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Abstract: Feature selection is a crucial step in machine learning, aiming to identify the most relevant
features in high-dimensional data in order to reduce the computational complexity of model devel-
opment and improve generalization performance. Ensemble feature-ranking methods combine the
results of several feature-selection techniques to identify a subset of the most relevant features for a
given task. In many cases, they produce a more comprehensive ranking of features than the individ-
ual methods used alone. This paper presents a novel approach to ensemble feature ranking, which
uses a weighted average of the individual ranking scores calculated using these individual methods.
The optimal weights are determined using a Taguchi-type design of experiments. The proposed
methodology significantly improves classification performance on the CSE-CIC-IDS2018 dataset,
particularly for attack types where traditional average-based feature-ranking score combinations
result in low classification metrics.

Keywords: feature selection; Taguchi method; weighted average; classification; ensemble

1. Introduction

Feature ranking plays a key role in the data preprocessing workflow of the develop-
ment and training of a network intrusion detection system owing to the high dimensionality
of the training data. Feature selection can contribute to faster training, better performance,
reduced overfitting, and better interpretability [1]. In some cases, ensemble feature-selection
methods can outperform individual feature-ranking methods when developing a classi-
fier [2]. Using a combination of multiple feature-ranking algorithms, one can improve the
robustness of the overall feature ranking. Thus, the final set of selected features is less
likely to be influenced by outliers or biases in any single ranking method. Additionally,
ensemble feature-selection methods can also contribute to better coverage of the feature
space and a more comprehensive evaluation of the different attributes, which can im-
prove the performance of the classifier. Another benefit of the combination of different
feature-selection methods is that they can improve the discriminative ability of the selected
attributes by identifying features that would be otherwise neglected by some ranking
methods. Furthermore, by reducing the sensitivity of the selected features to the given
training data, ensemble feature-selection methods can help improve the capability of the
generated model to accurately classify previously unseen data. This is especially important
in network intrusion detection systems, where the model needs to accurately identify new
and emerging threats.

The above-presented ideas led us to the development of a novel ensemble feature-
selection approach, where the final scoring of the features is calculated by a weighted
average of the individual scores obtained using the application of six feature-selection
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techniques, and the optimal values of the weights are determined using Taguchi’s design-of-
experiments approach. The new method is used in the development of network intrusion
detection modules trained with different attack types available in the CSE-CIC-IDS2018
dataset. The main contribution of this paper lies in the novel ensemble approach for
feature scoring that assigns weights to feature scores determined by the individual feature-
evaluation techniques. Furthermore, a second novel aspect is the determination of the
optimal values for the weights by employing Taguchi’s design-of-experiments approach.
As a result, the proposed ensemble method resulted in a reduction in the dimensionality
of the problem by allowing the identification of the class of a network flow record, taking
into consideration a significantly lower number of features compared to the arithmetic
mean-based ensemble method.

The rest of this paper is organized as follows. Section 2 provides a short overview
of some ensemble feature-selection methods. Section 3 presents the proposed ensemble
feature-selection method and the incorporated feature-selection techniques. Section 4
describes the results obtained with the CSE-CIC-IDS2018 dataset. The conclusions are
drawn in Section 5.

2. Related Works

Ensemble feature selection (EFS) is an approach that combines the results of multiple
individual feature-ranking techniques to improve the selection of relevant attributes and
enhance model performance. This technique offers several advantages, including better
classification accuracy, increased efficiency on large datasets, and the ability to address data
overfitting [3]. Utilizing ensemble feature selection involves leveraging the strengths of
various feature-selection algorithms to identify significant features in a dataset. By doing
so, it enhances classification accuracy, reduces overfitting, and ensures greater stability in
the selected features [4]. This approach proves particularly beneficial in machine learning-
driven applications like intrusion detection systems, where feature diversity significantly
impacts model accuracy and training duration. However, there are also some drawbacks to
using EFS. Running all models requires significant computational resources, and finding
the right balance between model accuracy and computation time can be challenging [2].

