Stealth Literacy Assessments via Educational Games
Abstract
:1. Introduction
1.1. Stealth Assessment within Games
1.2. Stealth Reading Assessment via Games
1.3. Assessing Reading Skills through Vocabulary and Main Idea Games
1.4. Current Study
- To what extent does students’ performance in the three games predict their reading skills (i.e., vocabulary knowledge and reading comprehension)?
- Does students’ enjoyment of the games moderate the relations between game performance and reading skills?
2. Methods
2.1. Experimental Environment: iSTART
2.1.1. iSTART Games
2.1.2. Adaptivity Facilitated by Assessments in iSTART
2.2. Participants
2.3. Procedure, Materials, and Measures
2.4. Statistical Analyses
3. Results
3.1. Survey Item Internal Consistency
3.2. Descriptive Statistics of Predictor and Predicted Variables
3.3. Predicting Vocabulary Knowledge with Individual Game Performance
3.4. Predicting Comprehension Test Scores with Individual Game Performance
3.5. Predicting Vocabulary Knowledge from Performance Combined across Games
3.6. Predicting Comprehension Test Scores from Performance Combined across Games
4. Discussion
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Organization for Economic Cooperation and Development. OECD Skills Outlook: First Results from the Survey of Adult Skills; OECD Publishing: Paris, France, 2013. [Google Scholar]
- NAEP Report Card: Reading. The Nations’ Report Card. Available online: https://www.nationsreportcard.gov/reading/nation/achievement?grade=8 (accessed on 20 May 2022).
- NCES. Highlights of the 2017 U.S. PIAAC Results Web Report; Department of Education, Institute of Education Sciences, National Center for Education Statistics: Washington, DC, USA, 2020. Available online: https://nces.ed.gov/surveys/piaac/current_results.asp (accessed on 20 May 2022).
- Shute, V.J.; Ventura, M. Measuring and Supporting Learning in Games: Stealth Assessment; The MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Kato, P.M.; de Klerk, S. Serious games for assessment: Welcome to the jungle. J. Appl. Test. Technol. 2017, 18, 1–6. [Google Scholar]
- Francis, D.J.; Snow, C.E.; August, D.; Carlson, C.D.; Miller, J.; Iglesias, A. Measures of reading comprehension: A latent variable analysis of the diagnostic assessment of reading comprehension. Sci. Stud. Read. 2006, 10, 301–322. [Google Scholar] [CrossRef]
- Petroviča, S.; Anohina-Naumeca, A. The adaptation approach for affective game-based assessment. Appl. Comput. Syst. 2017, 22, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Onwuegbuzie, A.J.; Leech, N.L. Sampling Designs in Qualitative Research: Making the Sampling Process More Public. Qual. Rep. 2007, 12, 238–254. [Google Scholar] [CrossRef]
- Kim, Y.J.; Ifenthaler, D. Game-based assessment: The past ten years and moving forward. In Game-Based Assessment Revisited; Ifenthaler, D., Kim, Y.J., Eds.; Springer: Cham, Switzerland, 2019; pp. 3–11. [Google Scholar]
- O’Connor, M.C.; Paunonen, S.V. Big Five personality predictors of post-secondary academic performance. Personal. Individ. Differ. 2007, 43, 971–990. [Google Scholar] [CrossRef]
- Poropat, A.E. A meta-analysis of the five-factor model of personality and academic performance. Psychol. Bull. 2009, 135, 322. [Google Scholar] [CrossRef] [Green Version]
- Ke, F.; Parajuli, B.; Smith, D. Assessing Game-Based Mathematics Learning in Action. In Game-Based Assessment Revisited; Springer: Cham, Switzerland, 2019; pp. 213–227. [Google Scholar]
- Min, W.; Frankosky, M.H.; Mott, B.W.; Rowe, J.P.; Smith, A.; Wiebe, E.; Boyer, K.E.; Lester, J.C. DeepStealth: Game-based learning stealth assessment with deep neural networks. IEEE Trans. Learn. Technol. 2019, 13, 312–325. [Google Scholar] [CrossRef] [Green Version]
