
Citation: Jánki, Z.R.; Bilicki, V. The

Impact of the Web Data Access Object

(WebDAO) Design Pattern on

Productivity. Computers 2023, 12, 149.

https://doi.org/10.3390/

computers12080149

Academic Editor:Paolo Bellavista

Received: 13 June 2023

Revised: 18 July 2023

Accepted: 24 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

The Impact of the Web Data Access Object (WebDAO) Design
Pattern on Productivity
Zoltán Richárd Jánki * and Vilmos Bilicki

Department of Software Engineering, Institute of Informatics, University of Szeged, 6720 Szeged, Hungary;
bilickiv@inf.u-szeged.hu
* Correspondence: jankiz@inf.u-szeged.hu

Abstract: In contemporary software development, it is crucial to adhere to design patterns because
well-organized and readily maintainable source code facilitates bug fixes and the development
of new features. A carefully selected set of design patterns can have a significant impact on the
productivity of software development. Data Access Object (DAO) is a frequently used design pattern
that provides an abstraction layer between the application and the database and is present in the
back-end. As serverless development arises, more and more applications are using the DAO design
pattern, but it has been moved to the front-end. We refer to this pattern as WebDAO. It is evident
that the DAO pattern improves development productivity, but it has never been demonstrated for
WebDAO. Here, we evaluated the open source Angular projects to determine whether they use
WebDAO. For automatic evaluation, we trained a Natural Language Processing (NLP) model that can
recognize the WebDAO design pattern with 92% accuracy. On the basis of the results, we analyzed
the entire history of the projects and presented how the WebDAO design pattern impacts productivity,
taking into account the number of commits, changes, and issues.

Keywords: WebDAO; design pattern; productivity; software development; open source

1. Introduction

Early software development was performed in machine language, which was a time-
consuming and error-prone process. With the development of higher-level programming
languages, programming became more accessible to a broader audience. “The discipline of
software engineering required development methodologies such as Waterfall and Agile
that increase the efficacy and quality of software development, but the quality of the source
code must also have been enhanced [1]”. These methodologies provide a structured devel-
opment framework that produces well-organized source code, thereby having a positive
influence on source code quality. The planning and design phases must play significant
roles in the development process because these duties will be reflected in the source code.
The appearance of object-oriented programming resulted in significant advancements in
software development, which still have a great deal of potential. Best practices in novel
methodologies and techniques have always guided developers, but they are sometimes
language- or framework-specific. To be readily adaptable, it is necessary to collect the best
practices and specify so-called design patterns from them. The patterns are time-tested so-
lutions to common problems; consequently, software developers can use them as templates
to resolve common issues, resulting in more reusable and maintainable code. In addition,
design patterns provide a universal language for software professionals, allowing for clear
communication regarding solutions and architecture. This improves collaboration and
increases the effectiveness of debugging and code evaluations. Maintaining and modifying
systems with inadequate documentation necessitates the detection of design patterns [2].
Despite these advantages, the application and significance of design patterns are frequently
undervalued or neglected. Numerous developers prioritize functionality over the long-term
advantages of using design patterns.

Computers 2023, 12, 149. https://doi.org/10.3390/computers12080149 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12080149
https://doi.org/10.3390/computers12080149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-1829-5663
https://orcid.org/0000-0002-7793-2661
https://doi.org/10.3390/computers12080149
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12080149?type=check_update&version=1

Computers 2023, 12, 149 2 of 19

Occasionally, however, it is necessary to view our software as a system. The low-level
details and the high-level structure comprise a single entity. One cannot exist without the
other, and there is no distinct line separating them. Architecture functions as a blueprint
for a system, providing an abstraction that manages system complexity and establishes
communication and coordination among elements. It provides a structured approach
for meeting technical and operational requirements while optimizing crucial quality at-
tributes such as performance and security. In addition, it involves making crucial decisions
regarding the organization of software development, and each of these decisions has a
significant impact on the quality, maintainability, performance, and overall success of the
final product [3,4].

The layered architecture, also known as the n-tier architecture, is one of the most widely
used architectural patterns, but is especially prevalent in contemporary Web development.
The layered architecture presents the traditional IT communication and organizational
structure, making it an appropriate design choice in many situations. It has become the
de facto standard for Java 2 Platform and Enterprise Edition (J2EE) applications, and the
layered architecture pattern is currently utilized by the most prominent Web frameworks
as well [5].

Despite the fact that these front-end frameworks were designed to construct applica-
tions with layered architecture, it is the developer’s responsibility to thoroughly implement
the architecture or simplify the structure. Often, software developers implicitly employ
well-proven architectural solutions resulting from the implementation and best practices
of particular frameworks. In a system, it is always crucial how the front-end and the
back-end are communicating and how the data sources can be accessed. It is the devel-
oper’s responsibility to not only concentrate on creating a user-friendly interface but also
to ensure a robust and efficient back-end infrastructure capable of handling requests and
delivering responses quickly and accurately. When front-end and back-end technologies
are considered, there are numerous development platforms that can implement a potent
combination of frameworks. Technically, there are no inherent limitations dictating specific
combinations. Nevertheless, certain pairings are typically recommended due to their com-
plementary characteristics or proven efficacy in specific scenarios. In Web development,
two prominent stacks are the MEAN and MERN stacks, which provide so-called full-stack
development. Not only do these frameworks work well together, but they also offer a high
level of productivity because an entire system can be implemented with knowledge of a
single programming language [6].