In their research, M. Manonmani and S. Balakrishnan utilized the density-based
feature-selection (DFS) method as a filtering approach to rank the features of a dataset.
The DFS results were then passed to an envelopment-based optimization technique called
the Improved Teacher–Learner-Based Optimization (ITLBO) algorithm to find the optimal
feature set containing the most important features for high-accuracy prediction. The results
of the ensemble feature-selection method were evaluated using the support vector machine
(SVM), gradient boosting (GB), and convolutional neural network (CNN) classification
algorithms. SVM achieved a high classification accuracy of 93%, GB achieved a high
classification accuracy of 97%, and CNN achieved a high classification accuracy of 97.75%
for the derived optimal feature set. The proposed work achieved a feature reduction of
62.5% for the eight features selected using the SVM and CNN classification algorithms and
66.6% for the nine features selected using the GB classification algorithm [5].

A. Hashemi, M. B. Dowlatshahi, and H. Nezamabadi modeled joint feature selection
as a multi-criteria decision-making process (MCDM) for 10 real datasets with varying
numbers of features. They utilized the VIKOR method to rank the features based on the
evaluation of several feature-selection methods as different decision criteria. The proposed
method first obtains a decision matrix by ranking each feature according to different ranking
criteria. Next, a score is assigned to each feature. Finally, the output is a ranking vector
of features from which the user can select the desired number of features. The results of
their approach demonstrate its superiority over other similar methods in terms of accuracy,
F-score, and algorithm runtime. Their approach also performs quickly and efficiently [6].

N. Hoque et al. presented a method called ensemble feature selection using mutual in-
formation (EFS-MI), which combines the subsets of the results of different feature-selection
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methods, including Info Gain, Gain Ratio, ReliefF, Chi-squared, and symmetric uncertainty,
to obtain the optimal subset of features [7].

A.S. Sumant and D. Patil processed high-dimensional datasets (HDD) using multi-step
methods, specifically, Chi-squared integrated with RReliefF (ChS-R) and symmetric uncer-
tainty integrated with RReliefF. The results were then validated using the random forest
(RF), k-nearest neighbor (KNN), and SVM classifiers. The proposed ChS-R system achieved
an accuracy improvement of 13.28%, whereas SU-R achieved an accuracy improvement of
9.47% [8].

Chih-Fong Tsai and Ya-Ting Sung described several feature-selection methods in
their research, including principal component analysis (PCA), genetic algorithm (GA),
and C4.5 decision tree, specifically for high-dimensional, low-sample-size (HDLSS) data.
They also explored nine parallel and nine row-combinatorial approaches to the results,
including union and intersection. Their test results indicate that the row-based ensemble
feature-selection approach is particularly suitable for processing very high-dimensional
datasets [9].

In their study, J. Wang et al. used the UCI machine learning dataset to propose an
SA-EFS based on sort aggregation. The feature-selection methods employed included
Chi-squared, maximum information coefficient, and XGBoost. The performance of the
method was evaluated using the KNN, random forest, and XGBoost classifiers [10].

3. Methodology

The following section presents the feature-selection methods utilized in this study.
Subsequently, the results obtained are utilized to rank the characteristics using the en-
semble feature-selection method, whereby the weighted average of the method’s results
is calculated.

3.1. Feature-Selection Methods

The process of selecting features involves identifying the most relevant attributes
that can be effectively used for classification or prediction [11–13]. This contributes to
reducing the dimensionality of the problem and therefore reduces resource requirements
such as storage and computation. Additionally, it can improve the performance of machine
learning algorithms [14] by enabling faster training, reducing overfitting, and sometimes
leading to better prediction power. The following subsections provide a brief description
of the feature-selection methods used.

3.1.1. Information Gain

One of the most commonly used univariate methods for evaluating attributes is the
Information Gain (IG) filter. It assesses features based on the information gained and
examines each feature individually. The Information Gain filter employs a symmetrical
measure. It sorts all features in a methodical manner and necessitates the establishment
of a threshold for selecting a specific number of features based on the obtained order.
A drawback of the Information Gain criterion is that it tends to favor features with more
values, even when they do not provide more informative data [15].

