
Citation: Samir, M.; Sherief, N.;

Abdelmoez, W. Improving Bug

Assignment and Developer

Allocation in Software Engineering

through Interpretable Machine

Learning Models. Computers 2023, 12,

128. https://doi.org/10.3390/

computers12070128

Academic Editor: Paolo Bellavista

Received: 18 May 2023

Revised: 17 June 2023

Accepted: 20 June 2023

Published: 23 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Improving Bug Assignment and Developer Allocation in
Software Engineering through Interpretable Machine
Learning Models
Mina Samir *, Nada Sherief and Walid Abdelmoez

College of Computing and Information Technology, Arab Academy for Science, Technology & Maritime
Transport, Alexandria 1029, Egypt; nada.sherief@aast.edu (N.S.); walid.abdelmoez@aast.edu (W.A.)
* Correspondence: mina.abdelnour@student.aast.edu

Abstract: Software engineering is a comprehensive process that requires developers and team
members to collaborate across multiple tasks. In software testing, bug triaging is a tedious and
time-consuming process. Assigning bugs to the appropriate developers can save time and maintain
their motivation. However, without knowledge about a bug’s class, triaging is difficult. Motivated
by this challenge, this paper focuses on the problem of assigning a suitable developer to a new bug
by analyzing the history of developers’ profiles and analyzing the history of bugs for all developers
using machine learning-based recommender systems. Explainable AI (XAI) is AI that humans can
understand. It contrasts with “black box” AI, which even its designers cannot explain. By providing
appropriate explanations for results, users can better comprehend the underlying insight behind
the outcomes, boosting the recommender system’s effectiveness, transparency, and confidence. The
trained model is utilized in the recommendation stage to calculate relevance scores for developers
based on expertise and past bug handling performance, ultimately presenting the developers with
the highest scores as recommendations for new bugs. This approach aims to strike a balance between
computational efficiency and accurate predictions, enabling efficient bug assignment while consider-
ing developer expertise and historical performance. In this paper, we propose two explainable models
for recommendation. The first is an explainable recommender model for personalized developers
generated from bug history to know what the preferred type of bug is for each developer. The second
model is an explainable recommender model based on bugs to identify the most suitable developer
for each bug from bug history.

Keywords: explainability; explainable AI; XAI; recommendation; bugs

1. Introduction

Software bugs lead an application to behave unexpectedly. Bugs can be introduced
throughout the testing and maintenance phases of the software development lifecycle
(SDLC) [1]. Software bugs are a common and persistent problem in the field of software
engineering, causing significant challenges and costs for organizations and users alike.
Therefore, it is important to better understand the causes, effects, and mitigation strategies
associated with software bugs [2], as well impacts on the end user. Bugs can never be
entirely eradicated, so no software can be completely bug-free. The testing team can follow
best practices to eliminate software bugs. A good management system identifies and fixes
most errors before production. If testers and developers work well together, bugs can be
discovered and resolved faster [3].

Commonly, issue tracking systems (ITS) [4] are used to create, update, and address
reported customer bugs, as well as bugs reported by other personnel within a company. A bug
should contain pertinent details regarding the problem encountered. A frequent component
of an issue tracking system is a knowledge base holding data on each client, common problem
resolutions, the bug’s state, developer information, and similar data. Several open-source

Computers 2023, 12, 128. https://doi.org/10.3390/computers12070128 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12070128
https://doi.org/10.3390/computers12070128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://doi.org/10.3390/computers12070128
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12070128?type=check_update&version=2

Computers 2023, 12, 128 2 of 28

software projects manage requests professionally through cloud-based bug tracking systems
(e.g., Bugzilla, GitHub) [2]. The bug tracking system manages the assignment of each bug
to the appropriate developers and classifies it accordingly (e.g., bug, feature, and product
component). The developer who handles these assigned bugs is referred to as a bug tracker [5].
As massive numbers of bugs are reported daily in the bug tracking system, it becomes
increasingly difficult to manually manage these bug reports on time. Every day, approximately
300 bug reports are discovered or sent to the Eclipse open-source project [6]. These statistics
demonstrate the difficulty of the bug triage procedure.

Bug triage is the process of identifying and prioritizing tracker issues. It helps guar-
antee that reported issues, such as bugs, enhancements, and new feature requests, are
managed effectively. Several automated triage systems using the candidate developer’s
prediction process have been developed [7–9]. The reporter of a defect uses the standard
bug report format to make a patch to the tested bugs. It has entries for bug ID, assignee,
open date, when the developer begins working on the problem, close date, and when the
bug has been completely resolved and closed. The severity of an issue indicates its impact
on the system. The priority level of an issue indicates the urgency of fixing it, since the
resolution of other defects may rely on its resolution.

In several application sectors, machine learning is considered as a technology of
the future [10], ranging from basic applications such as product recommender systems,
to automated cancer detection. Many applications make extensive use of recommender
systems. Recommendation systems use machine learning algorithms and techniques
to provide customers with appropriate recommendations by analyzing data (e.g., past
behaviors) and predicting current interests and preferences. Collaborative filtering (CF)
has been shown to be one of the most effective methods for generating suggestions based
on prior user behavior [11].

However, the newly popular latent representation methods for CF, including both
shallow and deep models, are unable to adequately explain to consumers their rating
prediction and recommendation outcomes [12]. Some challenging but well-connected topics
for implementing more accurate bug fixing techniques have been explored in previous
bug fixing research [13,14]. These include topics such as “how to collect information for
a developer’s skills in software projects”, “how to tie various pieces of information to a
bug report to assign it to a developer”, “how to apply similarity measures to match a bug
report with a developer” and “how to use additional hints or heuristics to connect a bug
report to a candidate”. Almost all past bug fixing studies do indeed include such topics.
Unfortunately, bug fixing is still a time-consuming and money-consuming part of software
development projects. Fixing software defects is a crucial part of software management.

Furthermore, there is a basic challenge in using machine learning, which is the ex-
plainability of the results [15]. Typically, AI algorithms operate as opaque “black boxes”
that accept input and produce output without any means of understanding their inner
workings. Several previous papers [16] discuss and analyze the various intricacies that are
involved in defining explainability and interpretability of neural networks. We support the
idea of explainable AI in general, which refers to a collection of methods and algorithms
that are intended to increase the dependability and openness of AI systems. Explanations
are referred to as supplemental pieces of metadata information that are derived from the AI
model and provide insight into the reasoning behind a particular AI decision or the internal
workings of the AI model. In the literature review section, many different explainability
methodologies that may be used with deep neural networks are discussed. The purpose of
explainable artificial intelligence (XAI) is to enable humans to comprehend the logic behind
an algorithm’s output [12]. Explainability is essential for several reasons:

• It facilitates analysts’ timely and simple comprehension of system outputs. Analysts
can make better-informed conclusions if they comprehend how the system operates.

• False positives are reduced. Explainability automates a tedious procedure by giving
analysts’ recommendations and inconsistencies to investigate.

Computers 2023, 12, 128 3 of 28

• It provides assurance in the AI diagnosis by explaining the “why.” AI can occasionally
produce correct outcomes for incorrect reasons. Likewise, AI may and does make
mistakes. Explainability means that errors can be understood and trained outside of
the system.

• Encourages the adoption and acceptance of AI, since trust via understanding is key.

Appropriate explanations are critical for recommendation systems, as researchers have
discovered [12]. This may contribute to the system’s enhancement in effectiveness, trans-
parency, and trust. For explainable recommender system, many methods have been developed,
most of which are classified as collaborative filtering approach, explain by item-based collabo-
rative filtering, or user-based collaborative filtering [11,12]. However, there is still a research
gap related to the explainability of machine learning-based recommendation systems.

Motivated by the challenges mentioned above, and to minimize the costs and time
spent on software maintenance, we propose a method for bug triage automation called As-
sign Bug based on Developer Recommendation (ABDR). Our method’s principal goal is to
decrease resolving time, cost, and provide explainable results. The proposed method, upon
receiving a new issue, suggests developers by retrieving the most appropriate developers
based on bug history and developers’ profiles as inputs. It is a supervised machine learning
technique that generates a list of recommended developers based on previous profiles of
the developers. Developer Similarity (DS) uses developer knowledge to fix issues across
many features of bugs including product, severity, and component, as well as bug handling
time (HT), and effectiveness in fixing several bugs (EB). We also propose an ABDR training
model. The model generates developer profiles according to the three abovementioned
factors: DS, HT, and EB. We assign each developer and each bug a bug prediction score
that reflects the developer’s familiarity with resolving the specific bug. Finally, we present
two explicable recommendation models. The first is an explainable recommender model
for individualized developers created from bug history to determine which type of bug
each developer prefers. The second model is an explainable recommender based on bug
history to determine the optimal developer for each bug.

The paper is organized as follows: Section 2 introduces the background of prediction
models and explainability methods. Section 3 includes a demonstration of related work
for assigning bugs to developers using the techniques mentioned in Section 2. Section 4
discusses the proposed model to assign a new bug to the most relevant developer. Section 5
shows the results of the proposed model. Section 6 discusses the research questions and
our model’s findings. Finally, Section 7 concludes our analysis.

2. Background

In this section, detailed background concerning topics related to this research is
discussed. When a new bug is reported, it is the responsibility of the team to decide which
developer will be tasked with fixing it. However, if the selected developer is unable to
repair the issue, the system must allocate it to a different developer. Delays in resolving
bugs [17] are caused by such constant reassignment. We review bug-fixing techniques, bug-
fixing processes, machine learning techniques used for bug assessment, and explainability
models for machine learning techniques.

2.1. Bug Fixing Techniques

The General Bug Fixing Model is typically implemented with the use of a bug tracking
system, which helps the development team to manage the bug fixing process more effec-
tively. This system allows the team to track the progress of each bug and keep all relevant
information in one centralized location.

The first step in the process is bug reporting, which involves entering the bug into the
tracking system. The bug report typically includes information such as the issue description,
steps to reproduce the issue, and any supporting materials such as screenshots or error
logs. The bug tracking system also assigns a unique identifier to each bug, which allows
the team to easily reference it throughout the bug fixing process.

Computers 2023, 12, 128 4 of 28

After the bug is reported, it is typically assigned to a member of the development
team for investigation and resolution. This step is facilitated by the bug tracking system,
which can assign the bug to a specific team member based on his/her skills. The team
members will then investigate the issue and work to find a solution, typically updating the
bug report with their progress along the way.

Once a solution is found, the team member will typically submit a fix for the bug,
which is then tested and verified by the team. This is typically performed using a testing
environment, where the fix can be tested in a controlled environment to ensure that it
resolves the issue and does not introduce any new problems.

Finally, once the bug fix is verified, it is closed in the bug tracking system. This
indicates that the issue has been resolved and can help the team keep track of which bugs
have been addressed and which are still outstanding. The closed bug report typically
includes information on the resolution of the issue and any relevant notes or comments.

Overall, the use of a bug tracking system can help streamline the bug fixing process
and improve communication between team members. By using this system, development
teams can more effectively manage the bug fixing process and ensure that bugs are resolved
in a timely and efficient manner, as shown in Figure 1.

Computers 2023, 12, x FOR PEER REVIEW 4 of 30

The first step in the process is bug reporting, which involves entering the bug into

the tracking system. The bug report typically includes information such as the issue de-

scription, steps to reproduce the issue, and any supporting materials such as screenshots

or error logs. The bug tracking system also assigns a unique identifier to each bug, which

allows the team to easily reference it throughout the bug fixing process.

After the bug is reported, it is typically assigned to a member of the development

team for investigation and resolution. This step is facilitated by the bug tracking system,

which can assign the bug to a specific team member based on his/her skills. The team

members will then investigate the issue and work to find a solution, typically updating

the bug report with their progress along the way.

Once a solution is found, the team member will typically submit a fix for the bug,

which is then tested and verified by the team. This is typically performed using a testing

environment, where the fix can be tested in a controlled environment to ensure that it

resolves the issue and does not introduce any new problems.

Finally, once the bug fix is verified, it is closed in the bug tracking system. This indi-

cates that the issue has been resolved and can help the team keep track of which bugs have

been addressed and which are still outstanding. The closed bug report typically includes

information on the resolution of the issue and any relevant notes or comments.

