, S.; Ahmed, S.H.; Rastogi, R. Dynamic clustering approach based on wireless sensor networks genetic algorithm for IoT applications. Wirel. Netw. 2019, 26, 2307–2316. [Google Scholar] [CrossRef]
- Lu, J.; Hu, K.; Yang, X.; Hu, C.; Wang, T. A cluster-tree-based energy-efficient routing protocol for wireless sensor networks with a mobile sink. J. Supercomput. 2021, 77, 6078–6104. [Google Scholar] [CrossRef]
- Lin, D.; Kong, L.; Zhao, C.; Gao, J.; Ouyang, H.; Yang, Z.; Zhang, Z. An energy-efficiency-adaptive clustering formation mechanism for the wireless sensor networks. IET Commun. 2022, 16, 255–265. [Google Scholar] [CrossRef]
- Tan, N.D.; Hoang, H.N. Energy-Efficient Distributed Cluster-Tree Based Routing Protocol for Applications IoT-Based WSN. In Proceedings of the the Seventh International Conference on Research in Intelligent and Computing in Engineering, Hung Yen, Vietnam, 11–12 November 2022; pp. 213–218. [Google Scholar]
- Mittal, N.; Singh, U.; Salgotra, R. Tree-Based Threshold-Sensitive Energy-Efficient Routing Approach For Wireless Sensor Networks. Wirel. Pers. Commun. 2019, 108, 473–492. [Google Scholar] [CrossRef]
- Dutt, S.; Agrawal, S.; Vig, R. Cluster-Head Restricted Energy Efficient Protocol (CREEP) for Routing in Heterogeneous Wireless Sensor Networks. Wirel. Pers. Commun. 2018, 100, 1477–1497. [Google Scholar] [CrossRef]
- Lenka, R.K.; Kolhar, M.; Mohapatra, H.; Al-Turjman, F.; Altrjman, C. Cluster-Based Routing Protocol with Static Hub (CRPSH) for WSN-Assisted IoT Networks. Sustainability 2022, 14, 7304. [Google Scholar] [CrossRef]
- Shaq, M.; Ashraf, H.; Ullah, A.; Masud, M.; Azeem, M.; Jhanjhi, N.Z.; Humayun, M. Robust Cluster-Based Routing Protocol for IoT-Assisted Smart Devices in WSN. Comput. Mater. Contin. 2021, 67, 3505–3521. [Google Scholar]
- Marco, D.; Mauro, B. Ant Colony Optimization. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2011; pp. 36–39. [Google Scholar]
- Liang, S.; Jiao, T.; Du, W.; Qu, S. An improved ant colony optimization algorithm based on context for tourism route planning. PLoS ONE 2021, 16, e0257317. [Google Scholar] [CrossRef] [PubMed]
- VINT Project. The Network Simulator-NS2. 1997. Available online: http://www.isi.edu/nsnam/ns (accessed on 20 November 2022).
- Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. MIT uAMPS LEACH ns Extensions. 2004. Available online: http://www-mtl.mit.edu/research/icsystems/uamps/leach (accessed on 20 November 2022).