3.1.2. Gain Ratio

The Gain Ratio (GR) is a variant of the IG that mitigates its partiality. Unlike the
standard Information Gain, the GR accounts for the number and size of branches when
selecting an attribute. It addresses the Information Gain’s bias by incorporating the intrinsic
information of a split. The intrinsic information refers to the entropy of the distribution
of instances across branches, which represents the amount of information required to
determine which branch an instance belongs to. As the intrinsic information increases,
the value of the attribute decreases [16].
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3.1.3. Chi2

The Chi-squared test for feature selection is a statistical technique used to identify the
most relevant features for a given set of data for a target variable. It works by comparing the
observed distribution of the values of a characteristic with the expected distribution under
the assumption of independence between the characteristic and the target variable and
selecting those characteristics for which the difference between the observed and expected
distributions is the largest [17].

3.1.4. Symmetric Uncertainty

Symmetric uncertainty is a means of determining the fitness of features for feature
selection. It involves computing the relationship between the feature and the target class.
Features that exhibit a high value of SU are considered to be of greater importance [18].

3.1.5. Relief

Relief is a feature-selection method that serves as an individual evaluation filter. It
computes a proxy statistic for each feature, which can estimate its quality or relevance to
the target concept (i.e., predicting endpoint value). These statistics are known as feature
weights, or informally, as feature scores, ranging from −1 (worst) to +1 (best) [19].

3.1.6. ANOVA

ANOVA is a widely recognized statistical method used for comparing multiple in-
dependent means. This technique evaluates features by computing the ratio of variances
between and within groups and then ranks them accordingly [20].

3.2. Weighted-Ensemble Ranking

Weighted-ensemble ranking is a widely used approach for assessing samples, allowing
for the differential evaluation of each component based on its significance, importance,
strength, or any other criterion referred to as its weight. By considering the contributions of
multiple feature-ranking methods, the weighted average of the feature scores is computed
using Equation (1). This equation provides an overall evaluation score, reflecting the
combined assessment of the ensemble.

Rens =
RIG · wIG + RGR · wGR + RSU · wSU + Rχ2 · wχ2 + RRe · wRe + RAN · wAN

wIG + wGR + wSU + wχ2 + wRe + wAN
, (1)

where Rens is the score of the feature calculated using the ensemble method; RIG, RGR,
RSU , Rχ2 , RRe, RAN are the normalized feature scores obtained using the individual feature-
ranking methods included in the ensemble; and wIG, wGR, wSU , wχ2 , wRe, wAN represent
the weights associated with these methods.

By incorporating multiple feature-ranking methods and assigning appropriate weights
to each method, the ensemble approach effectively leverages the strengths of individual
techniques while mitigating their weaknesses.

3.3. Weight Optimization Using Taguchi’s DoE Approach

The arithmetic mean of individual feature scores is the simplest method for aggregat-
ing different scores where each weight is identical. However, employing different weights
can sometimes lead to feature scores that contribute more significantly to the selection of an
improved feature subset. Such a subset enables better classification results to be achieved.
Determining the optimal combination of weights is a challenging task due to the substantial
time required for evaluating the various feature collections resulting from score calculations.
Therefore, weight optimization with a minimal number of trials becomes necessary.

This recognition has led to the utilization of a well-known design-of-experiments (DoE)
technique known as the Taguchi method. Developed by Genichi Taguchi in the 1950s, this
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approach was originally aimed at quality management and design in the manufacturing
industry [21]. The Taguchi method sought to identify and optimize the effects of different
production parameters on product quality. By identifying optimal parameter settings
during production, the Taguchi method reduces sensitivity to variations and enhances
overall product quality.