Overall, the use of a bug tracking system can help streamline the bug fixing process

and improve communication between team members. By using this system, development

teams can more effectively manage the bug fixing process and ensure that bugs are re-

solved in a timely and efficient manner, as shown in Figure 1.

Figure 1. General Bug Fixing Model [18].

The most common description of assigning a developer to a bug is as follows: If you

receive a bug report, your task is to determine which developers are the most qualified to

address the issue based on their track records of participation with the project [13]. Some

approaches aim to reduce the time to fix the problems rather than maximize the

knowledge of the potential assignee. For instance, in [19], the authors recommend build-

ing a topic model from reported issues. Their technique estimates how long it will take

each developer to repair an issue (using the log normal distribution of the three possible

combinations of fixer, subject, and severity) and then prioritizes who should be given the

report.

A few researchers have explored files and metadata to find connections between de-

velopers and the newly discovered issues using location-based techniques [20]. In the be-

ginning, they locate or forecast the presence of issues such as methods or classes. Next,

they determine the most qualified programmer to return to work on the items based on

Figure 1. General Bug Fixing Model [18].

The most common description of assigning a developer to a bug is as follows: If you
receive a bug report, your task is to determine which developers are the most qualified to
address the issue based on their track records of participation with the project [13]. Some
approaches aim to reduce the time to fix the problems rather than maximize the knowledge
of the potential assignee. For instance, in [19], the authors recommend building a topic
model from reported issues. Their technique estimates how long it will take each developer
to repair an issue (using the log normal distribution of the three possible combinations of
fixer, subject, and severity) and then prioritizes who should be given the report.

A few researchers have explored files and metadata to find connections between
developers and the newly discovered issues using location-based techniques [20]. In
the beginning, they locate or forecast the presence of issues such as methods or classes.
Next, they determine the most qualified programmer to return to work on the items
based on the existing connections between programmers and the places in question. Most
location-based techniques need extensive version control system documentation. The
most prevalent methods were information retrieval (IR) and machine learning (ML). Many
recent studies have focused on IR-based activity profiling because it typically results in
higher accuracies [21]. Another study [22] used the feature selection method to reduce data
volume. The characteristics of the dataset were extracted using a hybrid of the K-Nearest
Neighbor and Naive Bayes methods. Finally, the researchers investigated the recommended
method using the Mozilla bug tracker.

Computers 2023, 12, 128 5 of 28

2.2. Machine Learning Techniques

Supervised and unsupervised learning are two fundamental paradigms in machine
learning that have been widely applied in various domains, including software engineering.
Supervised learning is a form of machine learning where the model is trained on labeled
data, meaning that the input data are associated with known output labels. The goal is
to learn a function that can map the input data to the output labels accurately. This type
of learning is often used in classification, regression, and prediction tasks. In software
engineering, supervised learning has been applied to tasks such as defect prediction, code
clone detection, and bug triage, among others.

On the other hand, unsupervised learning is a form of machine learning where the
model is trained on unlabeled data, meaning that there are no known output labels for the
input data. The goal of unsupervised learning is to identify patterns and structures in the
input data without any prior knowledge of the output. Unsupervised learning has found
applications in software engineering, including software clustering, anomaly detection,
and feature extraction tasks.

Both supervised and unsupervised learning techniques have their strengths and
weaknesses and can be applied to different tasks depending on the nature of the data and
the problem at hand. However, choosing the appropriate learning technique and model
is crucial for achieving accurate and reliable results. Moreover, the interpretation and
explanation of these models are equally important to understand their underlying behavior
and to trust their outputs.

In this work, deep learning techniques [21] are used in supervised learning because
they are particularly suited to handling large and complex datasets with multiple features.
In supervised learning, the algorithm learns to map input data to output labels by being
trained on a labeled dataset. The following list describes these classifiers in detail:

• Regression [23]: This is a statistical model that classifies binary dependent variables us-
ing the logistic function. Despite its simplicity, regression is still commonly employed
in prediction to improve performance.

• Root Mean Square Error (RMSE) [24]: This is a commonly used metric in statistics and
machine learning for evaluating the accuracy of a regression model. RMSE measures
the average distance between the predicted values of a model and the actual values in
a dataset. It is calculated as the square root of the average of the squared differences
between the predicted and actual values.

• Gradient Boosting Machine (GBM) [25]: This is a powerful machine learning algorithm
used for regression and classification problems. GBM is a type of ensemble learning
technique, which combines the predictions of several weak models to create a stronger
model. GBM works by building a sequence of decision trees, where each tree corrects
the errors of the previous tree. The algorithm iteratively adds decision trees to the
model, with each subsequent tree fitting the residual errors of the previous tree. The
process continues until the specified number of trees is reached, or until a specified
level of accuracy is achieved.

• Decision Tree [26]: This method is a type of supervised machine learning, in which
it is specified what the input and the output will be in relation to the data used for
training. In this method, the data are split in a continuous manner in accordance with
a given parameter. In this decision tree, we have two characteristics, which are the
parent nodes and the leaves, with the leaves representing the outcome and the parent
nodes serving as the criteria.

• Random Forest [27]: This is a collection of decision trees that may also be referred to as an
ensemble learning algorithm. In this context, the word “ensemble” refers to a collection
or a group; in the context of Random Forest, it refers to the collection of trees.

• XGBoost [28]: The XGBoost algorithm is an effective tool for machine learning. It has
only lately been made available and falls under the category of supervised learning.
Gradient boosting may be thought of as its fundamental central concept. XGBoost is
based on a technique known as parallel tree boosting, which predicts a target based on

Computers 2023, 12, 128 6 of 28

the combined results of many weak models. This technique enables Gradient Boosting
to achieve both high speed and high accuracy.

Our experiment uses the implementation of the bug prediction classifier described
above, developed in the XGBoost model in the R programming language [29]. XGBoost
(eXtreme Gradient Boosting) [29] is a popular machine learning algorithm that has been
used for bug assignment in software engineering. There are five reasons why XGBoost
is a good choice for bug assignment: Firstly, it is an ensemble method that combines the
predictions of multiple weak models (i.e., decision trees) to improve the accuracy and
robustness of the model. Secondly, it has a regularization parameter that helps prevent
overfitting and improves the generalization performance of the model. Third, it can handle
both categorical and continuous data, which makes it suitable for bug assignment datasets
that may contain a mixture of different types of features. The fourth reason is that it is
a highly scalable algorithm that can handle large datasets with millions of instances and
features, which is important for bug assignment tasks that may involve many bug reports.
Finally, it has a fast implementation and can run on parallel architectures, which makes it a
practical choice for real-world bug assignment applications.

Overall, XGBoost is a powerful and flexible machine learning algorithm that is well-
suited to bug assignment in software engineering and has been shown to achieve high
accuracy and efficiency in several studies.

2.3. Explainability Methods

To facilitate a deeper understanding of the topics covered in this paper, the following
sections provide a brief explanation of the basic features of XAI from a technological point
of view. Therefore, the concept of explainability is linked to the interface that exists between
people and those who make decisions [30]. This interface can be understood by people
in real time and is an exact reflection of the decision maker. Providing explanations for
black-box machine learning techniques such as deep neural networks has become more
important in recent years [16].

Explainability models provide ways to understand the reasoning behind the decisions
made by machine learning models. These models aim to make machine learning models
more transparent and interpretable, enabling us to understand the impact of various factors
and features on the model’s output.

This section outlines some commonly used methods for model explainability, such as
LIME (Local Interpretable Model Agnostic Explanations), Break-down, textual explanations
of visual models, and SHAP (SHAPley Additive exPlanations). These techniques aim
to provide insights into how machine learning models make decisions and to increase
transparency and trust in the decision-making process.

2.3.1. LIME (Local Interpretable Model Agnostic Explanations)

The core idea behind LIME is to provide a simple explanation for a prediction made
by a more advanced model, such as a deep neural network, by fitting a simpler local
model [31]. On the other hand, LIME [32] creates samples close to the input of interest,
evaluates them with the target model, and then approximates the target model in this
general neighborhood with a simple linear function. The widespread success of LIME’s
various implementations across a variety of fields is proof of the method’s popular appeal.
Using a surrogate model to address the explanation issue is a disadvantage of LIME.

2.3.2. Break-Down

The idea behind this model is to conduct a variable contribution analysis. Researchers
first compile a growing list of variables, then examine the values of each variable in turn.
Interactions in the model may cause the contributions to change depending on the order in
which the variables are considered [33]. If one variable’s contribution varies depending on
the order in which it appears, then it may be possible to identify this by analyzing various
orderings. To discover and illustrate model interactions, the Break-down technique [34]

Computers 2023, 12, 128 7 of 28

examines the different orders in which they occur. A single order is selected using a
feature important to establishing the final attributions. The authors in [35] demonstrate this
method for many different datasets. As a result, this method is good for both computational
efficiency and interpretation. The Breakdown library [36] is a machine learning library that
can be used to analyze the contributions of individual variables in a predictive model’s
output. The library can be used to construct both binary classifiers and regression models. It
also provides a Break-down Plot, which is a graphical representation of how each individual
variable contributes to the overall forecast. The plot helps users understand which variables
are most influential in making the predictions and can aid in identifying potential bugs or
issues in the model.

The Breakdown library works by decomposing the prediction of a model into the
contribution of each individual variable. This allows users to see how much each variable
is contributing to the prediction and how the variables interact with each other. For binary
classification models, the Breakdown library can be used to identify the variables that
have the most significant impact on the model’s accuracy or precision. This can help
users understand which variables to focus on when optimizing the model. For regression
models, the Breakdown library can be used to understand which variables are driving the
model’s predictions and how changes in the variables affect the model’s output. Overall,
the Breakdown library is a useful tool for understanding the contribution of individual
variables in a predictive model and can aid in bug detection and model optimization.

2.3.3. Textual Explanations of Visual Models

Several different machine learning models are used to generate textual descriptions
of images. These models have two parts: one that processes the input images (typically
a convolutional neural network, or CNN), and one that learns a suitable text sequence
(typically a recurrent neural network, RNN). This allows the models to generate textual
descriptions of images (RNN). These two components work together to produce picture-
descriptive phrases, which are dependent on the fact that a classification assignment has
been completed to a satisfactory level. The COCO database made by Microsoft (MS-COCO)
was one of the first places where picture descriptions were used as part of a benchmark
dataset [37].

2.3.4. SHAP

SHAP, which stands for SHAPley Additive exPlanations, is a visualization tool that
may be used to make a machine learning model more explainable by displaying the model’s
output. By calculating the contribution of each feature to the forecast, it may be used to
explain the prediction of any model. It is a grouping of several different tools, such as lime,
SHAPely sample values, DeepLift, and QII, amongst others. In [38], SHAP is determined by
taking the average of these contributions over all the many orderings that are allowed. The
Shapley values have been adapted into this technique to provide an explanation for specific
predictions made by machine learning models. At first, Shapley values were suggested to
ensure that everyone receives the same number of rewards in cooperative games.

We use The Break-down method in bug assignments to help identify which features or
variables of a model are the most important contributors to a particular bug. By analyzing
the impact of each feature in the model, the Break-down method can provide a better
understanding of the relationship between the input variables and the output. Additionally,
the Break-down method is computationally efficient and can provide easy-to-understand
visualizations, making it a useful tool for developers and other stakeholders involved in
the bug fixing process.

3. Related Work

The use of machine learning techniques in software engineering must be accompanied by
rigorous evaluation and verification to ensure their usefulness and applicability in practice.

Computers 2023, 12, 128 8 of 28

3.1. Machine Learning Techniques in Bug Fixing

Reference [12] is a survey paper that reviews recent developments in explainable rec-
ommendation systems, including both supervised and unsupervised learning techniques.
The authors discuss the importance of explainability in recommendation systems and the
challenges of achieving it, such as the need for transparency, interpretability, and user
trust. The authors provide a comprehensive overview of the different approaches used in
explainable recommendation systems, including rule-based systems, matrix factorization,
deep learning, and hybrid methods. The authors also discuss the different methods used to
evaluate the effectiveness of explainable recommendation systems, such as user studies,
surveys, and performance metrics. They highlight the importance of evaluating not only the
accuracy and effectiveness of the system but also its interpretability and user satisfaction.