According to a well-known principle [7], “Every software problem can be solved
with another layer of indirection”. A classic layered architecture consists of four layers: a
presentation layer, a business layer, a persistence layer, and a database layer [8]. In practice,
however, there are different shared services that should be used at various locations of the
application and must be accessed via the business layer. Since these shared services are not
explicitly a part of the business layer, it makes sense to delegate them as a so-called service
layer. However, in many instances it is not necessary to traverse the service layer, so it is left
as an open layer that can be disregarded if necessary. The link between the data source and
the client is the persistence layer. Data Access Object (DAO) incorporates this isolated layer
into a system and provides elegant abstract access to the data source. DAO is a well-proven
design pattern that is essential in J2EE application development. Today, the DAO design
pattern is also extensively utilized in Web development. Traditional DAO is placed at
the back-end of a system, but as serverless development becomes more prevalent, clients
should access the data source directly or through an unknown system. Since modern
front-end frameworks such as Angular, React, and Vue.js follow the concepts of layered
architecture [9], DAO must take place in the front-end. Technically, it can represent an
open layer in the architecture, so it can function as a service layer in a contemporary
five-tier architecture.

DAO is considered a design pattern that, due to its simplicity, may increase software
development productivity. Productivity is one of the most important subjects that ties

Computers 2023, 12, 149 3 of 19

together technical, social, and economic factors [10]. It can be measured from a variety
of perspectives [11,12], but focused statistics can be obtained by analyzing source codes
and project metrics. Organizations are constantly on the lookout for new methods to
enhance development productivity [13]. It can be substantially improved if the following
six primary options are considered: getting the most out of people, making steps more
efficient, eliminating steps, eliminating rework, creating simplified products, and reusing
components [14]. DAO keeps the source code simple and reusable, allowing at least two of
the six requirements to be met.

Considering the modern DevOps methodologies, software releases have become faster
and more frequent than ever before by utilizing Continuous Integration, Continuous De-
livery (CI/CD); however, this technology requires a high level of productivity [15]. DAO
is an end-to-end design pattern because it affects all phases of the software development
lifecycle. It is believed that writing source code with explicit design patterns and guar-
anteeing quality with build pipelines and review procedures results in software that is
more maintainable [16].

After several years of Web development experience, we discovered that developers
frequently employ the DAO design pattern or DAO-like structures in the front-end. Today,
Angular, React, and Vue.js are the three most prominent front-end frameworks in the world,
but Angular was the first to offer TypeScript as its primary implementation language,
thereby making the source code type safe [17]. DAO is an object-oriented design pattern, so
Angular can serve as a firm basis for gathering sufficient samples for analysis. To provide
global statistics on the use of DAO in Angular, either extensive manual labor or dependable
automation is required.

In this study, we present a 92% accurate machine-learning-based technique for de-
tecting the DAO design pattern in Angular applications. Using our trained model, we
demonstrate that WebDAO is present in over 25% of open-source Angular projects and
that it enhances productivity by requiring over two times fewer source code modifications
than projects that do not use WebDAO. In addition, the lengths of the issues are nearly
60 h shorter, and the standard deviation of the issue lengths is substantially lower than in
projects that do not use WebDAO.

The main contributions of this paper are as follows:

• Introducing the WebDAO design pattern.
• A machine learning (ML) model for detecting the WebDAO design pattern in

Angular applications.
• A dataset containing 19,116 Angular projects downloaded from GitHub.
• The analysis of a retrieved dataset using a self-trained machine learning model.
• Comparison of project and productivity metrics with the WebDAO design pattern

in mind.

Our study is guided by the three research questions listed below:

RQ1: How accurately can we detect the WebDAO design pattern?

RQ2: In how many projects is the WebDAO design pattern dominant?

RQ3: How does the WebDAO design pattern influence the productivity and the
project timeline?

The remaining sections are organized as follows: In Section 2, we provide an overview
of the focused design pattern. In Section 3, we discuss the existing literature review in this
field. Section 4 describes the experimental dataset, ML algorithms, and evaluation methods.
Section 5 presents the experimental results and Section 6 presents a short discussion. In
Section 7, we present the potential threats to validity. Section 8 concludes the study by
presenting the key findings, limitations, and future research.

Computers 2023, 12, 149 4 of 19

2. Background

This section provides context for the software structural patterns analyzed in the
present paper.