To identify the optimal parameter setting, the Taguchi method employs the concept of
“parameter design.” This involves assigning process variables to predefined value ranges,
conducting tests, and optimizing them. In the course of this research, six independent
variables were tried, each of them at two levels. Therefore, the L8 27 orthogonal design plan
was adopted. In the case of each factor, two levels were used, coded as 1 and 2 (see Table 1).

Table 1. L8 27 design with coded units.

wIG wGR wSU wχ2 wRe wAN

1 1 1 1 1 1 1
2 1 1 1 2 2 2
3 1 2 2 1 1 2
4 1 2 2 2 2 1
5 2 1 2 1 2 1
6 2 1 2 2 1 2
7 2 2 1 1 2 2
8 2 2 1 2 1 1

3.4. Classification Methods

In the course of the current research, three classification methods were employed to
evaluate the selected feature subsets. A brief description of each method is provided in the
following subsections.

3.4.1. Decision Tree

The decision tree method is a well-known algorithm in machine learning that is used
for both classification and regression tasks. It works by creating a tree-shaped model
that represents decisions and their potential outcomes. Each node in the tree represents
a decision based on a specific feature, while the branches represent the different possible
values or outcomes of that feature. The end nodes, or leaves, correspond to the final
predicted class or numerical value. The goal of the decision tree algorithm is to identify the
best points to split the data, which either maximizes the information gained or minimizes
the uncertainty, leading to effective decision making. Decision trees are easy to interpret
and comprehend and can handle both categorical and numerical features. They have found
wide applications in various fields, such as finance, healthcare, and marketing, primarily
due to their simplicity, versatility, and ability to capture complex relationships [22].

3.4.2. Random Forest

The random forest method is a powerful technique in machine learning that is com-
monly used for classifying and predicting outcomes. It works by creating many decision
trees and combining their predictions to achieve accurate and reliable results. Each decision
tree is built using a random selection of features and training data, which helps prevent
overfitting and increases the diversity of the trees. When making predictions, random forest
combines the outputs of all the trees, either by taking the majority vote (for classification
tasks) or by averaging (for regression tasks). This approach improves overall prediction
performance, effectively handles noisy data, and is capable of handling high-dimensional
feature spaces [23].

3.4.3. SVM

Support vector machine (SVM) is an effective supervised machine learning algorithm
utilized for classification and regression tasks. Its main objective is to construct an opti-
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mal hyperplane that effectively separates different classes within a feature space of high
dimensionality. By maximizing the margin between data points of distinct classes and
minimizing classification errors, SVMs can handle both linearly separable and non-linearly
separable data. This is achieved through the use of kernel functions, which map the data
into higher-dimensional spaces [24].

4. Experimental Results

In the course of this research, we utilized the CSE-CIC-IDS2018 dataset [25]. The dataset
was created by the Canadian Institute for Cybersecurity Laboratory and was chosen because
it fulfilled all the research requirements, providing information on total traffic, labeled data,
and multiple attack types. It encompasses various attack types, while our study specifically
focused on FTP, SSH, SQL, XSS, and Web attacks. Each record in the dataset contains
80 attributes extracted from the recorded traffic using CICFlowMeter-V3 [26].

In our previous work [27], we successfully reduced the dimensionality of the problem
by excluding certain features. These features either had single-valued columns or contained
irrelevant information. Thus, we narrowed down the number of features to be consid-
ered to 69 and further investigated. Subsequently, various feature-selection methods (see
Section 3.1) were employed to evaluate the individual features. The resulting score values
were later normalized and aggregated using the arithmetic mean, yielding a single-value
evaluation. Based on these feature scores and ranking thresholds, we selected feature
subsets and tested them with different classification methods. Finally, each classifier’s
performance was evaluated using accuracy, precision, recall, and F1 measures on both the
training and test datasets. In cases where the trained classifiers exhibited poor performance,
we were motivated to explore further using the weighted-average approach.