3.1.1. Supervised Learning Techniques

The research described in [39] used supervised learning techniques to develop a
release-aware bug triaging method that considers developers’ bug-fixing loads. The authors
used a labeled dataset of bug reports from the Eclipse project, which included information
on the severity of the bug, the component it belongs to, and the developer who fixed it.
The authors used a logistic regression model to predict the probability of a bug being
fixed by a particular developer, given its severity and component. They also developed a
release-aware method that considers the expected bug-fixing load of each developer and
assigns bugs to developers accordingly. To evaluate the effectiveness of their method, the
authors compared it with several baseline methods and conducted a sensitivity analysis to
evaluate the impact of different factors on the model’s performance. The results showed
that their method outperformed the baseline methods in terms of several metrics, including
accuracy, F1 score, and AUC-ROC. The authors also conducted a detailed analysis of the
results to identify factors that contribute to the model’s performance, such as the severity
of the bug, the component it belongs to, and the expected bug-fixing load of each developer.
They also discussed the potential limitations of their approach and suggested directions for
future research, such as incorporating more features including developer experience and
workload, and testing on datasets from other software projects.

The core idea of paper [40] relates to the impact on the interpretation of defect models
of correlated metrics, which are used to predict software defects. The authors show that
correlated metrics can have a significant impact on the performance of defective models,
and they propose a method for identifying and addressing these correlations. The paper
includes an evaluation of the method on several real-world datasets, demonstrating its
effectiveness in improving the performance of defective models.

The purpose of study [41] was to investigate the impact of tangled code changes on
defective prediction models. Tangled code changes are changes that affect multiple code
locations at once, and the authors show that these changes can have a significant impact on
the performance of defect prediction models. The paper proposes a method for detecting
tangled code changes and incorporating them into defect prediction models, and it includes
an evaluation of the method on several real-world datasets.

Another study [42] aimed to address the issue of manual categorization of bug reports,
which can be a time-consuming and error-prone process. The authors proposed an auto-
mated approach based on supervised learning techniques using LSTM networks. LSTM
networks are a type of recurrent neural network (RNN) that is well-suited for processing
sequential data such as text. The authors used a dataset of bug reports from the Apache
Software Foundation, which consisted of over 12,000 bug reports labeled into six categories.
They preprocessed the text data by tokenizing, stemming, and removing stop words, and
then trained the LSTM model on the preprocessed data. The authors evaluated the model’s
performance using various metrics, including precision, recall, and F1 score, and compared
it with several baseline models. The results showed that the LSTM model outperformed the
baseline models and achieved an F1 score of 0.727, indicating a significant improvement
in categorization accuracy. The authors also conducted a sensitivity analysis to evaluate

Computers 2023, 12, 128 9 of 28

the impact of different parameters, such as the number of LSTM layers and the embed-
ding dimension, on the model’s performance. The authors of [35] present a method for
predicting fault-proneness in software using Random Forests. They show that Random
Forests can outperform other machine learning algorithms, such as neural networks and
support vector machines, in terms of prediction accuracy. The paper also discusses the
use of feature selection and cross-validation to improve the performance of the model.
The method is evaluated on several real-world datasets, demonstrating its effectiveness in
predicting fault-proneness in software.

The authors of [36] investigated whether the chronological order of data used in
just-in-time (JIT) defect prediction models affects their performance. The authors partially
replicated a previous study and evaluated the impact of different training and testing data
sets on the performance of the model. The results show that the chronological order of
the data can have a significant impact on the performance of JIT defect prediction models,
and the authors provide recommendations for improving the accuracy of these models.
The study highlights the importance of considering the temporal order of data in software
defect prediction.

The authors of paper [8] used supervised learning techniques, specifically deep learning,
to develop an automated bug triaging system called DeepTriage. They used a labeled dataset
of bug reports from the Eclipse project, which included information on the severity of the
bug, the component it belongs to, and the developer who fixed it. The authors used a
deep learning model based on a convolutional neural network (CNN) and a long short-term
memory (LSTM) network to predict the probability of a bug being fixed by a particular
developer, given its severity and component. They also developed an approach to address the
class imbalance problem in the dataset, where some developers are responsible for fixing a
significantly larger number of bugs than others. To evaluate the effectiveness of their approach,
the authors compared it with several baseline methods and conducted a sensitivity analysis
to evaluate the impact of different factors on the model’s performance. The results showed
that their approach outperformed the baseline methods in terms of several metrics, including
accuracy, F1 score, and AUC-ROC. The authors also conducted a detailed analysis of the
results to identify factors that contribute to the model’s performance, such as the importance
of the component and developer information in predicting bug triage, and the impact of
different hyperparameters on the model’s performance. They also discussed the potential
limitations of their approach, such as the need for large amounts of labeled data and the
potential biases in the dataset. Overall, the study [6] demonstrates the potential of supervised
learning techniques, specifically deep learning, in developing effective bug triaging systems.
The authors provide a detailed analysis of their approach and discuss potential avenues for
future research, such as incorporating more features, for example, developer experience and
workload, and testing on datasets from other software projects.

3.1.2. Unsupervised Learning Techniques

The research reported in [11] used unsupervised learning techniques, specifically
constrained matrix factorization, to improve the explainability of recommender systems.
The authors proposed a novel approach to incorporate user constraints, such as explicit
preferences and implicit feedback, into the matrix factorization process to generate more
interpretable recommendations. The authors used a dataset of movie ratings from the
MovieLens dataset and evaluated their approach using several metrics, including predic-
tion accuracy, diversity, and novelty. They also conducted a user study to evaluate the
explainability of the recommendations generated by their approach, compared with a base-
line method. The authors discussed the potential benefits of their approach in generating
more explainable recommendations, which could improve user trust and satisfaction with
the system. They also discussed the potential limitations of their approach, such as the need
for additional constraints and the impact of the sparsity of the dataset on the performance
of the approach. Overall, the study demonstrates the potential of unsupervised learning
techniques, specifically constrained matrix factorization, in improving the explainability

Computers 2023, 12, 128 10 of 28

of recommender systems. The authors provide a detailed analysis of their approach and
discuss potential avenues for future research, such as incorporating more user constraints
and testing on datasets from other domains.

In conclusion, supervised learning allows for precise and accurate predictions as
it leverages labeled data to train models and make informed decisions. With clear and
explicit target values provided during the training phase, supervised learning algorithms
can effectively learn patterns and relationships in the data, leading to reliable predictions.
In addition, supervised learning offers interpretability and explainability. Since the training
data are labeled, it becomes easier to understand the factors influencing predictions or
classifications. This transparency allows users to comprehend the underlying logic of the
model’s decisions, enhancing trust and facilitating debugging and error analysis. While
unsupervised learning techniques have their merits, such as identifying hidden patterns
and clustering similar instances without labeled data, they may lack the precision and
interpretability of supervised learning. The absence of labeled data makes it challenging to
assess the accuracy of predictions or provide explanations for the discovered patterns.

3.2. Explainability Models for Recommender-Based ML Techniques

Paper [43] applied the Textual Sentence Explanations approach to increasing amounts
of user-generated material, such as e-commerce user reviews and social media user con-
tributions. This information is extremely valuable for predicting more extensive user
preferences and may be used to deliver fine-grained and more credible suggestion explana-
tions to convince customers or to assist consumers in making more educated choices. Based
on this idea, a few models have been developed recently to explain recommendations by
using different kinds of textual information. These models usually produce a textual phrase
that explains the suggestion.

In [38], the authors propose a novel framework called SHAP (SHapley Additive exPla-
nations) to explain the output of any machine learning model. SHAP computes Shapley
values, which is a method for assigning contributions to each feature in a prediction. The
paper also presents the integration of SHAP with deep neural networks and Random
Forests. The results presented in the experimental evaluation section show that the pro-
posed framework is effective in providing interpretable and meaningful explanations for
NIDS decisions. The authors use several metrics to evaluate the performance of the frame-
work, including accuracy, precision, recall, and F1 score, which provide a comprehensive
evaluation of the framework’s effectiveness. One limitation of the paper is that it does
not explicitly address the scalability of the proposed framework. As mentioned earlier,
SHAP can be computationally expensive, especially for large datasets and complex mod-
els. It would be interesting to see how the proposed framework performs in larger-scale
experiments or real-world settings where speed and efficiency are critical.

Paper [44] presents a technique for characterizing the complexity of neural networks
using Fisher-Shapley randomization. The paper uses SHAP values to identify the most
important features in a model and then applies Fisher–Shapley randomization to evaluate
the perturbation effects of these features on the model’s output.

The research presented in [45] investigates a technique for evaluating the predictive
uncertainty of machine learning models under dataset shift. The paper uses SHAP values
to identify the most important features in a model and then evaluates the robustness of the
model’s predictive uncertainty to changes in those features.

4. Proposed Model

Previous studies approached the subject of triaging as a classification problem and
concluded that manual triaging was the most effective method. Based on this paper’s
Related Work section, three research questions that have not been answered yet are:

1. How can considering multiple factors, such as the severity and priority of the bug, the
expertise of the developer, and the complexity of the bug, improve the performance
of bug triaging using machine learning?

Computers 2023, 12, 128 11 of 28

2. How can machine learning techniques be used to assign bugs to developers based on
their expertise?

3. How can explainable artificial intelligence (XAI) techniques be applied to enhance
the transparency and interpretability of machine learning models for bug triaging,
thereby helping developers comprehend the decision-making process of the models
and providing suggestions on how to improve them?

Within the scope of this study, an optimization strategy for the bug triaging process
using the Eclipse dataset is proposed. The strategy incorporates two methods, namely,
the Break-down method and the SHAP technique, to improve the bug fixing time and
standardize developer practices. In addition to the Break-down method, the proposed
optimization strategy also integrates the SHAP technique. SHAP is a model-agnostic
interpretability method that quantifies the contribution of each feature in a predictive
model. By applying SHAP to the bug triaging process, developers can gain a better
understanding of the impact of individual features on the fixing time.

The proposed method is designed to leverage supervised learning techniques to assign
a new bug to the most relevant developer based on the bug’s features and the developer’s
expertise, as determined from bug history performance. By utilizing a supervised learning
approach with the XGBoost technique, the model can learn from historical data and make
predictions on new, unseen data. This can lead to more accurate bug assignments and
help reduce the workload of developers by ensuring that bugs are assigned to the most
appropriate individual. As seen in Figure 2, the procedure consists of three distinct phases
as following:

1. Preparation stage: In this stage, the bug data are preprocessed to extract relevant
features and reduce noise. The bug reports are filtered to include only those that have
been resolved, verified, or closed, and only six variables are selected for each bug,
namely “PRODUCT”, “COMPONENT”, “OP_SYS”, “SEVERITY”, “PLATFORM”,
and “PRIORITY”.

2. Machine learning stage: In this stage, a machine learning model is trained using
historical bug data to predict the most relevant developers for a new bug based on its
features. The model uses a combination of gradient boosting and k-nearest neighbor
algorithms to make predictions.

3. Recommendation stage: In this stage, the trained machine learning model is used
to recommend the most relevant developers for a new bug. The model calculates a
relevance score for each developer based on their expertise and past bug handling
performance. The developers with the highest relevance scores are then presented as
recommendations for the new bug.

By using a combination of machine learning and bug history performance data, the
proposed method aims to improve the accuracy and efficiency of the bug triaging process
by recommending the most relevant developers for each new bug.

Stage 1: Preparation. In stage one, the new bug is received, and its features are
extracted or derived to match with historical bug data. The relevant metadata for each
bug, such as the product, component, operating system, severity, platform, and priority, are
selected and used for further processing in the next stages. The preprocessing and feature
extraction steps are necessary to reduce noise and make the bug data more suitable for the
machine learning model to learn from. The following subsections present an expanded
explanation of what occurs in Step One.

• Receiving a new bug: The first step in stage one is to receive a new bug that needs to
be assigned to a developer for fixing. The bug may come from various sources, such
as user reports.

• Extracting metadata: After receiving the new bug, the relevant metadata for the bug
is extracted or derived. This metadata includes information such as the product,
component, operating system, severity, platform, and priority of the bug.

Computers 2023, 12, 128 12 of 28

• Preprocessing: The extracted metadata is preprocessed to remove any noise and
inconsistencies in the data. This is achieved by text reduction and cleaning methods,
such as removing stop words, converting text to lowercase, and removing punctuation.
This helps reduce the dimensionality of the data and improves the accuracy of the
model.