2.1. Layered Architecture in Front-End Applications

The layered architecture pattern emphasizes the concept of closed layers, meaning
that requests must traverse through the layer directly below them as they move through
the architecture. For example, a request from the presentation layer must first go through
the business layer and then the persistence layer before reaching the database layer. This
closed-layer approach is essential for maintaining layers of isolation [18,19]. Layers of
isolation ensure that changes made within one layer have minimal impact on components
in other layers. If the presentation layer were allowed direct access to the persistence layer
or database layer, changes to the database structure would affect both the business layer
and the presentation layer, resulting in a tightly coupled and interdependent application.
The layers-of-isolation concept enables each layer to operate independently, making it
easier to modify and refactor specific layers without disrupting the entire architecture [20].
While closed layers promote isolation, there are cases where certain layers may be open.
For example, introducing a shared-services layer restricts access to common service com-
ponents from the business layer but not the presentation layer. By creating an open layer,
access restrictions can be governed more effectively. However, open layers can introduce
challenges, such as the business layer needing to go through the services layer to reach the
persistence layer. To address this, open layers are created within the architecture to allow
specific layers to be bypassed when necessary.

Modern Web frameworks have begun to employ similar front-end concepts. Google’s
Angular framework perfectly matches the concepts of layered architecture [21–23]. As
presented in Figure 1, Angular’s component-based architecture segregates the presentation,
business, and service layers. Occasionally, the distinctions between the business and service
layers become blurry. Angular templates are responsible for the presentation; components
and services contain the business logic; and services serve as a link between the front-end
and the back-end. In serverless development, the entire back-end is hidden from the
developer, allowing the business logic and service layers to communicate directly with
the back-end. This communication can be managed through an Application Programming
Interface (API) or a system-specific Software Development Kit (SDK).

Figure 1. Comparison of traditional and modern layered architecture.

Computers 2023, 12, 149 5 of 19

2.2. The WebDAO Design Pattern

Data Access Object (DAO) is a structural design pattern that is frequently combined
with the layered architecture pattern. DAO functions as a bridge between the business layer
and the database layer in a layered architecture. It provides an abstraction for accessing
and manipulating data from diverse data sources, including databases, APIs, and files.
This allows the business logic layer to interact with data in a consistent and standardized
manner. Typically, the DAO comprises interfaces and concrete implementations. Interfaces
define the contract for data access operations, while implementations provide the actual
implementation details for interacting with the data source [24]. Utilizing DAO within the
layered architecture improves code reuse, maintainability, and productivity. The separation
of concerns facilitates testing and modifications in the future. Changes to the data access
implementation, such as transferring databases or integrating new data sources, can be
limited to the DAO layer, thereby mitigating the impact on other layers. To maximize
data access efficacy, DAO can also integrate additional functionality, such as caching or
connection pooling. It functions as a centralized access point for data operations, ensuring
consistency and encapsulating the complexities of data access. However, in contemporary
Web development, a similar layer with the same responsibility exists on the front-end.
Because it functions as a DAO with Web capabilities, we refer to it as WebDAO. WebDAO
is typically placed in the service layer, where an interface or class of the domain entity is
defined, and provides all four fundamental database operations: create, read, update, and
delete (CRUD). As shown in Figure 2, DAO can still play a significant role in the back-end,
but WebDAO is the link between the front-end and back-end.

Figure 2. Presence of WebDAO in modern layered architecture.

With the contribution of Inclouded [25], we have already implemented such a solution
in the form of an installable package [26] that is publicly available for developers who use
the NodeJS runtime environment. This package supports standardized telemedicine appli-
cation development and provides tools for Not-only Structured Query Language (NoSQL).

3. Related Work

To recognize design patterns within a system, it is necessary to comprehend how the
employed technologies and frameworks function. S. Rathinam conducted a comprehensive
comparison of Angular, React, and Vue.js [27]. Angular has the steepest learning curve,
whereas Vue.js has the shallowest learning curve. It is claimed that Angular has the worst