- Shute, V.J.; Rahimi, S. Stealth assessment of creativity in a physics video game. Comput. Hum. Behav. 2021, 116, 106647. [Google Scholar] [CrossRef]
- Shute, V.; Rahimi, S.; Smith, G.; Ke, F.; Almond, R.; Dai, C.P.; Kuba, R.; Liu, Z.; Yang, X.; Sun, C. Maximizing learning without sacrificing the fun: Stealth assessment, adaptivity and learning supports in educational games. J. Comput. Assist. Learn. 2021, 37, 127–141. [Google Scholar] [CrossRef]
- Simonson, M.; Smaldino, S.; Albright, M.; Zvacek, S. Assessment for distance education. In Teaching and Learning at a Distance: Foundations of Distance Education; Prentice-Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Shute, V.J.; Leighton, J.P.; Jang, E.E.; Chu, M.W. Advances in the science of assessment. Educ. Assess. 2016, 21, 34–59. [Google Scholar] [CrossRef]
- De-Juan-Ripoll, C.; Soler-Domínguez, J.L.; Guixeres, J.; Contero, M.; Álvarez Gutiérrez, N.; Alcañiz, M. Virtual reality as a new approach for risk taking assessment. Front. Psychol. 2018, 9, 2532. [Google Scholar] [CrossRef] [Green Version]
- De Rosier, M.E.; Thomas, J.M. Establishing the criterion validity of Zoo U’s game-based social emotional skills assessment for school-based outcomes. J. Appl. Dev. Psychol. 2018, 55, 52–61. [Google Scholar] [CrossRef]
- Salen, K.; Zimmerman, E. Rules of Play: Game Design Fundamentals; The MIT Press: Cambridge, UK, 2004. [Google Scholar]
- Tsikinas, S.; Xinogalos, S. Towards a serious games design framework for people with intellectual disability or autism spectrum disorder. Educ. Inf. Technol. 2020, 25, 3405–3423. [Google Scholar] [CrossRef]
- Annetta, L.A. The “I’s” have it: A framework for serious educational game design. Rev. Gen. Psychol. 2010, 14, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shute, V.; Moore, G.R. Lessons learned and best practices of stealth assessment. Int. J. Gaming Comput. Mediat. Simul. 2015, 7, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Akram, B.; Min, W.; Wiebe, E.; Mott, B.; Boyer, K.E.; Lester, J. Improving stealth assessment in game-based learning with LSTM-based analytics. In Proceedings of the 11th International Conference on Educational Data Mining, Buffalo, NY, USA, 15–18 July 2018. [Google Scholar]
- DiCerbo, K.E.; Bertling, M.; Stephenson, S.; Jia, Y.; Mislevy, R.J.; Bauer, M.; Jackson, G.T. An application of exploratory data analysis in the development of game-based assessments. In Serious Games Analytics; Springer: Cham, Switzerland, 2015; pp. 319–342. [Google Scholar]
- Allen, L.K.; McNamara, D.S. You Are Your Words: Modeling Students’ Vocabulary Knowledge with Natural Language Processing. In Proceedings of the 8th International Conference on Educational Data Mining, Madrid, Spain, 26–29 June 2015; Santos, O.C., Boticario, J.G., Romero, C., Pechenizkiy, M., Merceron, A., Mitros, P., Luna, J.M., Mihaescu, C., Moreno, P., Hershkovitz, A., et al., Eds.; International Educational Data Mining Society, 2015; pp. 258–265. [Google Scholar]
- Fang, Y.; Allen, L.K.; Roscoe, R.D.; McNamara, D.S. Stealth literacy assessment: Leveraging games and NLP in iSTART. In Advancing Natural Language Processing in Educational Assessment; Yaneva, V., Davier, M., Eds.; Routledge: New York, NY, USA, 2023; pp. 183–199. [Google Scholar]
- McCarthy, K.S.; Laura, K.A.; Scott, R.H. Predicting Reading Comprehension from Constructed Responses: Explanatory Retrievals as Stealth Assessment. In Proceedings of the International Conference on Artificial Intelligence in Education, Ifrane, Morocco, 6–10 July 2020; Springer: Cham, Switzerland, 2020; pp. 197–202. [Google Scholar]