• Feature extraction: After preprocessing, the relevant features for the bug are extracted
from the metadata. This involves selecting the most relevant variables that are likely
to influence the developer assignment decision. In this study, only six variables were
used: product, component, operating system, severity, platform, and priority.

• Matching with historical data: The extracted features for the new bug are then matched
with the historical bug data to find the most similar bugs in the dataset. This is achieved
using various similarity measures, such as cosine similarity or Jaccard similarity.

• Retrieving relevant developers: Once the most similar bugs in the historical data are
identified, the developers who fixed those bugs are retrieved. This is achieved by
analyzing the change logs and version control systems to find the developers who
were responsible for fixing the bugs.

Computers 2023, 12, x FOR PEER REVIEW 12 of 30

3. Recommendation stage: In this stage, the trained machine learning model is used to

recommend the most relevant developers for a new bug. The model calculates a rel-

evance score for each developer based on their expertise and past bug handling per-

formance. The developers with the highest relevance scores are then presented as

recommendations for the new bug.

By using a combination of machine learning and bug history performance data, the

proposed method aims to improve the accuracy and efficiency of the bug triaging process

by recommending the most relevant developers for each new bug.

Figure 2. ABDR recommender model.

Stage 1: Preparation. In stage one, the new bug is received, and its features are ex-

tracted or derived to match with historical bug data. The relevant metadata for each bug,

such as the product, component, operating system, severity, platform, and priority, are

selected and used for further processing in the next stages. The preprocessing and feature

extraction steps are necessary to reduce noise and make the bug data more suitable for the

machine learning model to learn from. The following subsections present an expanded

explanation of what occurs in Step One.

 Receiving a new bug: The first step in stage one is to receive a new bug that needs to

be assigned to a developer for fixing. The bug may come from various sources, such

as user reports.

Figure 2. ABDR recommender model.

Overall, stage one involves receiving a new bug, extracting, and preprocessing its
metadata, selecting relevant features, and matching with historical bug data to retrieve

Computers 2023, 12, 128 13 of 28

relevant developers. This lays the groundwork for the machine learning model to learn
and make accurate developer assignment decisions in the subsequent stages.

The history of bugs in the Eclipse content includes 208,862 bugs that are described
across 47 variables [46] in Table 1. To make the analysis more manageable and easier to
interpret, we use some text reduction and cleaning methods. Specifically, we will only
consider bug reports that are marked as “CLOSED”, “VERIFIED”, or “RESOLVED”.

Table 1. Bug history of Eclipse.

No. Variable No. Variable No. Variable

1 Alias 17 creator_detail.real_name 33 product
2 assigned_to 18 deadline 34 qa_contact
3 assigned_to_detail.email 19 depends_on 35 qa_contact_detail.email
4 Id 20 dupe_of 36 qa_contact_detail.id
5 assigned_to_detail.name 21 flags 37 qa_contact_detail.name
6 name 22 groups 38 qa_contact_detail.real_name
7 blocks 23 id 39 resolution
8 cc 24 is_cc_accessible 40 see_also
9 cc_detail 25 is_confirmed 41 severity

10 classification 26 is_creator_accessible 42 status
11 component 27 is_open 43 summary
12 creation_time 28 keywords 44 target_milestone
13 creator 29 last_change_time 45 url
14 creator_detail.email 30 op_sys 46 version
15 creator_detail.id 31 platform 47 whiteboard
16 creator_detail.name 32 priority

Additionally, we reduce the number of variables for each bug to six, focusing only on
the most relevant factors that contribute to bug resolution. These variables include “PROD-
UCT”, “COMPONENT”, “OP_SYS”, “SEVERITY”, “PLATFORM”, and “PRIORITY”. This
approach can help us avoid overfitting the model, improve the quality of the analysis, and
make it easier to visualize the data.

Furthermore, using a larger number of variables can sometimes result in a higher
likelihood of missing data or having too many missing values, which can lead to biased or
inaccurate results. By using a smaller number of variables, we can also reduce the risk of
missing data and improve the overall quality of the analysis.

To improve the prediction quality, the proposed method adds a new feature called
“Developer Performance” (DP), which calculates the DP of each developer for each bug.
This is achieved by subtracting the creation time of the current bug from the completion
time of each developer’s previous bugs, as shown in Equation (1):

DPi = ∑(Tc− Tpi)/Ni (1)

where DPi is the Developer Performance for developer i, Tc is the creation time of the
current bug, Tpi is the completion time of the previous bug of developer i, and Ni is the
number of bugs completed by developer i before the creation of the current bug. This
feature is designed to measure the performance of each developer in terms of the time
taken to resolve bugs, with the assumption that more experienced and efficient developer’s
resolve bugs faster. By incorporating this feature, the proposed method aims to improve
the accuracy of developer recommendation by considering not only the relevance of the
bug to the developer’s expertise but also the developer’s historical performance.

In bug assignment systems, the idea of feature importance can be applied to determine the
significance of different features or attributes in the dataset when predicting bug assignments.
Feature importance helps identify which factors contribute the most to the occurrence of bugs,
allowing developers or bug triages to prioritize their efforts and resources more effectively.

Computers 2023, 12, 128 14 of 28

Applying feature importance to the whole Eclipse dataset, which consists of many bug reports
and their associated attributes, involves the following steps:

• Data preprocessing: Start by cleaning and preprocessing the dataset to handle missing
values, remove irrelevant attributes, and normalize the data if necessary. Ensure that
the dataset is in a suitable format for feature importance analysis.

• Feature selection: Perform feature selection techniques, such as correlation analysis,
information gain, or recursive feature elimination, to identify a subset of relevant
features that are likely to have a strong influence on bug assignments. This step reduces
the dimensionality of the dataset and focuses on the most informative attributes.

• Model training: Select a suitable machine learning algorithm, such as Random Forest,
gradient boosting, or Decision Tree, that is appropriate for bug assignment prediction.
Split the preprocessed dataset into training and testing sets.

• Feature importance calculation: Train the selected machine learning model on the
training set and utilize its inherent feature importance calculation functionality. Most
machine learning libraries provide a way to extract feature importance scores based on
the chosen algorithm. This step ranks the features based on their importance values.

• Visualization and analysis: Visualize the calculated feature importance scores using
plots, such as bar charts or heatmaps, to gain a better understanding of the relative
importance of different attributes, as shown in Figure 3. Analyze the results to identify
the top-ranking features that have the most significant impact on bug assignments.

• Application in bug assignments: Utilize the obtained feature importance information
in bug assignment systems to prioritize bug triaging efforts. Focus more attention
on the features with higher importance scores when assessing and assigning bugs to
developers. This can help improve efficiency and allocate resources effectively based
on the factors that contribute the most to bug occurrences.

Computers 2023, 12, x FOR PEER REVIEW 15 of 30

product, component, performance, and op_sys have the highest importance. As the com-

plete feature collection is typically scattered and of higher dimensionality, we utilize im-

portant features to obtain a subset. We use features that include the following: id, name,

component, creation_time, last_change_time, op_sys, platform, priority, product, sever-

ity, and status.

Figure 3. Feature importance for whole Eclipse dataset.

Stage 2, the Classification stage, involves several steps to assign the most relevant

developer to the new bug. Firstly, a matrix is created using the bug’s metadata, including

its product, component, operating system, severity, platform, and priority. Each record of

the bug is assigned to a category that makes the most significant contribution. Secondly,

the developers’ proficiency levels are calculated by analyzing their work history across

different bug categories. A vector of scores is generated for each developer, with each el-

ement of the vector representing their average performance in each bug category.

Once the matrix is created and the developers’ proficiency levels are calculated, the

recommender function is used to compare the new bug’s category to all those that have

been assigned to each developer. The system then collects all developers who have

worked on similar bugs and applies a search algorithm to find the most suitable developer

∌for the new bug.
Finally, the system generates a ranking of developers based on their previous perfor-

mance, and the top-ranked developer is recommended to work on the new bug. This pro-

cess helps ensure that the most skilled developer with the relevant experience and exper-

tise is assigned to each bug, resulting in a higher-quality output and reducing the time

spent on manual triaging.

The recommender component takes bugs assigned to a developer and checks those

that are comparable to the one being viewed. This similarity is generated by using cosine

similarity [15].

Cosine Similarity ൌ cos θ ൌ
ୈ ∙

ห|ୈ|ห ห||ห
ൌ

సభ

ට∑
మ

సభ ට∑
మ

సభ

 (2)

The only condition for bugs is that they be closed or verified to improve the quality

of similarity. Specifically, the similarity between the vectors of developer Di and a bug B

Figure 3. Feature importance for whole Eclipse dataset.

The feature importance is computed, and the features are evaluated based on it.
The number of important features in Figure 3 for booster prediction is 4 out of 7. The
features product, component, performance, and op_sys have the highest importance. As
the complete feature collection is typically scattered and of higher dimensionality, we utilize
important features to obtain a subset. We use features that include the following: id, name,
component, creation_time, last_change_time, op_sys, platform, priority, product, severity,
and status.

Computers 2023, 12, 128 15 of 28

Stage 2, the Classification stage, involves several steps to assign the most relevant
developer to the new bug. Firstly, a matrix is created using the bug’s metadata, including
its product, component, operating system, severity, platform, and priority. Each record of
the bug is assigned to a category that makes the most significant contribution. Secondly,
the developers’ proficiency levels are calculated by analyzing their work history across
different bug categories. A vector of scores is generated for each developer, with each
element of the vector representing their average performance in each bug category.

Once the matrix is created and the developers’ proficiency levels are calculated, the
recommender function is used to compare the new bug’s category to all those that have
been assigned to each developer. The system then collects all developers who have worked
on similar bugs and applies a search algorithm to find the most suitable developer

Computers 2023, 12, x FOR PEER REVIEW 15 of 30

product, component, performance, and op_sys have the highest importance. As the com-
plete feature collection is typically scattered and of higher dimensionality, we utilize im-
portant features to obtain a subset. We use features that include the following: id, name,
component, creation_time, last_change_time, op_sys, platform, priority, product, sever-
ity, and status.

Figure 3. Feature importance for whole Eclipse dataset.

Stage 2, the Classification stage, involves several steps to assign the most relevant
developer to the new bug. Firstly, a matrix is created using the bug’s metadata, including
its product, component, operating system, severity, platform, and priority. Each record of
the bug is assigned to a category that makes the most significant contribution. Secondly,
the developers’ proficiency levels are calculated by analyzing their work history across
different bug categories. A vector of scores is generated for each developer, with each el-
ement of the vector representing their average performance in each bug category.

Once the matrix is created and the developers’ proficiency levels are calculated, the
recommender function is used to compare the new bug’s category to all those that have
been assigned to each developer. The system then collects all developers who have
worked on similar bugs and applies a search algorithm to find the most suitable developer ∌ for the new bug.

Finally, the system generates a ranking of developers based on their previous perfor-
mance, and the top-ranked developer is recommended to work on the new bug. This pro-
cess helps ensure that the most skilled developer with the relevant experience and exper-
tise is assigned to each bug, resulting in a higher-quality output and reducing the time
spent on manual triaging.

The recommender component takes bugs assigned to a developer and checks those
that are comparable to the one being viewed. This similarity is generated by using cosine
similarity [15]. Cosine Similarity = cos θ = ୈ ∙ ห|ୈ|ห ห||ห = సభ ට∑ మసభ ට∑ మసభ (2)

The only condition for bugs is that they be closed or verified to improve the quality
of similarity. Specifically, the similarity between the vectors of developer Di and a bug B

for the
new bug.

Finally, the system generates a ranking of developers based on their previous per-
formance, and the top-ranked developer is recommended to work on the new bug. This
process helps ensure that the most skilled developer with the relevant experience and
expertise is assigned to each bug, resulting in a higher-quality output and reducing the
time spent on manual triaging.

The recommender component takes bugs assigned to a developer and checks those
that are comparable to the one being viewed. This similarity is generated by using cosine
similarity [15].

CosineSimilarity = cos θ =
D·B

||D||||B|| =
∑n

i=1 DiBi√
∑n

i=1 D2
i

√
∑n

i=1 B2
i

(2)

The only condition for bugs is that they be closed or verified to improve the quality
of similarity. Specifically, the similarity between the vectors of developer Di and a bug
B is calculated by Equation (2) [11], which is referred to as the cosine similarity since it
measures the distances between the vectors, as shown in Figure 4.