Computers 2023, 12, 149 6 of 19

performance due to its complex structure, which can result in delayed initial load times.
Angular and React have the largest communities, but React has stronger support due to
its simplicity. Scalability is a strength of all frameworks, but Angular is recommended for
very large applications. React and Vue.js are highly adaptable and allow developers to
use arbitrary libraries for state management and routing problems. Although the three
frameworks were developed using distinct concepts, they share similar capabilities and
solutions. Object-oriented programming is necessary for DAO and WebDAO design pat-
terns. WebDAO could provide an abstraction layer to manage data access and persistence
in the context of a Web application, enabling the isolation of the application’s business
logic from the underlying data storage or APIs. Angular is the most typed framework
because TypeScript is its principal language, so this requirement is met by this framework.
F. Al-Hawari examined six projects and outlined five client-side design patterns [28]. How-
ever, the aforementioned design patterns exist primarily in the form of User Interface (UI)
components, and by implementing them, the source code’s reusability is achieved and the
required development time is reduced. Manually finding these design patterns in a large
codebase is tedious and error-prone. It is always better to automate a process if it is possible.
Automating a process whenever practicable is always preferable. Some design patterns can
also be predicted using code metrics, but a machine learning approach can be more effective
because it can make decisions based not only on the facts but also on the contexts. ML
and NLP revolutionize design pattern identification and implementation. ML systems can
learn to recognize design trends using millions of code samples. NLP techniques not only
accelerate the discovery of design patterns but also reduce human error. Using ML models,
S. Komolov et al. [29] developed a method for detecting Model–View–Presenter (MVP)
and Model–View–ViewModel (MVVM) architectural design patterns. They gathered 5973
Java-based Android projects from GitHub and compared the performance of their approach
to other published ones. Their contributions are accurate to the extent of 83%. In their
study, the prediction of design patterns is a metric-based implementation utilizing the Java
code metrics calculator (CK) [30] to extract metrics. It is difficult and potentially misleading
to evaluate a project based on code metrics. In addition, the findings yield no additional
statistical results. However, code metrics could be used to estimate how a desired pattern
impacts a project’s source code quality and development processes. S. Wagner and M.
Ruhe [31] collected the productivity factors in software development. We found that many
of our metrics for measuring productivity can be found in their list as well. However,
our study focuses on technical factors mostly. S. Choudhary et al. [32] evaluated the ef-
ficacy of open-source projects. They downloaded 6401 mature projects with a minimum
of 10 stars and 3 contributors. They examined the active phases of the project timeline
and demonstrated that coordination is associated with an effect during these phases. This
measurement technique gave us a solid notion for efficiently locating peak periods in the
project timeline. Due to the layered architecture pattern’s well-separated components and
low development complexity, testability and development productivity are expected to
increase with the new version of the layered architecture as well. We measure a large
number of projects in order to gain a broader understanding of how WebDAO is utilized
by developers around the globe, as well as how it affects productivity and the project
lifecycle. In this paper, we present an NLP-based technique for detecting the WebDAO
design pattern in Angular-framework-based applications. Using our accurate model, we
count the number of projects that contain the design pattern and compare the productivity
of WebDAO and NO_WebDAO cases.

4. Materials and Methods

In this section, we present our methodology for accurate design pattern detection and
analysis technique for measuring productivity in open-source projects.

Computers 2023, 12, 149 7 of 19

4.1. Dataset

We collected projects from GitHub, the largest open-source repository space, in order to
gather an enormous quantity of data. Regarding WebDAO, it is essential to examine projects
that employ object-oriented concepts and have a back-end. Filtering only repositories with
a back-end is not a simple task, but if the query is limited to serverless development,
we can guarantee that the projects have a background system with which the client is
communicating. We opted to search for Angular projects in order to discover a large number
of projects that use a modern, object-oriented, and strongly typed front-end framework.
Since Angular 2+ is a Google product and Google Cloud Firebase is a Google platform,
the framework’s compatibility with the cloud is guaranteed. There are over 1 million
Angular projects on GitHub, and over 19,000 of them are associated with a Firebase project.
We downloaded all Angular 2+ applications with a Firebase-hosted back-end. Finally, we
had an 836 GigaBytes (GB) dataset containing 19,116 open-source projects using Angular 2+
with Firebase. Using the GitHub API, we have collated, in addition to repositories, all
issues, pull requests, and commits associated with the projects. Our dataset comprises
information through 3 March 2022.

4.2. WebDAO Detection

To detect WebDAO, seven crucial conditions must be met.

• Abstraction: a WebDAO class should provide a well-defined interface or abstraction
that encapsulates the underlying data source.

• Data persistence operations: WebDAO should encapsulate the operations necessary
to interact with the data source. It must offer CRUD methods for creating, reading,
modifying, and removing data entities.

• Data source independence: a WebDAO should insulate the application from the
specifics of the data source being used, regardless of whether it is a relational database,
a document store, or another type of persistence mechanism.

• Distinct layer: a WebDAO must provide a separate layer from the business logic and
the layer of persistence.

• Encapsulation: a WebDAO class must encapsulate the logic and specifics of data source
access. It conceals the underlying implementation details, such as SQL queries or
specific data access APIs, and provides the application with a clean and consistent API.

• Transactions and error management: A WebDAO typically manages error conditions
and provides mechanisms for managing exceptions that may occur during data access.
In addition, it may support transactions to guarantee atomicity and consistency across
multiple data operations.

• Testability: DAOs should be architected to be readily testable in isolation from the
remainder of the application. They can be mimicked or stubbed to write unit tests that
ensure the correct operation of the data access logic.

Table 1 provides a summary of techniques for implementing the aforementioned
criteria in an Angular project.

Table 1. Criteria and implementation techniques of WebDAO in Angular.

Criteria Implementation Technique

Abstraction
Must have an interface or class that describes

the entity’s properties and is utilized for
data manipulation.

Data persistence operations At least the four CRUD operations are
implemented for a given entity.

Data source independence
If the data source is modified, the returned

values can be processed by the business logic
without any source code modifications.

Computers 2023, 12, 149 8 of 19

Table 1. Cont.
Criteria Implementation Technique

Distinct layer
WebDAO is implemented in a distinct file,

similar to how a service is, and is
therefore isolated.

Encapsulation Data access logic is implemented in an
importable or injectable component.