- Li, H. Deep learning for natural language processing: Advantages and challenges. Natl. Sci. Rev. 2018, 5, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Li, T.; Roscoe, R.D.; McNamara, D.S. Predicting literacy skills via stealth assessment in a simple vocabulary game. In Proceedings of the 23rd Human-Computer Interaction International Conference, Virtual Conference, 24–29 July 2021; Sottilare, R.A., Schwarz, J., Eds.; Springer: Cham, Switzerland, 2021; pp. 32–44. [Google Scholar]
- Freebody, P.; Anderson, R.C. Effects of vocabulary difficulty, text cohesion, and schema availability on reading comprehension. Read. Res. Q. 1983, 18, 277–294. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, E. Progress and procrastination in second language reading. Annu. Rev. Appl. Linguist. 2005, 25, 133–150. [Google Scholar] [CrossRef]
- Cain, K.; Oakhill, J. Reading comprehension and vocabulary: Is vocabulary more important for some aspects of comprehension? L’Année Psychol. 2014, 114, 647–662. [Google Scholar] [CrossRef]
- Cromley, J.G.; Azevedo, R. Testing and refining the direct and inferential mediation model of reading comprehension. J. Educ. Psychol. 2007, 99, 311–325. [Google Scholar] [CrossRef]
- Chen, X.; Meurers, D. Word frequency and readability: Predicting the text-level readability with a lexical-level attribute. J. Res. Read. 2018, 41, 486–510. [Google Scholar] [CrossRef]
- Masrai, A. Vocabulary and reading comprehension revisited: Evidence for high-, mid-, and low-frequency vocabulary knowledge. Sage Open 2019, 9, 2158244019845182. [Google Scholar] [CrossRef] [Green Version]
- Jun Zhang, L.; Bin Anual, S. The role of vocabulary in reading comprehension: The case of secondary school students learning English in Singapore. RELC J. 2008, 39, 51–76. [Google Scholar] [CrossRef]
- Kintsch, W.; Walter Kintsch, C. Comprehension: A Paradigm for Cognition; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Brown, A.L.; Campione, J.C.; Day, J.D. Learning to learn: On training students to learn from texts. Educ. Res. 1981, 10, 14–21. [Google Scholar] [CrossRef]
- Bransford, J.D.; Brown, A.L.; Cocking, R.R. How People Learn: Brain, Mind, Experience, and School: Expanded Edition; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Wade-Stein, D.; Kintsch, E. Summary Street: Interactive computer support for writing. Cogn. Instr. 2004, 22, 333–362. [Google Scholar] [CrossRef]
- Fox, E. The Role of Reader Characteristics in Processing and Learning from Informational Text. Rev. Educ. Res. 2009, 79, 197–261. [Google Scholar] [CrossRef]
- Williams, J.P. Teaching text structure to improve reading comprehension. In Handbook of Learning Disabilities; Swanson, H.L., Harris, K.R., Graham, S., Eds.; The Guilford Press: New York, NY, USA, 2003; pp. 293–305. [Google Scholar]
- Anmarkrud, Ø.; Bråten, I.; Strømsø, H.I. Multiple-documents literacy: Strategic processing, source awareness, and argumentation when reading multiple conflicting documents. Learn. Individ. Differ. 2014, 30, 64–76. [Google Scholar] [CrossRef]
- Wigent, C.A. High school readers: A profile of above average readers and readers with learning disabilities reading expository text. Learn. Individ. Differ. 2013, 25, 134–140. [Google Scholar] [CrossRef]
- Lau, K.L. Reading strategy use between Chinese good and poor readers: A think aloud study. J. Res. Read. 2006, 29, 383–399. [Google Scholar] [CrossRef]
- Shores, J.H. Are fast readers the best readers? A second report. Elem. Engl. 1961, 38, 236–245. [Google Scholar]
- Johnston, P.; Afflerbach, P. The process of constructing main ideas from text. Cogn. Instr. 1985, 2, 207–232. [Google Scholar] [CrossRef]
- Afflerbach, P.P. The influence of prior knowledge on expert readers’ main idea construction strategies. Read. Res. Q. 1990, 25, 31–46. [Google Scholar] [CrossRef]
- Chittaro, L.; Buttussi, F. Exploring the use of arcade game elements for attitude change: Two studies in the aviation safety domain. Int. J. Hum. Comput. Stud. 2019, 127, 112–123. [Google Scholar] [CrossRef]