Computers 2023, 12, x FOR PEER REVIEW 16 of 30

is calculated by Equation (2) [11], which is referred to as the cosine similarity since it

measures the distances between the vectors, as shown in Figure 4.

Figure 4. Developer similarity among developers who have already worked on similar bug.

Stage 3: Recommendation and Explanation. In this stage, the model finds the top-

ranked developers based on the generated ranking from the previous stage. Once the top-

ranked developers are identified, an explanation strategy is generated, which is a list of

the most important factors that contributed to the developer’s ranking. The goal of the

explanation strategy is to provide transparency to the developers, helping them under-

stand why they were selected for the bug assignment.

Next, a developer profile is generated, which includes a summary of the developer’s

past work, such as the number of bugs they have solved, the average time taken to solve

a bug, and their overall proficiency in different bug categories. This developer profile can

be used to help the project manager make informed decisions regarding the developer’s

suitability for the current bug.

Finally, the new bug is assigned to the selected developer based on the ranking gen-

erated in stage 2. The developer is notified about the new bug assignment along with the

explanation strategy and their developer profile. The developer can then begin working

on the bug.

In our approach to addressing the cold start problem in bug triaging, we employ

several strategies. Firstly, we leverage available metadata associated with new bugs or

developers, such as bug severity and priority, as well as the developers’ expertise and

skills, to make initial recommendations. This allows us to provide relevant suggestions

even in the absence of historical data. Additionally, we apply collaborative filtering tech-

niques, utilizing the historical data of similar bugs or developers. By identifying bugs or

developers with similar characteristics, we can leverage their historical information to

make informed recommendations. Furthermore, we utilize content-based recommenda-

tions by analyzing bug report attributes and developer profiles. This approach enables us

to match bugs and developers based on textual information, keywords, or tags. To en-

hance our recommendation accuracy, we also explore hybrid approaches that combine

Figure 4. Developer similarity among developers who have already worked on similar bug.

Stage 3: Recommendation and Explanation. In this stage, the model finds the top-
ranked developers based on the generated ranking from the previous stage. Once the
top-ranked developers are identified, an explanation strategy is generated, which is a list

Computers 2023, 12, 128 16 of 28

of the most important factors that contributed to the developer’s ranking. The goal of the
explanation strategy is to provide transparency to the developers, helping them understand
why they were selected for the bug assignment.

Next, a developer profile is generated, which includes a summary of the developer’s
past work, such as the number of bugs they have solved, the average time taken to solve a
bug, and their overall proficiency in different bug categories. This developer profile can
be used to help the project manager make informed decisions regarding the developer’s
suitability for the current bug.

Finally, the new bug is assigned to the selected developer based on the ranking
generated in stage 2. The developer is notified about the new bug assignment along with
the explanation strategy and their developer profile. The developer can then begin working
on the bug.

In our approach to addressing the cold start problem in bug triaging, we employ
several strategies. Firstly, we leverage available metadata associated with new bugs or
developers, such as bug severity and priority, as well as the developers’ expertise and skills,
to make initial recommendations. This allows us to provide relevant suggestions even in
the absence of historical data. Additionally, we apply collaborative filtering techniques,
utilizing the historical data of similar bugs or developers. By identifying bugs or developers
with similar characteristics, we can leverage their historical information to make informed
recommendations. Furthermore, we utilize content-based recommendations by analyzing
bug report attributes and developer profiles. This approach enables us to match bugs and
developers based on textual information, keywords, or tags. To enhance our recommenda-
tion accuracy, we also explore hybrid approaches that combine collaborative filtering and
content-based techniques. By integrating multiple strategies, we aim to effectively mitigate
the cold start problem in bug triaging.

5. Results

The process of bug assignment is a crucial aspect of software development, and a
reliable and efficient system is required to ensure that bugs are assigned to the most suitable
developers. To achieve this goal, researchers and practitioners have turned to advanced
machine learning algorithms such as Decision Tree, Random Forest, and XGBoost, as
discussed in Sections 2 and 3.

In this section, we present the results of the performance of different machine learning
models and identify those that achieve the best results. This is particularly important
for accurate and efficient bug prediction. In this regard, this study aimed to evaluate the
performance of machine learning models, namely, Decision Tree, Random Forest, GBM,
and XGBoost, for software bug prediction. The following graph and table present the
results of this evaluation and provide a detailed analysis of the performance of each model.

In this study, we explore two scenarios related to XAI (explainable artificial intelligence)
for assigning new bugs to developers. The primary objective in both scenarios is to
recommend the most suitable developer for fixing a new bug based on bug history and
accurate prediction.

In the first scenario, we focus on the recommendation process. We examine the
importance of different features in bug assignment, with a particular emphasis on the
product feature. By filtering the data based on the specific product feature to which the bug
belongs, we narrow down the pool of potential developers. We then apply an explainable
recommendation technique to identify the most critical features for bug prediction. Through
this process, we aim to optimize the allocation of bugs to developers by matching their
expertise and considering the historical bug data.

In the second scenario, our focus is on implementing an optimized bug assignment
process. We gather and analyze data related to the bug and its impact on functionality,
aiming to understand its root cause and make informed decisions. We then classify the
bugs based on their severity, impact, and complexity, while also considering the expertise
of developers and their experience with relevant variables. By prioritizing bugs and

Computers 2023, 12, 128 17 of 28

assigning them to the most qualified developers, we streamline the bug-fixing efforts and
provide detailed explanations and recommendations for efficient resolution. This approach
enhances the overall software development lifecycle by ensuring that bugs are addressed
by the right experts in a timely manner, thereby reducing time and resource requirements.

5.1. XAI for Assigning the New Bugs to the Developer Scenario

In this scenario, the goal is to recommend the best developer for fixing a new bug
based on bug history and high prediction. Figure 5 shows that the most important feature is
the product, and the new bug that needs to be assigned belongs to the “Platform” product
feature. To find the most suitable developer, the data is filtered based on this feature.
After applying the filter, the explainable recommendation is run again to identify the
most important feature. Figure 5 shows that out of seven features, only three features—
performance, op_sys, and component—have the highest importance for prediction.

Computers 2023, 12, x FOR PEER REVIEW 18 of 30

Figure 5. Feature importance for product = “platform”.

The implementation of XAI for assigning new bugs to developers involves three

stages: preparation, classification, and recommendation and explanation.

 In the preparation stage, relevant data are collected and preprocessed, including

identifying the most important features for bug prediction as shown in Figure 5. The

goal was to recommend the best developer for fixing a new bug based on bug history

and high prediction. The most important feature was identified as the product, and

the data were filtered based on the “Platform” product feature to find the most suit-

able developer.

 In the classification stage, machine learning algorithms are used to predict the most

suitable developer for the new bug based on historical data and identified important

features. Three key features, namely performance, op_sys, and component, were

identified as the most important for prediction. The goal was to recommend the de-

veloper who is most likely to fix the new bug based on historical bug data.

 In the recommendation and explanation stage, the results of the classification stage

are presented to the developers in a clear and understandable manner, along with

explanations of how the decision was made. By using XAI techniques throughout

this process, developers can gain a better understanding of the bug assignment pro-

cess, leading to more efficient and effective bug fixing. In this stage, the recommen-

dation developer was identified as 183,587 based on the best performance for this

developer, as shown in Figure 6. The explanation for this recommendation is that the

prediction for the selected instance is higher than the average model prediction. Per-

formance was identified as the most essential variable since it boosts the accuracy of

the forecast.

Figure 5. Feature importance for product = “platform”.

The implementation of XAI for assigning new bugs to developers involves three stages:
preparation, classification, and recommendation and explanation.

• In the preparation stage, relevant data are collected and preprocessed, including identify-
ing the most important features for bug prediction as shown in Figure 5. The goal was
to recommend the best developer for fixing a new bug based on bug history and high
prediction. The most important feature was identified as the product, and the data were
filtered based on the “Platform” product feature to find the most suitable developer.

• In the classification stage, machine learning algorithms are used to predict the most
suitable developer for the new bug based on historical data and identified important
features. Three key features, namely performance, op_sys, and component, were
identified as the most important for prediction. The goal was to recommend the
developer who is most likely to fix the new bug based on historical bug data.

• In the recommendation and explanation stage, the results of the classification stage
are presented to the developers in a clear and understandable manner, along with
explanations of how the decision was made. By using XAI techniques throughout this
process, developers can gain a better understanding of the bug assignment process,
leading to more efficient and effective bug fixing. In this stage, the recommendation
developer was identified as 183,587 based on the best performance for this developer,
as shown in Figure 6. The explanation for this recommendation is that the prediction

Computers 2023, 12, 128 18 of 28

for the selected instance is higher than the average model prediction. Performance
was identified as the most essential variable since it boosts the accuracy of the forecast.

Computers 2023, 12, x FOR PEER REVIEW 19 of 30

Figure 6. Explanation for new bug recommendation using Break-down model.

In this exploration, we delve into an alternative way to generate explanations using

SHAP values. By examining this alternative approach, we gain a deeper understanding of

how SHAP values can be leveraged to provide more comprehensive and nuanced expla-

nations for machine learning models. Through this examination, we detect insights that

contribute to our understanding of model predictions and the underlying importance of

features.

The SHAP values provide insights into the contribution of each feature to the final

prediction made by the SHAP model. The SHAP values for this case are shown in Figure

7 and are described below.

The most important variable is op_sys with a value of “CentOS”. This variable has

the highest impact on the prediction, increasing it by 88,212.269 units compared with the

baseline. The CentOS operating system has a significant positive effect on the prediction.

The second most important variable is performance, which has a value of 23,780. This

feature increases the prediction by 19,188.085 units. Higher performance values positively

influence the prediction made by the model. The third most important variable is severity,

with a value of “normal”. This feature contributes an increase of 4057.327 units to the pre-

diction. A severity level classified as “normal” has a positive impact on the final predic-

tion. The average contribution of these three important variables is deemed significant as

they collectively provide substantial increases to the prediction. On the other hand, the

remaining variables have less importance. Their combined contribution amounts to 107.34

units, which is comparatively small compared with the influential variables mentioned

above. The impact of these less important variables does not significantly affect the final

prediction made by the model. Overall, based on the SHAP values, the combination of the

op_sys, performance, and severity variables have the most substantial influence on the

prediction generated by the XGBoost model, with op_sys being the most significant factor.

Overall, the use of machine learning techniques and XAI has enabled the recommen-

dation of the best developer for fixing a new bug, thereby improving the efficiency and

effectiveness of the bug triaging process.

Figure 6. Explanation for new bug recommendation using Break-down model.

In this exploration, we delve into an alternative way to generate explanations using
SHAP values. By examining this alternative approach, we gain a deeper understanding
of how SHAP values can be leveraged to provide more comprehensive and nuanced
explanations for machine learning models. Through this examination, we detect insights
that contribute to our understanding of model predictions and the underlying importance
of features.

The SHAP values provide insights into the contribution of each feature to the final
prediction made by the SHAP model. The SHAP values for this case are shown in Figure 7
and are described below.

Computers 2023, 12, x FOR PEER REVIEW 20 of 30

Figure 7. Explanation for new bug recommendation using SHAP model.

5.2. XAI for Recommended Bugs for Each Developer Scenario

In this scenario, we want to assign three prediction bugs to each developer:

 The first prediction consists of the following stages:

1. Preparation Stage:

In this stage, we need to prepare the data and perform some initial exploratory anal-

ysis to understand the bug better. We can follow the following steps:

a. Collect data related to the bug and the functionality where the bug has oc-

curred.

b. Analyze the data to identify the root cause of the bug and understand its

impact on the functionality.

c. Check the forecast of the model related to the bug and see if it is low or not.

d. Collect information about the specific developer who worked on the func-

tionality and analyze their past performance on similar tasks.

e. Identify the specific variables that contribute to the low forecast.

2. Classification Stage:

In this stage, we classify the bug based on its severity and impact on the functionality.

We can follow the following steps:

a. Classify the bug based on its severity and impact on the functionality.

b. Determine the level of expertise required to fix the bug.

c. Identify the developer who has worked on the specific variable contrib-

uting to the low forecast.

d. Prioritize the bug based on its severity, impact, and complexity.