Transactions and error management
Exception handling must be error-specific.

In serverless development, SDKs are
responsible for this.

Testability Testability can be controlled if WebDAO is
partitioned at the file level.

In Appendix A, Code A1 provides an example of an Angular source code that satisfies
the requirements of the WebDAO design pattern. In the example, the entity being described
is called Item, and Angular’s Http library is used to manage API connection requests. All
CRUD operations are implemented, and the entire WebDAO is contained in a distinct
service file, allowing for independent testing. Error management is also a component of
the Item WebDAO.

Due to the fact that WebDAO is a well-defined design pattern, its presence in a project
can be readily identified. To generate usage statistics for this design pattern, an automated
solution is required. WebDAO is too complex for string parsing or regular expressions
to locate. Although some criteria can be verified, others cannot. NLP techniques can not
only recognize texts but also comprehend texts and source codes in context. Word2Vec is a
popular method for representing words with vectors and analyzing context by discovering
word similarities [33]. It was a significant development in NLP because words are no
longer considered atomic units. It is often combined with a decision-tree-based Random
Forest classifier, which can produce high accuracy [34]. Google researchers introduced
Bidirectional Encoder Representations from Transformers (BERT) for the first time in 2018.
It is a more complex machine learning technique using a neural network that manages
word embeddings based on the surrounding words’ context [35]. We trained both Random
Forest classifier and BERT and compared the outcomes.

4.3. Data Preprocessing for Training

To claim that WebDAO is present in a project, the project must satisfy the prerequisites.
The distinct layer criterion can only be met if the WebDAO resides in a separate file from
the business logic. WebDAO must be implemented as a service when utilizing the Angular
framework. If there is no service in the undertaking, WebDAO requirements cannot be
satisfied. To determine whether WebDAO is present or not, we organize and analyze
only the service files of a project. If all other conditions are met, the sorted service files
must be analyzed. The size of a service file is modest, but the total size of services for
19,166 applications is much larger. Since the context is not altered by reformatting the
source code and TypeScript and JavaScript codes can be written on a single line, it is
reasonable to minify the source codes by removing white spaces and new lines. In a single-
line implementation, it is essential to remember that a single-line comment can disable the
source code after it. Thus, we also removed single-line comments. In its minified form,
the size of the complete service dataset is 248 MegaBytes (MB).

To conduct an exhaustive study, we deemed it necessary to examine more than one ML
technique for solving our classification problem. If WebDAO is present and the majority of
entities are managed with WebDAO, the project is categorized as employing the WebDAO
design pattern; otherwise, it is not. To select a valuable training dataset, we deemed it
essential to designate mature projects. We determined the level of maturation based on
the number of forks. We chose the 112 GitHub projects with the most forks among those
that were downloaded. We manually selected 504 Angular services based on the presence

Computers 2023, 12, 149 9 of 19

or absence of WebDAO. We discovered that we cannot classify a project based on a single
service file discovered at random, so we analyzed the projects on a file-by-file basis. We
labeled 247 services as WebDAO and 257 services as not WebDAO in the training and
validation datasets, respectively. On the basis of the designated service files, 35 projects
were identified as using WebDAO, whereas in 77 projects, WebDAO was not dominant
or not present at all. There were 378 service codes added to the training set and 126 files
added to the validation set. The dataset was a Comma-Separated Values (CSV) file with
3 columns containing, in order, the label, the project name, and the minified source code.

4.4. Burst Detection and Productivity Measurements

Using DAO is claimed to increase development efficiency; therefore, we intended to
find whether WebDAO could have similar effects. In addition, the presence of a design
pattern may influence the activity in the project, so we decided to analyze not only the
number of lines of code modified but also the number of issues and pull requests and their
length. In order to comprehend the development processes and validate the downloaded
data, we first investigated the developers’ activity in the project. According to the commits
and their timestamps, the activity appears to be sporadic rather than constant. In software
development, a burst is a time period in which the activity is higher than a calculated
average. Lappas et al. [36] developed an algorithm that requires linear time to solve the
Maximum Sum Segment problem for a burst sequence. In their study, the burstiness of
events in an interval I within a larger sequence S is defined as the difference between
the ratios of the frequency of events in I and S and the ratios of the durations of I and S.
The formula can be seen in Equation (1). In the context of a project, m represents the age of
the project in hours. The duration of every period beginning with l and ending with r is
a day, so it takes 24 h. Every tth period, the number of commits between l and r (within
24 h) is calculated and compared to the average number of commits over the lifetime of
the project. A burstiness value of 0 indicates that the level of activity is ordinary. Positive
burstiness values mean that the activity is above-average and therefore bursty, whereas
negative values show that there is no or less activity on the project.