- Osamy, W.; Salim, A.; Khedr, A.M. An information entropy based-clustering algorithm for heterogeneous wireless sensor networks. Wirel. Netw. 2020, 26, 1869–1886. [Google Scholar] [CrossRef]
No. Item | Parameters Description | Value |
---|---|---|
1 | Simulation region | 100 m × 100 m |
2 | Number of sensing nodes | 100 nodes |
3 | (Radio electric circuit energy right) | 50 nJ/bit |
4 | (Radio two-ray ground energy right) | 100 pJ/bit/m |
5 | (Radio free space energy) | 0.013 pJ/bit/m |
6 | (Data fusion energy) | 5 nJ/bit |
7 | Packet size | 1024 bytes |
8 | Simulation time | 3600 s |
9 | The locations of the sink | (49,175); (49,225); (49,300) |
For homogeneous network model | ||
10 | (Initial energy of node) | 2 J |
For heterogeneous network model | ||
11 | (Initial energy of node) | 1 J |
12 | 0.5 | |
13 | 0.4 | |
14 | 0.5 | |
15 | 2 |
The Percentage of Dead Nodes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Protocols | Rounds | EE (Kbytes/Joule) | 1% | 10% | 25% | 50% | 75% | 95% | 100% |
(s) | |||||||||
10 | 610(2.5) | 478(14.3) | 603(12.3) | 685(2.9) | 762(2.9) | 857(2.6) | 988(5) | 1140(7.8) | |
50 | 720(2.5) | 34(14.4) | 178(21.4) | 442(9.7) | 857(5.2) | 1166(3.2) | 1600(5.6) | 1709.5(4.7) | |
LEACH-C, | 100 | 1050(12) | 32(13.1) | 172(21.8) | 547(27.5) | 1260(17.7) | 2141(12) | 2530(13) | 2630(9.9) |
[21] | 300 | 120(4.3) | 32(16.2) | 506(21.1) | 2023(22.2) | 2610(6.8) | 2886(3.9) | 3074(3.5) | 3178(2.5) |
10 | 657(2.5) | 631(15.3) | 816(5.8) | 947(3.5) | 999(21.9) | 1116(3.0) | 1230(2.3) | 1247(2.5) | |
50 | 889(1.9) | 62(53.5) | 485(16.4) | 1200(5.1) | 1569(1.5) | 1658(1.4) | 1680(1.2) | 1711(1.3) | |
PEGASIS, | 100 | 1009(2.7) | 49(18.4) | 926(0.8) | 1715(0.9) | 1811(0.6) | 1865(1.7) | 1896(0.4) | 1974(3) |
[22] | 300 | 1051(6.6) | 50(20.3) | 50(20.3) | 1712(12.3) | 1941(2.1) | 2001(1.5) | 2029(1.7) | 2155(3.9) |
20 | 1020(7.6) | 539(11.3) | 905(5.4) | 1087(4.3) | 1030(3.1) | 1450(4.0) | 1617(4.8) | 1658(6) | |
50 | 1071(1.2) | 520(19.0) | 920(7.6) | 1125(5.3) | 1353(3.4) | 1529(4.6) | 1685(4.2) | 1715(4.1) | |
PEGCP, | 100 | 1095(1.5) | 404(32.5) | 899(6.9) | 1137(7.7) | 1372(5.6) | 1549(4.7) | 1781(5.2) | 1805(4.9) |
[25] | 300 | 1183(1.1) | 231(15.9) | 827(5.3) | 1127(4) | 1433(2.6) | 1674(4.9) | 1923(5.5) | 2056(4.6) |
500 | 1251(1.6) | 233(15.3) | 808(13.6) | 1164(5) | 1456(2.8) | 1752(4.1) | 2017(5.7) | 2166(2.3) | |
10 | 1041(1.0) | 829(15) | 1065(4.8) | 1297(6.5) | 1395(7.4) | 1491(2.8) | 1640(5.0) | 1663(3.8) | |
50 | 1108(1.2) | 877(17) | 1105(2) | 1351(3.7) | 1484(1.7) | 1564(2.2) | 1724(2.9) | 1756(2.6) | |
EEGT | 100 | 1143(30.3) | 861(13.4) | 1107(0.6) | 1300(1.5) | 1503(0.8) | 1610(0.6) | 1836(1.7) | 1860(1.3) |
300 | 1234(23.2) | 519(36.4) | 1081(22.7) | 1257(22.9)) | 1572(22.4) | 1710(22.5) | 1999(23.3) | 2120(22.5) | |
500 | 1278(1.5) | 404(30.8) | 1061(7.3) | 1306(5.9) | 1620(0.8) | 1892(3.1) | 2240(2.9) | 2180(13.1) |
The Percentage of Dead Nodes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Protocols | Rounds | EE (Kbytes/Joule) | 1% | 10% | 25% | 50% | 75% | 95% | 100% |