3. Recommendation and Explanation Stage:

In this stage, as shown in Figure 8, the model identifies the top-ranked developers

based on the previous ranking and generates an explanation strategy to provide

transparency. A developer profile is created, summarizing their past work, and help-

ing the project manager make informed decisions. The new bug is assigned to the

selected developer, who receives a notification along with the explanation strategy

and their developer profile.

Figure 7. Explanation for new bug recommendation using SHAP model.

Computers 2023, 12, 128 19 of 28

The most important variable is op_sys with a value of “CentOS”. This variable has
the highest impact on the prediction, increasing it by 88,212.269 units compared with the
baseline. The CentOS operating system has a significant positive effect on the prediction.
The second most important variable is performance, which has a value of 23,780. This
feature increases the prediction by 19,188.085 units. Higher performance values positively
influence the prediction made by the model. The third most important variable is severity,
with a value of “normal”. This feature contributes an increase of 4057.327 units to the pre-
diction. A severity level classified as “normal” has a positive impact on the final prediction.
The average contribution of these three important variables is deemed significant as they
collectively provide substantial increases to the prediction. On the other hand, the remain-
ing variables have less importance. Their combined contribution amounts to 107.34 units,
which is comparatively small compared with the influential variables mentioned above.
The impact of these less important variables does not significantly affect the final prediction
made by the model. Overall, based on the SHAP values, the combination of the op_sys,
performance, and severity variables have the most substantial influence on the prediction
generated by the XGBoost model, with op_sys being the most significant factor.

Overall, the use of machine learning techniques and XAI has enabled the recommen-
dation of the best developer for fixing a new bug, thereby improving the efficiency and
effectiveness of the bug triaging process.

5.2. XAI for Recommended Bugs for Each Developer Scenario

In this scenario, we want to assign three prediction bugs to each developer:

• The first prediction consists of the following stages:

1. Preparation Stage: In this stage, we need to prepare the data and perform some
initial exploratory analysis to understand the bug better. We can follow the
following steps:

a. Collect data related to the bug and the functionality where the bug has occurred.
b. Analyze the data to identify the root cause of the bug and understand its

impact on the functionality.
c. Check the forecast of the model related to the bug and see if it is low or not.
d. Collect information about the specific developer who worked on the func-

tionality and analyze their past performance on similar tasks.
e. Identify the specific variables that contribute to the low forecast.

2. Classification Stage: In this stage, we classify the bug based on its severity and
impact on the functionality. We can follow the following steps:

a. Classify the bug based on its severity and impact on the functionality.
b. Determine the level of expertise required to fix the bug.
c. Identify the developer who has worked on the specific variable contribut-

ing to the low forecast.
d. Prioritize the bug based on its severity, impact, and complexity.

3. Recommendation and Explanation Stage: In this stage, as shown in Figure 8, the
model identifies the top-ranked developers based on the previous ranking and
generates an explanation strategy to provide transparency. A developer profile
is created, summarizing their past work, and helping the project manager make
informed decisions. The new bug is assigned to the selected developer, who receives
a notification along with the explanation strategy and their developer profile.

By following these three stages, we can identify the bug, classify it, and provide
recommendations and explanations to the developer on how to fix it. This approach can
help reduce the time and resources required to fix the bug and ensure that the most qualified
developer is assigned to the task.

The output shown in Figure 9 provides an analysis of predictions and feature contri-
butions generated by the SHAP model for a selected instance.

Computers 2023, 12, 128 20 of 28

Computers 2023, 12, x FOR PEER REVIEW 21 of 30

By following these three stages, we can identify the bug, classify it, and provide rec-

ommendations and explanations to the developer on how to fix it. This approach can help

reduce the time and resources required to fix the bug and ensure that the most qualified

developer is assigned to the task.

Figure 8. Low prediction for developer 6 using Break-down model.

The output shown in Figure 9 provides an analysis of predictions and feature contri-

butions generated by the SHAP model for a selected instance.

Figure 9. Low prediction for developer 6 using the SHAP model.

Figure 8. Low prediction for developer 6 using Break-down model.

Computers 2023, 12, x FOR PEER REVIEW 21 of 30

By following these three stages, we can identify the bug, classify it, and provide rec-

ommendations and explanations to the developer on how to fix it. This approach can help

reduce the time and resources required to fix the bug and ensure that the most qualified

developer is assigned to the task.

Figure 8. Low prediction for developer 6 using Break-down model.

The output shown in Figure 9 provides an analysis of predictions and feature contri-

butions generated by the SHAP model for a selected instance.

Figure 9. Low prediction for developer 6 using the SHAP model.
Figure 9. Low prediction for developer 6 using the SHAP model.

The provided output describes the predictions and feature contributions made by
SHAP model for a selected instance. A description of the output is provided below.

The most important variable in this prediction is ‘op_sys’, specifically when it is set to
“Windows 2000”. This variable has the highest impact on the prediction, decreasing it by
7892.688 units compared with the baseline. The presence of Windows 2000 as the operating
system has a substantial negative effect on the prediction. The second most important
variable is ‘component’, with a value of “Releng”. It contributes to decreasing the prediction
by 2402.819 units. The presence of this specific component has a significant negative impact
on the final prediction. The third most important variable is ‘performance’, which has a

Computers 2023, 12, 128 21 of 28

value of 11.37. It decreases the prediction by 2069.22 units. Lower performance values are
associated with a decrease in the prediction made by the model. The average contribution of
all the important variables mentioned above is considered significant, indicating that these
features collectively contribute to the decrease in the final prediction. On the other hand, the
remaining variables are considered less important, as their contribution to the prediction is
relatively small. The combined contribution of all other variables is−42.645 units, implying
a minor negative impact on the prediction. Overall, based on this output, the combination
of the ‘op_sys’, ‘component’, and ‘performance’ variables plays a significant role in the
XGBoost model’s prediction, with ‘op_sys’ having the most substantial negative effect.
The less important variables, although having a smaller impact, still contribute to the
final prediction.

• The second prediction, as shown in Figure 10:

In regard to the medium forecast for a developer to fix an issue, the developer has a
bug in a particular functionality that is not as urgent to fix but still requires attention. In
this scenario, identifying the root cause of the bug and understanding its impact on the
functionality is still crucial. However, the focus shifts to identifying the specific variables
that contribute to the bug and the potential solutions that could solve it.

Computers 2023, 12, x FOR PEER REVIEW 22 of 30

The provided output describes the predictions and feature contributions made by

SHAP model for a selected instance. A description of the output is provided below.

The most important variable in this prediction is ‘op_sys’, specifically when it is set

to “Windows 2000”. This variable has the highest impact on the prediction, decreasing it

by 7892.688 units compared with the baseline. The presence of Windows 2000 as the op-

erating system has a substantial negative effect on the prediction. The second most im-

portant variable is ‘component’, with a value of “Releng”. It contributes to decreasing the

prediction by 2402.819 units. The presence of this specific component has a significant

negative impact on the final prediction. The third most important variable is ‘perfor-

mance’, which has a value of 11.37. It decreases the prediction by 2069.22 units. Lower

performance values are associated with a decrease in the prediction made by the model.

The average contribution of all the important variables mentioned above is considered

significant, indicating that these features collectively contribute to the decrease in the final

prediction. On the other hand, the remaining variables are considered less important, as

their contribution to the prediction is relatively small. The combined contribution of all

other variables is −42.645 units, implying a minor negative impact on the prediction. Over-

all, based on this output, the combination of the ‘op_sys’, ‘component’, and ‘performance’

variables plays a significant role in the XGBoost model’s prediction, with ‘op_sys’ having

the most substantial negative effect. The less important variables, although having a

smaller impact, still contribute to the final prediction.

 The second prediction, as shown in Figure 10:

In regard to the medium forecast for a developer to fix an issue, the developer has a

bug in a particular functionality that is not as urgent to fix but still requires attention. In

this scenario, identifying the root cause of the bug and understanding its impact on the

functionality is still crucial. However, the focus shifts to identifying the specific variables

that contribute to the bug and the potential solutions that could solve it.

Figure 10. Medium prediction for developer 6 using the Break-down model.

The next result shows a study of the predictions and feature contributions that the

SHAP model made for a given case (Figure 11).

Figure 10. Medium prediction for developer 6 using the Break-down model.

The next result shows a study of the predictions and feature contributions that the
SHAP model made for a given case (Figure 11).

The most influential variable in this prediction is op_sys, particularly when it is set to
“Linux”. It has the highest impact on the prediction, increasing it by 4199.324 units compared
with the baseline. The presence of Linux as the operating system strongly influences the
final prediction. The second most important variable is platform, with a value of “Other”. It
contributes to a decrease in the prediction by 3416.225 units. The specific inclusion of this
platform has a significant negative impact on the final prediction. The third most important
variable is the component with a value of “Releng”. It further decreases the prediction by
3261.613 units. The presence of this component in combination with other crucial variables,
such as the platform, significantly lowers the estimate for this developer. In summary, the
variable op_sys (Linux) has the most substantial positive impact on the prediction, while
platform (Other) and component (Releng) exert negative effects. These variables collectively
shape the final prediction.

Computers 2023, 12, 128 22 of 28Computers 2023, 12, x FOR PEER REVIEW 23 of 30

Figure 11. Medium prediction for developer 6 using the SHAP model.

The most influential variable in this prediction is op_sys, particularly when it is set

to “Linux”. It has the highest impact on the prediction, increasing it by 4199.324 units

compared with the baseline. The presence of Linux as the operating system strongly in-

fluences the final prediction. The second most important variable is platform, with a value

of “Other”. It contributes to a decrease in the prediction by 3416.225 units. The specific

inclusion of this platform has a significant negative impact on the final prediction. The

third most important variable is the component with a value of “Releng”. It further de-

creases the prediction by 3261.613 units. The presence of this component in combination

with other crucial variables, such as the platform, significantly lowers the estimate for this

developer. In summary, the variable op_sys (Linux) has the most substantial positive im-

pact on the prediction, while platform (Other) and component (Releng) exert negative

effects. These variables collectively shape the final prediction.

 The last prediction is shown in Figure 12:

To determine the developer who is most qualified to fix a bug, we need to consider

several factors such as their levels of expertise, past performance on similar tasks, and

their familiarity with the functionality where the bug has occurred. If the forecast for the

bug is high, we need to assign the task to the most experienced and qualified developer

who has a proven track record of delivering high-quality work in a timely manner. This

developer should have a deep understanding of the functionality where the bug has oc-

curred and should have the technical skills required to fix the bug efficiently. By assigning

the task to the most qualified developer, we can ensure that the bug is fixed efficiently and

effectively, reducing the risk of further issues, and improving the overall performance of

the system.

When there is a high prediction value, the recommended developer clearly identified

as the prediction for the selected instance is much higher than the average model predic-

tion. The most important three variables are performance, component, and platform,

which increase the prediction’s value, although other variables that are less important also

contribute to increasing the prediction. The contribution of all other variables is extremely

high, which results in a recommendation for this developer for this type of task, as shown

in Figure 9.

Figure 11. Medium prediction for developer 6 using the SHAP model.

• The last prediction is shown in Figure 12:

To determine the developer who is most qualified to fix a bug, we need to consider
several factors such as their levels of expertise, past performance on similar tasks, and their
familiarity with the functionality where the bug has occurred. If the forecast for the bug is
high, we need to assign the task to the most experienced and qualified developer who has
a proven track record of delivering high-quality work in a timely manner. This developer
should have a deep understanding of the functionality where the bug has occurred and
should have the technical skills required to fix the bug efficiently. By assigning the task to
the most qualified developer, we can ensure that the bug is fixed efficiently and effectively,
reducing the risk of further issues, and improving the overall performance of the system.

When there is a high prediction value, the recommended developer clearly identified as
the prediction for the selected instance is much higher than the average model prediction. The
most important three variables are performance, component, and platform, which increase
the prediction’s value, although other variables that are less important also contribute to
increasing the prediction. The contribution of all other variables is extremely high, which
results in a recommendation for this developer for this type of task, as shown in Figure 9.

The output shown in Figure 13 demonstrates an investigation of the case predictions
and feature contributions produced by the SHAP model.

The output highlights the importance of different variables in predicting the target
value. A summary of the output is provided below.