- Derbali, L.; Frasson, C. Players’ motivation and EEG waves patterns in a serious game environment. In International Conference on Intelligent Tutoring Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 297–299. [Google Scholar]
- Jackson, G.T.; McNamara, D.S. Motivation and performance in a game-based intelligent tutoring system. J. Educ. Psychol. 2013, 105, 1036. [Google Scholar] [CrossRef] [Green Version]
- McNamara, D.S. Self-explanation and reading strategy training (SERT) improves low-knowledge students’ science course performance. Discourse Process. 2017, 54, 479–492. [Google Scholar] [CrossRef]
- McCarthy, K.S.; Watanabe, M.; Dai, J.; McNamara, D.S. Personalized learning in iSTART: Past modifications and future design. J. Res. Technol. Educ. 2020, 52, 301–321. [Google Scholar] [CrossRef]
- McNamara, D.S.; Boonthum, C.; Levinstein, I.B.; Millis, K. Evaluating self-explanations in iSTART: Comparing word-based and LSA algorithms. In Handbook of Latent Semantic Analysis; Landauer, T., McNamara, D.S., Dennis, S., Kintsch, W., Eds.; Erlbaum: Hillsdale, MI, USA, 2007; pp. 227–241. [Google Scholar]
- McNamara, D.S. Chasing theory with technology: A quest to understand understanding. Discourse Process. 2021, 58, 442–448. [Google Scholar] [CrossRef]
- VanLehn, K. The behavior of tutoring systems. Int. J. Artif. Intell. Educ. 2006, 16, 227–265. [Google Scholar]
- Shute, V.J.; Psotka, J. Intelligent Tutoring Systems: Past, Present and Future. In Handbook of Research on Educational Communications and Technology; Jonassen, D., Ed.; Macmillan: New York, NY, USA, 1996; pp. 570–600. [Google Scholar]
- Woolf, B.P. Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing E-Learning; Morgan Kaufmann: San Francisco, CA, USA, 2010. [Google Scholar]
- Phillips, L.M.; Norris, S.P.; Osmond, W.C.; Maynard, A.M. Relative reading achievement: A longitudinal study of 187 children from first through sixth grades. J. Educ. Psychol. 2002, 94, 3–13. [Google Scholar] [CrossRef]
- Davies, M. The 385+ million word Corpus of Contemporary American English (1990–2008+): Design, architecture, and linguistic insights. Int. J. Corpus Linguist. 2009, 14, 159–190. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T. The impacts of computer adaptive testing from a variety of perspectives. J. Educ. Eval. Health Prof. 2017, 14, 1149050. [Google Scholar] [CrossRef]
- Hulin, C.; Netemeyer, R.; Cudeck, R. Can a reliability coefficient be too high? J. Consum. Psychol. 2001, 10, 55–58. [Google Scholar]
- McClarty, K.L.; Orr, A.; Frey, P.M.; Dolan, R.P.; Vassileva, V.; McVay, A. A Literature Review of Gaming in Education; Research Report; Pearson: Hoboken, NJ, USA, 2012; Available online: https://www.pearsonassessments.com/content/dam/school/global/clinical/us/assets/tmrs/lit-review-of-gaming-in-education.pdf (accessed on 22 May 2023).
- Shute, V.J.; Rahimi, S. Review of computer-based assessment for learning in elementary and secondary education. J. Comput. Assist. Learn. 2017, 33, 1–19. [Google Scholar] [CrossRef]
- Cassady, J.C.; Johnson, R.E. Cognitive test anxiety and academic performance. Contemp. Educ. Psychol. 2002, 27, 270–295. [Google Scholar] [CrossRef] [Green Version]
- Segool, N.K.; Carlson, J.S.; Goforth, A.N.; Von Der Embse, N.; Barterian, J.A. Heightened test anxiety among young children: Elementary school students’ anxious responses to high-stakes testing. Psychol. Sch. 2013, 50, 489–499. [Google Scholar] [CrossRef]
- Von der Embse, N.P.; Witmer, S.E. High-stakes accountability: Student anxiety and large-scale testing. J. Appl. Sch. Psychol. 2014, 30, 132–156. [Google Scholar] [CrossRef]
Measure | M | SD | Vocabulary | Comprehension | VF Correct | DE Correct | AL Correct | AL Incorrect | VF Enjoyment | DE Enjoyment |