(s) | |||||||||
10 | 611(2.5) | 321(28) | 12(24.7) | 506(3.7) | 588(2.5) | 683(3.1) | 773(3) | 900(6.8) | |
50 | 852(2.3) | 43(20.2) | 157(25.2) | 378(9.8) | 674(5.2) | 1150(3.3) | 1456(2.8) | 1569(5.2) | |
LEACH-C, | 100 | 1078(3.2) | 42(20.8) | 201(27.8) | 526(12.2) | 1122(5.8) | 1376(2.2) | 1713(4.7) | 1784(4.8) |
[21] | 300 | 470(17.9) | 38(28.6) | 336(35.9) | 1094(9.4) | 14703(5.2) | 1698(4.8) | 2472(13.1) | 2669(9.6) |
10 | 652(2.2) | 385(16.7) | 591(4.3) | 686(4.7) | 787(2.6) | 841(2.2) | 931(2.9) | 981(3.4) | |
50 | 849(4.2) | 117(6.1) | 629(18.6) | 880(2.5) | 948(4.5) | 1113(5) | 1315(2.8) | 1348(2.8) | |
PEGASIS, | 100 | 925(4.6) | 93(70.4) | 809(15.9) | 956(1.8) | 945(21.7) | 1220(1.7) | 1509(1.8) | 1535(2.5) |
[22] | 300 | 1002(9.5) | 73(81.4) | 976(4.4) | 1016(1.4) | 1040(1.5) | 1412(1) | 1808(0.5) | 1833(1.6) |
20 | 1004(1.7) | 378(13.6) | 556(7.4) | 704(2) | 907(7.2) | 1127(10.9) | 1462(11.2) | 1617(12.8) | |
50 | 1069(1.7) | 349(22.3) | 557(8.7) | 706(1.5) | 906(4.8) | 1121(4.6) | 1467(11.9) | 1568(13) | |
PEGCP, | 100 | 1093(1.9) | 326(32.6) | 562(8.5) | 710(1.3) | 940(6.2) | 1169(6.7) | 1526(6.7) | 1569(6.8) |
[25] | 300 | 1142(2.0) | 203(48) | 544(8.7) | 725(6.6) | 970(8.5) | 1234(6.9) | 1623(6.2) | 1702(6.6) |
500 | 1238(22.5) | 184(30.1) | 536(24.9) | 715(22.7) | 1029(24.6) | 1435(28) | 1863(24) | 2041(25.4) | |
10 | 1025(1.6) | 478(9.5) | 673(9.9) | 792(3.1) | 1024(4.4) | 1197(7.6) | 1461(5.9) | 1481(5.8) | |
50 | 1091(2.4) | 485(14.9) | 667(10.4) | 787(6.6) | 1017(5.0) | 1197(8.8) | 1423(4.0) | 1431(3.8) | |
EEGT | 100 | 1138(1.9) | 477(12) | 682(11.2) | 792(1.1) | 1025(5.7) | 1207(6.9) | 1488(3.3) | 1502(3.6) |
300 | 1211(2.6) | 418(16.2) | 636(13.3) | 799(2.6) | 1035(4.2) | 1279(2.2) | 1748(5.7) | 1764(7.0) | |
500 | 1282(2.1) | 371(32.8) | 619(13.2) | 804(1.2) | 1099(4.0) | 1414(2.6) | 1961(5.8) | 1977(5.6) | |
700 | 1338(2.7) | 358(23.7) | 584(11.8) | 802(1.1) | 1125(6.0) | 1484(1.2) | 2239(3.2) | 2344(8.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duy Tan, N.; Nguyen, D.-N.; Hoang, H.-N.; Le, T.-T.-H. EEGT: Energy Efficient Grid-Based Routing Protocol in Wireless Sensor Networks for IoT Applications. Computers 2023, 12, 103. https://doi.org/10.3390/computers12050103
Duy Tan N, Nguyen D-N, Hoang H-N, Le T-T-H. EEGT: Energy Efficient Grid-Based Routing Protocol in Wireless Sensor Networks for IoT Applications. Computers. 2023; 12(5):103. https://doi.org/10.3390/computers12050103
Chicago/Turabian StyleDuy Tan, Nguyen, Duy-Ngoc Nguyen, Hong-Nhat Hoang, and Thi-Thu-Huong Le. 2023. "EEGT: Energy Efficient Grid-Based Routing Protocol in Wireless Sensor Networks for IoT Applications" Computers 12, no. 5: 103. https://doi.org/10.3390/computers12050103
APA StyleDuy Tan, N., Nguyen, D. -N., Hoang, H. -N., & Le, T. -T. -H. (2023). EEGT: Energy Efficient Grid-Based Routing Protocol in Wireless Sensor Networks for IoT Applications. Computers, 12(5), 103. https://doi.org/10.3390/computers12050103