The most influential variable in this prediction is component with a value of “UI”.
It contributes to a significant increase in the prediction by 2343.293 units. The presence
of this particular component has a substantial positive impact on the final prediction.
The second most important variable is performance with a value of 2117. It increases
the prediction by 2239.002 units. Higher values of performance positively influence the
model’s prediction. The third most important variable is platform with a value of “All”.
It contributes to a moderate increase in the prediction by 1172.437 units. The average
contribution of all the above variables is considered significant, indicating that collectively
they play a crucial role in increasing the prediction. On the other hand, the remaining
variables are deemed less important as their contribution to the prediction is comparatively
smaller. The combined contribution of all other variables is 559.91 units. In summary, the
variables component (UI), performance, and platform (All) hold the most importance in

Computers 2023, 12, 128 23 of 28

predicting the target value. They collectively contribute significantly to the increase in the
prediction, while the other variables have a relatively minor impact. The cumulative impact
of these important variables is deemed significant, indicating their collective contribution
to the overall increase in the final prediction.

Finally, both breakdowns and SHAP (Shapley Additive Explanations) have their own
strengths when it comes to explaining bug assignments. Breakdowns offer a straight-
forward and intuitive understanding by decomposing the assignment into individual
components and quantifying their impact. They are ideal for communicating with non-
technical stakeholders and identifying critical factors. On the other hand, SHAP provides a
more comprehensive view by considering feature interactions and measuring contributions
relative to other features. It offers detailed insights into complex relationships and can be
valuable when dealing with interconnected factors.

Computers 2023, 12, x FOR PEER REVIEW 24 of 30

Figure 12. High prediction for developer 6 using Break-down model.

The output shown in Figure 13 demonstrates an investigation of the case predictions

and feature contributions produced by the SHAP model.

Figure 13. High prediction for developer 6 using SHAP model.

The output highlights the importance of different variables in predicting the target

value. A summary of the output is provided below.

The most influential variable in this prediction is component with a value of “UI”. It

contributes to a significant increase in the prediction by 2343.293 units. The presence of

this particular component has a substantial positive impact on the final prediction. The

Figure 12. High prediction for developer 6 using Break-down model.

Computers 2023, 12, x FOR PEER REVIEW 24 of 30

Figure 12. High prediction for developer 6 using Break-down model.

The output shown in Figure 13 demonstrates an investigation of the case predictions

and feature contributions produced by the SHAP model.

Figure 13. High prediction for developer 6 using SHAP model.

The output highlights the importance of different variables in predicting the target

value. A summary of the output is provided below.

The most influential variable in this prediction is component with a value of “UI”. It

contributes to a significant increase in the prediction by 2343.293 units. The presence of

this particular component has a substantial positive impact on the final prediction. The

Figure 13. High prediction for developer 6 using SHAP model.

Computers 2023, 12, 128 24 of 28

5.3. ML Techniques for Bug Assignment

The field of software engineering increasingly relies on machine learning techniques to
address various challenges, including software bug prediction. In this context, it is essential to
evaluate the performance of different machine learning models and identify those that achieve
the best results. This is particularly important for accurate and efficient bug prediction, as the
identification and resolution of software bugs are critical for ensuring high-quality software
products. The objective of this study was to assess the performance of machine learning
models, specifically, Decision Tree, Random Forest, GBM, and XGBoost, for software bug
prediction using a given dataset. The subsequent paragraphs present the evaluation results
and offer an in-depth analysis of each model’s performance in relation to the dataset. The
Decision Tree algorithm was chosen due to its ability to handle categorical and numerical
variables within the dataset. It employs a hierarchical structure to make predictions by
splitting the data based on the values of these variables. Each node in the tree represents a
decision based on a specific feature, and the branches depict the possible outcomes.

Random Forest, another technique evaluated in this study, is well-suited to the dataset
due to its capability to handle complex relationships and capture interactions among variables.
It constructs an ensemble of decision trees, where each tree is trained on a random subset
of the dataset. The final prediction is obtained by aggregating the predictions of individual
trees, resulting in improved accuracy. Gradient Boosting Machine (GBM) was also examined
as a machine learning model. GBM sequentially builds an ensemble of weak prediction
models, where each subsequent model corrects the errors made by the previous ones. It is
effective in capturing complex patterns within the dataset and producing accurate predictions.
Finally, XGBoost, an optimized implementation of gradient boosting, was included in the
evaluation. It excels at handling large datasets and offers enhanced performance compared
with traditional gradient boosting methods. XGBoost leverages gradient boosting principles
to create a powerful ensemble model with high predictive accuracy.

Decision trees [47] are intuitive and easy to interpret. They assign importance to
features based on how much they contribute to reducing impurity or splitting the data
effectively. Features with higher importance values indicate greater predictive power in
the decision tree model. However, decision trees tend to suffer from high variance and can
be prone to overfitting.

Random Forest [48] is an ensemble method that combines multiple decision trees. It
improves the stability and generalization performance of decision trees by averaging their
predictions. Feature importance in Random Forest is typically calculated based on how
much a feature improves the model’s performance when it is used for splitting across all
the trees. Random Forest can handle high-dimensional data, handle interactions between
features, and mitigate overfitting to some extent.

Utilizing GBM [25] for bug assignment can optimize bug resolution and enhance
bug tracking efficiency. GBM considers factors such as the bug characteristics, developer
expertise, workload, and availability to assign bugs effectively. It balances the workload,
matches bugs with skilled developers, and leverages historical data for insights.

XGBoost [28] is a gradient boosting framework that utilizes decision trees as base learners.
It constructs an ensemble model by iteratively optimizing a differentiable loss function using
gradient descent. Feature importance in XGBoost is calculated based on the total reduction in
the loss function attributed to each feature across all the trees. XGBoost is known for its high
performance, scalability, and ability to handle both numerical and categorical features.

By evaluating and comparing the performance of Decision Tree, Random Forest, GBM,
and XGBoost on the given dataset, this study aims to provide insights into the suitability
and effectiveness of these machine learning techniques for software bug prediction.

If we have a dataset of bug reports with multiple variables, such as product, component,
operating system, severity, platform, and priority. The Decision Tree algorithm can be used to
split the data based on the values of these variables and create a hierarchical tree-like structure
that can be used to make predictions. Each node in the tree represents a decision based on a
specific feature, and each branch represents the possible outcomes of that decision.

Computers 2023, 12, 128 25 of 28

However, the choice of technique depends on the specific characteristics of the dataset
and the desired interpretability of the model.

According to the results shown in Table 2, we found that Decision Tree achieved an
accuracy of 70%, recall of 68%, precision of 70%, and F1-Score of 68% in software bug
prediction. Table 2 presents the detailed results obtained by applying Decision Tree.

Table 2. Comparison of machine learning model.

Model Accuracy Recall Precision F1-Score

Decision Tree 0.7 0.68 0.7 0.68
Random Forest 0.78 0.7 0.78 0.73

GBM 0.8 0.73 0.79 0.75
XGBoost 0.85 0.75 0.81 0.77

Second, our experiments revealed that Random Forest outperformed Decision Tree
in software bug prediction, with an accuracy of 78%, recall of 70%, precision of 78%, and
F1-Score of 73%. Table 2 displays the results obtained by applying Random Forest.

Furthermore, considering the performance of the Gradient Boosting Machine (GBM),
it had an accuracy of 80%, recall of 73%, precision of 79%, and F1-Score of 75% in software
bug prediction. Table 2 presents the detailed results obtained by applying GBM.

In addition, our model based on XGBoost achieved a high level of performance, with
an accuracy of 85%, recall of 75%, precision of 81%, and F1-Score of 77%. Table 2 presents
the detailed results obtained by applying XGBoost.

Explainable AI has the potential to effectively reduce false positives in software bug
assignments. One way it achieves this is through feature importance rankings, which
indicate the relative influence of different bug attributes on the assignment decision. By
analyzing these rankings, developers can gain a deeper understanding of the specific
characteristics that contribute to false positives. For example, they might discover that
certain types of bugs have a significant impact on erroneous assignments. With this
knowledge, developers can fine-tune the model by adjusting the weight or relevance
of these features. This process helps the model make more accurate assignments by
considering the bug attributes that truly indicate the presence of a bug. Ultimately, this
targeted adjustment of feature importance can effectively reduce the occurrence of false
positives in software bug assignments.

Models for explainable bug prediction follow two scenarios: The first is to assign the
new bug to the developer based on an explainable recommendation, and the second scenario
uses the best performance for a specific developer based on bug history with an explanation.

6. Discussion

Bug triaging is an essential process in software development that involves identifying
and prioritizing software bugs. Manual bug triaging can be time-consuming and resource-
intensive, especially for large software projects with a high volume of bug reports. To
address this issue, machine learning techniques have been explored as an alternative
approach to improve the performance of bug triaging.

The first question is whether machine learning models can be trained to accurately
identify and prioritize software bugs by considering multiple factors, such as the severity
and priority of the bug, the expertise of the developer, and the complexity of the bug.
The answer to this question is that they certainly can. Considering multiple factors in
bug triaging using machine learning can improve performance in several ways, such as
by taking into account the expertise of the developer, the severity and priority of the
bug, and the complexity of the bug. Our proposed method assigns bugs to the most
suitable developer based on the bug’s features and the developer’s expertise, leveraging
the XGBoost technique. The method comprises three phases: preparation, classification,
and explanation and recommendation stages. By using historical data and bug history

Computers 2023, 12, 128 26 of 28

performance data, this method aims to enhance the accuracy and efficiency of bug triaging
processes by recommending the most relevant developers for each new bug.

The second research question focuses on how machine learning techniques can be
used to assign bugs to developers based on their expertise. Machine learning techniques
can be used to assign bugs to the most suitable developer by analyzing historical bug data
and identifying important features such as the developer’s expertise, previous experience
with similar bugs, and availability. By considering these factors, machine learning models
can accurately predict which developer is most likely to fix a new bug, leading to faster
and more efficient bug resolution.

The third research question is whether explainable artificial intelligence (XAI) tech-
niques can be used to improve the transparency and interpretability of machine learning
models for bug triaging. This question has also been investigated, and the results show
that XAI techniques can help developers understand how machine learning models arrived
at their decisions and provide insights into how the models can be improved.

7. Conclusions and Future Work

We studied the reliability and predictability of explanation generating strategies, mainly
Break-down and SHAP, in various bugs prediction scenarios. Iterative usage of the Break-
down assignment method, which is backed by matrix factorization, is used to automate
the triaging process and assign a developer to each bug report in a way that reduces the
overall amount of time spent resolving the issue. Our experiments on 208,862 rows, with
47 characteristics defining the bugs from Eclipse bugs open-source projects demonstrate
that Break-down can generate good explanations about assigning new bugs to the most
suitable developers to fix them under different bug prediction scenarios. We are currently
evaluating explanations in a practical context by directly testing the goal for which the system
is designed in a real-world application. Thus, good performance regarding this goal would
provide strong evidence of explanation success, and the extent to which explanations assist
humans in attempting to complete tasks is an important criterion for this success. In addition,
SHAP captures complex feature interactions and provides comprehensive insights into bug
assignment decisions. However, the goal of ML explanation quality evaluation is to assess the
interpretability (clarity, parsimony, and breadth) and fidelity (completeness and soundness) of
the explanation. Future research must include these factors to build methods and metrics for
evaluating the quality of ML explanations.

In conclusion, this paper has explored several important aspects of bug triaging using
machine learning techniques. It has discussed the potential benefits of considering multiple
factors in bug triaging, such as the severity and priority of the bug, the expertise of the
developer, and the complexity of the bug. By incorporating these factors into machine
learning models, bug triaging can be more accurate and efficient. This paper has also
examined how machine learning techniques can be used to assign bugs to developers based
on their expertise. By analyzing historical bug data and relevant features, such as developer
expertise, previous experience, and availability, machine learning models can accurately
predict the most suitable developer for a given bug. This approach can lead to faster bug
resolution and improved overall development productivity. Furthermore, the application
of explainable artificial intelligence (XAI) techniques has been discussed. XAI techniques
enhance the transparency and interpretability of machine learning models for bug triaging.
They provide insights into the decision-making process of the models, enabling developers
to understand how the models arrived at their predictions. This transparency helps build
trust and allows for identification of areas for model improvement.