To facilitate a better exploration of the weight search space with minimal experiments,
we assigned weight values of 0.0233 and 0.2336 to the two levels of the weight variables
(called factors in DoE) included in the selected DoE design. The rationale behind this choice
was to use values that were significantly distant from each other. Due to the considerable
time required for the experiments, conducting an exhaustive search was not feasible. For
each feature, we determined eight sets of weights based on Table 1. The resulting scores
after applying these weights can be found in the five tables provided in the Appendix A.
During the experiments, the same datasets were used as in [27].

Primarily, we directed our attention toward cases where the previous investigation
using the arithmetic mean did not yield satisfactory results. Our aim here was twofold:
either to identify feature sets with fewer features while maintaining the original classifica-
tion performance or find feature sets that could enhance classification performance using
accuracy, precision, recall, and F1 scores as performance measures. The steps of the process
are outlined in Figure 1.

Figure 1. The steps of the experimental.

The results of the investigation are summarized in Tables 2–6.
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Table 2. Results for the FTP dataset.

Dataset Average Type Features Classifier Accuracy Precision Recall F1

training

simple 8 Decision Tree 1.00000 1.00000 1.00000 1.00000
weighted 5 Decision Tree 0.99999 0.99997 1.00000 0.99999
simple 8 Random Forest 1.00000 1.00000 1.00000 1.00000
weighted 5 Random Forest 1.00000 1.00000 1.00000 1.00000
simple 8 SVM 0.99973 0.99881 1.00000 0.99941
weighted 5 SVM 0.99990 0.99956 1.00000 0.99978

test

simple 8 Decision Tree 0.99999 0.99995 1.00000 0.99997
weighted 5 Decision Tree 0.99997 0.99995 0.99990 0.99992
simple 8 Random Forest 1.00000 1.00000 1.00000 1.00000
weighted 5 Random Forest 1.00000 1.00000 1.00000 1.00000
simple 8 SVM 0.99973 0.99881 1.00000 0.99941
weighted 5 SVM 0.99988 0.99948 1.00000 0.99974

Table 3. Results for the SSH dataset.

Dataset Average Type Features Classifier Accuracy Precision Recall F1

training

simple 7 Decision Tree 0.99999 0.99997 1.00000 0.99999
weighted 6 Decision Tree 0.99999 0.99997 1.00000 0.99999
simple 7 Random Forest 0.99999 0.99997 1.00000 0.99999
weighted 6 Random Forest 1.00000 1.00000 1.00000 1.00000
simple 7 SVM 0.99979 0.99928 0.99979 0.99953
weighted 6 SVM 0.99993 0.99989 0.99979 0.99984

test

simple 7 Decision Tree 1.00000 1.00000 1.00000 1.00000
weighted 6 Decision Tree 0.99996 0.99984 1.00000 0.99992
simple 7 Random Forest 0.99999 0.99995 1.00000 0.99997
weighted 6 Random Forest 0.99996 0.99984 1.00000 0.99992
simple 7 SVM 0.99985 0.99947 0.99984 0.99965
weighted 6 SVM 0.99996 1.00000 0.99984 0.99992

Table 4. Results for the SQL dataset.

Dataset Average Type Features Classifier Accuracy Precision Recall F1

training

simple 26 Decision Tree 0.99999 1.00000 0.95402 0.97647
weighted 7 Decision Tree 0.99999 1.00000 0.95402 0.97647
simple 26 Random Forest 0.99998 1.00000 0.91954 0.95808
weighted 7 Random Forest 0.99999 1.00000 0.96552 0.98246
simple 26 SVM 0.99987 1.00000 0.37931 0.55000
weighted 7 SVM 0.99988 0.99988 0.99988 0.99986

test

simple 26 Decision Tree 0.99998 1.00000 0.95402 0.97647
weighted 7 Decision Tree 0.99999 0.98824 0.96552 0.97674
simple 26 Random Forest 0.99997 1.00000 0.91954 0.95808
weighted 7 Random Forest 1.00000 1.00000 0.97701 0.98837
simple 26 SVM 0.99974 1.00000 0.37931 0.55000
weighted 7 SVM 0.99977 0.99977 0.99977 0.99972
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Table 5. Results for the XSS dataset.