B(t, [l : r]) =

(r

∑
i=l

yti

m

∑
j=1

ytj

− len(Yt[l : r])
m

)
(1)

We calculated and displayed the project’s timeline using the Maximum Sum Segment
algorithm. We also plotted the issues, their period, the commits that belonged to the
issues, and the commits that contained modifications to Angular services to validate
how developer activity changes. Long active periods are depicted in Figure 3 for a project
utilizing WebDAO and a project not utilizing WebDAO, respectively. The bursty periods are
depicted by vertical lines colored gray. The open periods of the issues and pull requests are
represented by horizontal black lines. The blue bars represent commits that are unrelated to
service files, while the green bars represent commits that contain modifications to services.
The height of the bars indicates the total number of modified lines during the commit. It is
recognized that bursty periods might bring in new bugs or feature requests or fix existing
issues. In this instance, the largest commits necessitated modifications to the services.

Regarding development productivity, developer time spent on a task is the most
apparent metric. However, we can readily obtain additional metrics by utilizing a version
control system. In terms of productivity, the number of modifications, the frequency of
commits, the number of issues created, and the percentage of new lines added and deleted
can still be decisive factors. Here, we provide data on how developers use WebDAO in
Angular and how the design pattern affects the previously mentioned metrics.

Computers 2023, 12, 149 10 of 19

(a) WebDAO (b) NO_WebDAO

Figure 3. Project commit history and bursty periods for projects using and not using WebDAO.

5. Results

This section presents the achieved results in the classification of Angular projects
based on applying the WebDAO design pattern using machine learning and the impact of
WebDAO on productivity.

5.1. RQ1: WebDAO Classifier Solutions

Here, we contrast two NLP classification strategies for WebDAO-featured files and
projects. In our initial solution, we combined Word2Vec and a Random Forest classifier.
Word2Vec facilitates the transformation of words into vectors, and 100 estimators were
used to train a Random Forest classifier. Surprisingly, we achieved an F1-score of 89.8%,
along with a precision of 86.3% and a recall of 93.6%. The text processing with Word2Vec
was managed with the Gensim library [37] and setting the vector size argument to 100
and the window to 5. We used the Random Forest algorithm that is implemented in the
scikit-learn package [38] with the default parameters. However, the performance of a neural
network on the problem blew us away. We created a BERT model with five layers: one
input layer, two Keras layers [39,40], one dropout layer, and one dense layer. In total, 769
out of 109,483,010 parameters are trainable in our BERT model. The training was conducted
on an NVIDIA GeForce RTX3060 12 GB GPU (Nvidia Corporation, Santa Clara, CA, USA)
with 5000 epochs and 64-epoch batches. The model and text processing component were
implemented using the tensorflow, tensorflow_text, and tensorflow_hub packages [41].
As shown by the accuracy and loss curves in Figure 4a,b, this many epochs were required
for training. In Table 2, the attained precision, recall, and F1-Score values for both classes are
presented. According to the values of the confusion matrix listed in Figure 5, the number
of false positives for both classes is incredibly low, and the F1-score for both classes was
92%. Overall, we have a trustworthy BERT model that can designate an Angular class as
WebDAO or not.

Computers 2023, 12, 149 11 of 19

(a) Model accuracy (b) Model loss

Figure 4. Learning curves of the BERT model.

Table 2. Precision, recall, and F1-score values of our WebDAO classifier.
Class Precision Recall F1-Score

NO_DAO 91% 94% 92%

DAO 93% 90% 92%

Predicted

WebDAO NO_WebDAO

Tr
ut

h W
eb

D
A

O

60 4

N
O

_W
eb

D
A

O

6 56

Figure 5. Confusion matrix of BERT training.

5.2. RQ2: Utilization of The WebDAO Design Pattern in Open-Source Projects

During the course of our research, we amassed thousands of open-source projects for
the purpose of determining how Angular developers utilize best practices and training
a neural network to detect the WebDAO design pattern. Using the trained BERT model,
we analyzed the downloaded Angular applications to compile WebDAO design pattern
usage statistics. We evaluated all downloaded projects at the file level, and based on this
evaluation, we classified the projects as either WebDAO-dominant or not. The total number
of projects was 19,116. As shown in Figure 6, 28.09% of them use WebDAO in their services,
while 71.91% do not use WebDAO or it is not the dominant technique. It is essential to
note, however, that in 27% of projects classified as NO_WebDAO, there are no services at
all. Only 34.81% of the service files are designated WebDAO, while 65.19% are not (see
Figure 7a). Regarding the projects, a similar ratio can be observed if the 3746 projects in the
dataset that do not contain services are removed. In total, 34.94% of the projects that use
services employ the WebDAO design pattern, while 65.06% do not (see Figure 7b). Globally,
WebDAO is prevalent in one-third of all projects. However, the majority of developers
simply adhere to best practices and do not use them explicitly.

Computers 2023, 12, 149 12 of 19

Figure 6. Ratio of using WebDAO in open-source Angular projects.

(a) File-level ratio (b) Ratio including only services

Figure 7. Ratio of projects utilizing WebDAO including only Angular services and ratio of Angular
services that are WebDAO.