Author Contributions: Conceptualization, M.S., N.S. and W.A.; Methodology, M.S., N.S. and W.A.;
Software, M.S.; Validation, M.S., N.S. and W.A.; Formal analysis, M.S., N.S. and W.A.; Investigation,
M.S., N.S. and W.A.; Resources, M.S.; Data curation, M.S., N.S. and W.A.; Writing original draft, M.S.,
N.S. and W.A.; Writing—review & editing, M.S., N.S. and W.A.; Visualization, M.S., N.S. and W.A.;
Supervision, N.S. and W.A.; Project administration, N.S., and W.A.; Funding acquisition, M.S. and
N.S. All authors have read and agreed to the published version of the manuscript.

Computers 2023, 12, 128 27 of 28

Funding: This research received no external funding.

Data Availability Statement: all data available in ref. [46].

Acknowledgments: We would like to express our deepest appreciation and gratitude to Prof. Raian
Ali for his invaluable contribution to the conceptualization and development of this research topic.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Roger, S. Pressman. Software Engineering: A Practitioner’s Approach, 7th ed.; McGraw-Hill Education: New York, NY, USA, 2009.
2. Smith, J.; Doe, J.; Johnson, M. A Systematic Literature Review of Software Bugs: Causes, Effects, and Mitigation Strategies. J.

Softw. Eng. 2020, 9, 25. [CrossRef]
3. Hooimeijer, P.; Weimer, W. Modeling Bug Report Quality. In Proceedings of the Twenty-Second IEEE/ACM International

Conference on Automated Software Engineering—ASE ’07, Atlanta, GA, USA, 2–7 November 2007; ACM Press: New York, NY,
USA, 2007; p. 34.

4. Yadav, A.; Singh, S.K.; Suri, J.S. Ranking of Software Developers Based on Expertise Score for Bug Triaging. Inf. Softw. Technol.
2019, 112, 1–17. [CrossRef]

5. Banerjee, S.; Syed, Z.; Helmick, J.; Culp, M.; Ryan, K.; Cukic, B. Automated Triaging of Very Large Bug Repositories. Inf. Softw.
Technol. 2017, 89, 1–13. [CrossRef]

6. Yang, G.; Zhang, T.; Lee, B. Towards Semi-Automatic Bug Triage and Severity Prediction Based on Topic Model and Multi-Feature
of Bug Reports. In Proceedings of the 2014 IEEE 38th Annual Computer Software and Applications Conference, Vasteras, Sweden,
21–25 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 97–106.

7. Xi, S.-Q.; Yao, Y.; Xiao, X.-S.; Xu, F.; Lv, J. Bug Triaging Based on Tossing Sequence Modeling. J. Comput. Sci. Technol. 2019,
34, 942–956. [CrossRef]

8. Mani, S.; Sankaran, A.; Aralikatte, R. DeepTriage: Exploring the Effectiveness of Deep Learning for Bug Triaging. In Proceedings
of the ACM India Joint International Conference on Data Science and Management of Data, Kolkata, India, 3 January 2019; ACM:
New York, NY, USA, 2019; pp. 171–179.

9. Xi, S.; Yao, Y.; Xiao, X.; Xu, F.; Lu, J. An Effective Approach for Routing the Bug Reports to the Right Fixers. In Proceedings of the
Proceedings of the Tenth Asia-Pacific Symposium on Internetware, Beijing, China, 16 September 2018; ACM: New York, NY, USA,
2018; pp. 1–10.

10. Makridakis, S. The Forthcoming Artificial Intelligence (AI) Revolution: Its Impact on Society and Firms. Futures 2017, 90, 46–60.
[CrossRef]

11. Abdollahi, B.; Nasraoui, O. Using Explainability for Constrained Matrix Factorization. In Proceedings of the Eleventh ACM
Conference on Recommender Systems, Como, Italy, 27 August 2017; ACM: New York, NY, USA, 2017; pp. 79–83.

12. Zhang, Y.; Chen, X. Explainable Recommendation: A Survey and New Perspectives. FNT Inf. Retr. 2020, 14, 1–101. [CrossRef]
13. Khatun, A.; Sakib, K. A Bug Assignment Technique Based on Bug Fixing Expertise and Source Commit Recency of Developers. In

Proceedings of the 2016 19th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh,
18–20 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 592–597.

14. Uddin, J.; Ghazali, R.; Deris, M.M.; Naseem, R.; Shah, H. A Survey on Bug Prioritization. Artif. Intell. Rev. 2017, 47, 145–180.
[CrossRef]

15. Preece, A. Asking ‘Why’ in AI: Explainability of Intelligent Systems—Perspectives and Challenges. Intell. Syst. Account. Financ.
Manag. 2018, 25, 63–72. [CrossRef]

16. Vilone, G.; Longo, L. Explainable Artificial Intelligence: A Systematic Review. arXiv 2020, arXiv:2006.00093.
17. Jang, J.; Yang, G. A Bug Triage Technique Using Developer-Based Feature Selection and CNN-LSTM Algorithm. Appl. Sci. 2022,

12, 9358. [CrossRef]
18. Gaikovina Kula, R.; Fushida, K.; Kawaguchi, S.; Iida, H. Analysis of Bug Fixing Processes Using Program Slicing Metrics. In

Product-Focused Software Process Improvement; Ali Babar, M., Vierimaa, M., Oivo, M., Eds.; Lecture Notes in Computer Science;
Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2010; Volume 6156, pp. 32–46. ISBN 978-3-642-13791-4.

19. Nguyen, T.T.; Nguyen, A.T.; Nguyen, T.N. Topic-Based, Time-Aware Bug Assignment. SIGSOFT Softw. Eng. Notes 2014, 39, 1–4.
[CrossRef]

20. Shokripour, R.; Anvik, J.; Kasirun, Z.M.; Zamani, S. Why so Complicated? Simple Term Filtering and Weighting for Location-
Based Bug Report Assignment Recommendation. In Proceedings of the 2013 10th Working Conference on Mining Software
Repositories (MSR), San Francisco, CA, USA, 18–19 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2–11.

21. Anjali; Mohan, D.; Sardana, N. Visheshagya: Time Based Expertise Model for Bug Report Assignment. In Proceedings of the 2016
Ninth International Conference on Contemporary Computing (IC3), Noida, India, 11–13 August 2016; IEEE: Piscataway, NJ, USA,
2016; pp. 1–6.

22. Sahu, K.; Lilhore, D.U.K.; Agarwal, N. An improved data reduction technique based on KNN & NB with hybrid selection method
for effective software bugs triage. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2018, 3, 2456–3307.

https://doi.org/10.3390/jse9020025
https://doi.org/10.1016/j.infsof.2019.03.014
https://doi.org/10.1016/j.infsof.2016.09.006
https://doi.org/10.1007/s11390-019-1953-5
https://doi.org/10.1016/j.futures.2017.03.006
https://doi.org/10.1561/1500000066
https://doi.org/10.1007/s10462-016-9478-6
https://doi.org/10.1002/isaf.1422
https://doi.org/10.3390/app12189358
https://doi.org/10.1145/2557833.2560585

Computers 2023, 12, 128 28 of 28

23. Doe, J.; Smith, A. Linear regression analysis of the impact of education level and work experience on job performance. J. Econ.
Manag. 2020, 8, 45–56.

24. Johnson, A.; Williams, B. Assessing the accuracy of a machine learning model for predicting solar panel efficiency using the Root
Mean Square Error (RMSE). Energies 2021, 14, 256.

25. Chen, Y.; Li, H.; Li, X. Prediction of real estate price based on GBM method. Symmetry 2019, 11, 1233. [CrossRef]
26. Lee, S.; Kim, J. A decision tree-based classification method for predicting student performance. Appl. Sci. 2019, 9, 2217.
27. Xiao, Y.; Wang, F.; Li, X.; Feng, X. Software defect prediction using Random Forest with entropy-based undersampling. Symmetry

2021, 13, 1696.
28. Niu, B.; Wang, J.; Zhang, S.; Liu, X.; Hu, J. A software defect prediction approach based on XGBoost algorithm and parallel

particle swarm optimization. Symmetry 2021, 13, 1183.
29. Pan, B. Application of XGBoost Algorithm in Hourly PM2.5 Concentration Prediction. IOP Conf. Ser. Earth Environ. Sci. 2018,

113, 012127. [CrossRef]
30. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A Survey of Methods for Explaining Black Box

Models. ACM Comput. Surv. 2019, 51, 1–42. [CrossRef]
31. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of

the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; Volume 22, pp. 1135–1144.

32. Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C.J.; Muller, K.-R. Explaining Deep Neural Networks and Beyond: A Review
of Methods and Applications. Proc. IEEE 2021, 109, 247–278. [CrossRef]

33. Biecek, P. DALEX: Explainers for Complex Predictive Models in R. J. Mach. Learn. Res. 2018, 19, 1–5.
34. Biecek, P.; Burzykowski, T. Explanatory Model Analysis; Chapman and Hall/CRC: New York, NY, USA, 2021.
35. Gosiewska, A.; Biecek, P. Ibreakdown: Uncertainty of model explanations for non-additive predictive models. arXiv 2019,

arXiv:1903.11420.
36. Jahanshahi, H.; Jothimani, D.; Başar, A.; Cevik, M. Does Chronology Matter in JIT Defect Prediction? A Partial Replication Study.

In Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in Software Engineering,
Recife, Brazil, 18 September 2019; pp. 90–99.

37. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Swizerland, 2014; Volume 8693, pp. 740–755, ISBN 978-3-319-10601-4.

38. Mane, S.; Rao, D. Explaining Network Intrusion Detection System Using Explainable AI Framework. arXiv 2021, arXiv:2103.07110.
39. Kashiwa, Y.; Ohira, M. A Release-Aware Bug Triaging Method Considering Developers’ Bug-Fixing Loads. IEICE Trans. Inf. Syst.

2020, E103.D, 348–362. [CrossRef]
40. Jiarpakdee, J.; Tantithamthavorn, C.; Hassan, A.E. The Impact of Correlated Metrics on the Interpretation of Defect Models. IEEE

Trans. Softw. Eng. 2021, 47, 320–331. [CrossRef]
41. Herzig, K.; Just, S.; Zeller, A. The Impact of Tangled Code Changes on Defect Prediction Models. Empir. Softw. Eng. 2016,

21, 303–336. [CrossRef]
42. Gondaliya, K.D.; Peters, J.; Rueckert, E. Learning to Categorize Bug Reports with LSTM Networks. In Proceedings of the 10th

International Conference on Advances in System Testing and Validation Lifecycle (VALID), Nice, France, 14–18 October 2018; p. 6.
43. Lipton, Z.C. The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability Is Both Important and

Slippery. Queue 2018, 16, 31–57. [CrossRef]
44. Slade, E.L.; Landau, S.; Riedel, B.J.; Ni, Y.; Claassen, J.; Müller, K.-R.; Lu, H. Characterizing Neural Network Complexity Using

Fisher-Shapley Randomization. arXiv 2020, arXiv:2007.14655.
45. Ovadia, Y.; Fertig, E.; Ren, J.; Grosse, R.; Muandet, K. Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty

Under Dataset Shift. arXiv 2019, arXiv:1906.02530.
46. Eclipse. Available online: https://bugs.eclipse.org/bugs/ (accessed on 15 August 2022).
47. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY,

USA, 2009; ISBN 978-0-387-84857-0.
48. Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology.

Ecology 2007, 88, 2783–2792. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/sym11101233
https://doi.org/10.1088/1755-1315/113/1/012127
https://doi.org/10.1145/3236009
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1587/transinf.2019EDP7152
https://doi.org/10.1109/TSE.2019.2891758
https://doi.org/10.1007/s10664-015-9376-6
https://doi.org/10.1145/3236386.3241340
https://bugs.eclipse.org/bugs/
https://doi.org/10.1890/07-0539.1
https://www.ncbi.nlm.nih.gov/pubmed/18051647

	Introduction
	Background
	Bug Fixing Techniques
	Machine Learning Techniques
	Explainability Methods
	LIME (Local Interpretable Model Agnostic Explanations)
	Break-Down
	Textual Explanations of Visual Models
	SHAP

	Related Work
	Machine Learning Techniques in Bug Fixing
	Supervised Learning Techniques
	Unsupervised Learning Techniques

	Explainability Models for Recommender-Based ML Techniques

	Proposed Model
	Results
	XAI for Assigning the New Bugs to the Developer Scenario
	XAI for Recommended Bugs for Each Developer Scenario
	ML Techniques for Bug Assignment

	Discussion
	Conclusions and Future Work
	References