Dataset Average Type Features Classifier Accuracy Precision Recall F1

training

simple 10 Decision Tree 0.99998 1.00000 0.96957 0.98455
weighted 2 Decision Tree 0.99994 0.93966 0.94783 0.94372
simple 10 Random Forest 0.99999 1.00000 0.97391 0.98678
weighted 2 Random Forest 0.99995 0.95217 0.95217 0.95217
simple 10 SVM 0.37911 0.00046 0.51304 0.00091
weighted 2 SVM 0.99945 0.99890 0.99945 0.99917

test

simple 10 Decision Tree 0.99996 0.99554 0.96957 0.98238
weighted 2 Decision Tree 0.99992 0.98198 0.94783 0.96460
simple 10 Random Forest 0.99997 0.99556 0.97391 0.98462
weighted 2 Random Forest 0.99993 0.98206 0.95217 0.96689
simple 10 SVM 0.37972 0.00091 0.51304 0.00182
weighted 2 SVM 0.99890 0.99780 0.99890 0.99835

Table 6. Results for the Web dataset.

Dataset Average Type Features Classifier Accuracy Precision Recall F1

training

simple 44 Decision Tree 0.99994 0.98997 0.96890 0.97932
weighted 13 Decision Tree 0.99978 0.97967 0.86743 0.92014
simple 44 Random Forest 0.99963 0.99142 0.75614 0.85794
weighted 13 Random Forest 0.99963 1.00000 0.74468 0.85366
simple 44 SVM 0.32725 0.00077 0.35516 0.00154
weighted 13 SVM 0.99886 0.99886 0.99886 0.99849

test

simple 44 Decision Tree 0.99972 0.93819 0.96890 0.95330
weighted 13 Decision Tree 0.99948 0.94982 0.86743 0.90676
simple 44 Random Forest 0.99928 0.99784 0.75614 0.86034
weighted 13 Random Forest 0.99925 1.00000 0.74468 0.85366
simple 44 SVM 0.32654 0.00154 0.35516 0.00307
weighted 13 SVM 0.99771 0.99772 0.99771 0.99698

5. Discussion

Feature selection plays a critical role in training classifiers with large datasets, as it
enables the identification of relevant and informative features, thereby improving perfor-
mance and efficiency. This paper investigated the incorporation of a weighting mechanism
to enhance the ensemble feature-selection approach. Our hypothesis was that using a
weighting mechanism could enhance our previous approach, which involved utilizing
multiple individual feature-scoring methods and calculating the arithmetic mean of their
normalized scores.

During the investigation, the classification algorithms were trained and tested using
a visual programming technique with Orange. The workflows were created by linking
predefined widgets and parameterizing them.

For the FTP dataset, the number of features considered was reduced from eight to five
while maintaining excellent performance across all three classification methods. Similarly,
for the SSH dataset, we observed a comparable pattern. In this case, the number of features
was reduced from seven to six while achieving the same or potentially enhanced perfor-
mance.

Parallel to the improvement of SVM classification measures, in the case of the SQL
dataset, the number of necessary features was reduced from 26 to 7. Similarly, for the XSS
dataset, the number of necessary features was reduced from 10 to 2. In the case of the
Web dataset, the number of necessary features was reduced from 44 to 13. Furthermore,
although the simple average-based solution achieved poor results with the SVM classifier
for both the training and test datasets, in the case of the SQL and Web datasets, the new
approach resulted in a significant improvement in the performance measures.
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The evaluation of the resulting classification performance measures clearly demon-
strates that weighting the scores provided by different feature-scoring methods can lead to
a better ensemble method. Future research will investigate the applicability of different
fuzzy techniques (e.g., [28–30]) in the ensemble feature-ranking method.
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Appendix A

The results of the 8 types of weighted average calculations tables in the study for
each data set can be found in the Appendix and can be available in the link below: https:
//gocslaszlo.hu/phd/computers-2513077.html, accessed on 3 July 2023.
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