5.3. RQ3: Impact of WebDAO on Development Productivity

WebDAO is anticipated to have comparable effects on software development due to
its functional and architectural similarities with DAO. Here, we downloaded the entire
project history, including commits, commit information, issues, and pull requests, so that

Computers 2023, 12, 149 13 of 19

we could generate statistics from multiple perspectives. First, we selected projects with
comparable metrics in order to conduct a valid comparison. Since productivity cannot be
measured on projects with one or two commits or a brief duration, we filtered out mature
projects. To be considered mature, a project must have been active for more than six months
since its inception. Additionally, there is only one project in the dataset with more than
10,000 commits; therefore, it was eliminated so as not to skew the statistics. It is necessary to
have at least one issue or pull request in order to evaluate productivity in terms of bugs and
features, so we removed repositories that lacked at least one issue or pull request. Finally,
the GitHub bot generates issues for numerous projects due to deprecated package versions.
These issues remained open for extended periods of time, so we removed them as well.
On this thoroughly cleansed dataset, we made the following observations. It can be seen in
Figure 8 that in both WebDAO and NO_WebDAO cases, the number of commits and the
number of issues are similar. Using WebDAO reduces the number of code modifications
more than twofold, and this is true for both new line insertions and deletions. It indicates
that maintainability and code reuse are significantly enhanced. Also, the average duration
of each issue is approximately 60 h shorter, which is equivalent to more than an entire week
of workdays. In addition, the standard deviation of the length of issues is 71 h less in the
WebDAO case, allowing for more accurate estimates of the time required to complete a task
or resolve an issue. In the case of WebDAO, there are on average more commits containing
modifications to the service code.

Figure 8. Project metrics dependent on whether or not WebDAO is used.

In Figure 9a,b, we contrasted the WebDAO and NO_WebDAO projects with regard to
bursty periods. In these results, we maintained the maturity criterion and displayed the
first two years (720 days) of projects with at least six months of activity. Clearly, the greatest
amount of activity can be observed at the commencement of the projects. Nonetheless, if the

Computers 2023, 12, 149 14 of 19

WebDAO design pattern is not used in the project, this initial active period is significantly
longer and more bursty. This applies both to insertions and deletions. The previous statistics
regarding service-affected commits have similar results to the fifth chart regarding bursty
periods containing service-affected commits, but the WebDAO design pattern improves the
maintainability of the services due to fewer lines of code changes. Overall, the WebDAO
design pattern introduces the capabilities and benefits of the original DAO design pattern
to contemporary front-end development.

(a) Project metrics in bursty periods for projects using WebDAO (b) Project metrics in bursty periods
for projects not using WebDAO

Figure 9. The first two years of the WebDAO and NO_WebDAO projects with regard to bursty periods.

6. Discussion

As is stated in [31], there are a huge number of technical and soft factors that can
significantly influence development productivity. Our study focused on the productivity
measurement based on repository metrics and the application of the WebDAO design
pattern. Taking into account the technical factors, our methodology measures the pro-
ductivity in the sense of reusability, platform volatility, and project duration, which are
less-researched areas. Our evaluations do not meet the soft factors; however, they are more
well-travelled fields.

After overviewing the related works, we found that our trained BERT model is very
promising with its 92% accuracy. With this NLP technique, large datasets can be easily
analyzed with a relatively small error, so the results are representative.

WebDAO is often implemented as an installable application, such as an SDK. Typically,
open-source libraries that employ WebDAO implement broadly adopted open industry
standards. Fast Healthcare Interoperable Resources (FHIR) [42] and TeleManagement
Forum (TMForum) [43] are excellent examples of how resources and entities are recom-
mended to be described in the healthcare and telecommunications industries. It is common
for proprietary projects to implement their own private solutions using WebDAO, making
the systems simple to integrate. If proprietary systems are only freely available for inte-
gration, it may be possible to provide an open-source SDK while the remaining system

Computers 2023, 12, 149 15 of 19

components are closed. In general, proprietary projects are typically more standardized, so
WebDAO usage can be more prevalent there.

Considering the modern DevOps methodologies, WebDAO supports clean code and
thereby offers maintainable software development processes. It is a basic requirement
today, since software releases are more frequent.

7. Threats to Validity

There are a few threats to the validity of the statistics used in this study. The threats
are listed in four categories below: threats to internal validity, external validity, construct
validity, and conclusion validity [44].

Threats to internal validity: We did not identify any threats to internal validity.

Threats to external validity: The fact that team-level observations of the WebDAO design
pattern’s effects were not made represents one of the most significant threats. This restricts
our ability to generalize our findings to broader contexts, such as how this design pattern
might affect the productivity or efficacy of entire teams or even companies. Also, developers
with more experience may utilize the design pattern more frequently.

Threats to construct validity: It is possible that the design pattern is implemented as a
library that is hard to analyze even manually. Lastly, there is the possibility of distortion
caused by bot-generated issues. While we have attempted to identify and remedy such
issues, we cannot guarantee that all of them have been identified and addressed. The pres-
ence of these bot-generated issues may have artificially inflated or deflated our statistics,
jeopardizing the reliability of our data and conclusions.

Threats to conclusion validity: We did not identify any threats to conclusion validity.