---|---|---|---|---|---|---|---|---|---|---|
Vocabulary | 0.43 | 0.29 | ||||||||
Comprehension | 0.36 | 0.22 | 0.76 ** | |||||||
VF Correct | 0.48 | 0.24 | 0.76 ** | 0.60 ** | ||||||
DE Correct | 0.41 | 0.23 | 0.46 ** | 0.50 ** | 0.38 ** | |||||
AL Correct | 0.61 | 0.25 | 0.09 | 0.08 | 0.11 | 0.16 * | ||||
AL Incorrect | 0.55 | 0.26 | −0.27 ** | −0.26 ** | −0.21 * | −0.07 | 0.67 ** | |||
VF Enjoyment | 4.34 | 0.84 | 0.13 | 0.16 * | 0.24 ** | 0.07 | 0.03 | −0.10 | ||
DE Enjoyment | 4.11 | 0.99 | −0.26 ** | −0.23 * | −0.13 | 0.00 | −0.04 | 0.07 | 0.45 ** | |
AL Enjoyment | 3.75 | 1.16 | −0.60 ** | −0.52 ** | −0.41 ** | −0.38 ** | −0.10 | 0.12 | 0.31 ** | 0.63 ** |
Variable | Standardized Coefficient | t | R2 | R2 Change |
---|---|---|---|---|
Vocab Flash | ||||
Model 1 | 0.57 | 0.57 *** | ||
Performance | 0.76 | 16.68 *** | ||
Model 2 | 0.57 | 0.00 | ||
Performance | 0.77 | 16.46 *** | ||
Enjoyment | −0.05 | 1.07 | ||
Dungeon Escape | ||||
Model 1 | 0.20 | 0.20 *** | ||
Performance | 0.45 | 6.95 *** | ||
Model 2 | 0.26 | 0.06 *** | ||
Performance | 0.45 | 7.20 *** | ||
Enjoyment | −0.25 | −4.05 *** | ||
Adventurer’s Loot | ||||
Model 1 | 0.20 | 0.20 *** | ||
Performance | 0.44 | 7.18 *** | ||
Model 2 | 0.44 | 0.24 *** | ||
Performance | 0.31 | 5.72 *** | ||
Enjoyment | −0.51 | −9.51 *** |
Variable | Standardized Coefficient | t | R2 | R2 Change |
---|---|---|---|---|
Vocab Flash | ||||
Model 1 | 0.36 | 0.36 *** | ||
Performance | 0.60 | 8.86 *** | ||
Model 2 | 0.36 | 0.00 | ||
Performance | 0.60 | 8.49 *** | ||
Enjoyment | −0.01 | 0.16 | ||
Dungeon Escape | ||||
Model 1 | 0.25 | 0.25 *** | ||
Performance | 0.60 | 6.60 *** | ||
Model 2 | 0.27 | 0.02 *** | ||
Performance | 0.48 | 6.36 *** | ||
Enjoyment | −0.17 | −2.31 * | ||
Adventurer’s Loot | ||||
Model 1 | 0.18 | 0.18 *** | ||
Performance | 0.43 | 5.69 *** | ||
Model 2 | 0.36 | 0.18 *** | ||
Performance | 0.31 | 4.48 *** | ||
Enjoyment | −0.44 | −6.27 *** |
Variable | Standardized Coefficient | t | R2 | R2 Change |
---|---|---|---|---|
Model 1 | 0.65 | 0.65 *** | ||
Performance (VF) | 0.65 | 12.84 *** | ||
Performance(DE) | 0.17 | 3.51 ** | ||
D-prime (AL) | 0.16 | 3.18 ** | ||
Model 2 | 0.74 | 0.09 * | ||
Performance(VF) | 0.51 | 10.54 *** | ||
Performance(DE) | 0.08 | 1.66 | ||
Performance (AL) | 0.11 | 2.55 * | ||
Enjoyment (VF) | 0.11 | 2.33 * | ||
Enjoyment (DE) | 0.03 | 0.50 | ||
Enjoyment (AL) | −0.40 | 6.53 *** |
Variable | Standardized Coefficient | t | R2 | R2 Change |
---|---|---|---|---|
Model 1 | 0.49 | 0.49 *** | ||
Performance (VF) | 0.43 | 5.86 *** | ||
Performance (DE) | 0.30 | 4.35 *** | ||
Performance (AL) | 0.18 | 2.59 * | ||
Model 2 | 0.55 | 0.06 | ||
Performance (VF) | 0.30 | 3.66 *** | ||
Performance(DE) | 0.20 | 2.77 ** | ||
Performance (AL) | 0.13 | 1.90 | ||
Enjoyment (VF) | 0.14 | 1.77 | ||
Enjoyment (DE) | 0.01 | 0.10 | ||
Enjoyment (AL) | −0.35 | 3.24 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Li, T.; Huynh, L.; Christhilf, K.; Roscoe, R.D.; McNamara, D.S. Stealth Literacy Assessments via Educational Games. Computers 2023, 12, 130. https://doi.org/10.3390/computers12070130
Fang Y, Li T, Huynh L, Christhilf K, Roscoe RD, McNamara DS. Stealth Literacy Assessments via Educational Games. Computers. 2023; 12(7):130. https://doi.org/10.3390/computers12070130
Chicago/Turabian StyleFang, Ying, Tong Li, Linh Huynh, Katerina Christhilf, Rod D. Roscoe, and Danielle S. McNamara. 2023. "Stealth Literacy Assessments via Educational Games" Computers 12, no. 7: 130. https://doi.org/10.3390/computers12070130
APA StyleFang, Y., Li, T., Huynh, L., Christhilf, K., Roscoe, R. D., & McNamara, D. S. (2023). Stealth Literacy Assessments via Educational Games. Computers, 12(7), 130. https://doi.org/10.3390/computers12070130