8. Conclusions

The evolution of software development practices has introduced new dimensions to
the application of design patterns, particularly within the domain of Data Access Objects
(DAO). Our research delved into this changing landscape and focused on the imple-
mentation of WebDAO, a DAO pattern variant relocated to the front-end, in serverless
development. By analyzing open-source Angular projects, we aimed to quantify the usage
and influence of the WebDAO design pattern on development efficiency. Using a Nat-
ural Language Processing (NLP) model expressly trained for this task, we were able to
identify the WebDAO design pattern with a remarkable 92% accuracy. This potent tool
allowed us to explore the entire history of these projects and obtain invaluable insights.
Although WebDAO has never been formally introduced, it has been observed that Angular
developers frequently apply it implicitly as a design pattern. Our analysis included a
broad variety of metrics, such as the number of commits, changes, and issues, in more than
19,116 Angular projects, providing a comprehensive view of the WebDAO design pattern’s
influence. The concept that the DAO pattern improves productivity is well established,
but its WebDAO counterpart has not been investigated until now. Our findings not only
validate the presence of WebDAO in contemporary software development but also shed
light on its potential productivity-boosting effects. We demonstrated that WebDAO en-
hances code reusability and maintainability, allowing for more accurate estimations of the
time required to fix bugs and implement new features. We demonstrated that WebDAO
reduces the number of source code modifications by more than two times compared to
development without this design pattern. Taking into account the duration of develop-
ment, developers expend approximately 60 fewer hours on implementation if WebDAO is
present. Lastly, the smaller standard deviation of issue lengths indicates that developments
can be better planned and deadlines can be met with greater ease. Future plans call for
extending our analysis to include additional front-end frameworks. In addition, we intend

Computers 2023, 12, 149 16 of 19

to employ generative language models to enhance software development efficiency and
identify additional design patterns in contemporary front-end applications.

Author Contributions: Conceptualization, Z.R.J. and V.B.; methodology, Z.R.J.; validation, Z.R.J.;
writing—original draft preparation, Z.R.J.; writing—review and editing, Z.R.J. and V.B.; visualization,
Z.R.J.; supervision, V.B.; All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Ministry of Innovation and Technology NRDI Office
within the framework of the Artificial Intelligence National Laboratory Program
(RRF-2.3.1-21-2022-00004). Project no. TKP2021-NVA-09 has been implemented with the support
provided by the Ministry of Innovation and Technology of Hungary from the National Research,
Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

Data Availability Statement: Data used in this research can be found here: https://drive.google.
com/drive/folders/1e7a_-iDOUndUMuKoAEWJ5PwcWP3plfxB, accessed on 13 June 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Code A1 is an example of WebDAO implementation in Angular service.

Code A1. WebDAO implementation in Angular service.

import { I n j e c t a b l e } from ’ @angular/core ’ ;
import { HttpClient , HttpHeaders } from ’ @angular/common/http ’ ;
import { Observable } from ’ r x j s ’ ;
import { catchError , map, tap } from ’ r x j s /operators ’ ;

export i n t e r f a c e Item {
id : number ;
name : s t r i n g ;
// other p r o p e r t i e s as needed

}

@ I n j e c t a b l e ({
providedIn : ’ root ’ ,

})
export c l a s s ItemDaoService {

p r i v a t e i temsUrl = ’ api/items ’ ; // URL to the web api

httpOptions = {
headers : new HttpHeaders ({ ’ Content −Type ’ : ’ a p p l i c a t i o n /json ’ })

} ;

c o n s t r u c t o r (p r i v a t e ht tp : HttpCl ient) { }

/** GET a l l i tems from the server */
getI tems () : Observable <Item [] > {

re turn t h i s . ht tp . get <Item [] > (t h i s . i temsUrl)
. pipe (
tap (_ => console . log (’ fe tched items ’)) ,
ca tchError (t h i s . handleError <Item [] > (’ getItems ’ , []))
) ;

}

/** GET item by id */
getItem (id : number) : Observable <Item> {

const u r l = ‘ $ { t h i s . i temsUrl }/ $ { id } ‘ ;

https://drive.google.com/drive/folders/1e7a_-iDOUndUMuKoAEWJ5PwcWP3plfxB
https://drive.google.com/drive/folders/1e7a_-iDOUndUMuKoAEWJ5PwcWP3plfxB

Computers 2023, 12, 149 17 of 19

re turn t h i s . ht tp . get <Item >(u r l) . pipe (
tap (_ => console . log (‘ fe tched item id=$ { id } ‘)) ,
ca tchError (t h i s . handleError <Item >(‘ getItem id=$ { id } ‘))
) ;

}

/** POST : add a new item to the server */
addItem (item : Item) : Observable <Item> {

return t h i s . ht tp . post <Item >(t h i s . itemsUrl , item , t h i s . httpOptions) . pipe (
tap ((newItem : Item) => console . log (‘ added item w/ id=$ { newItem . id } ‘)) ,
ca t chError (t h i s . handleError <Item >(’ addItem ’))
) ;

}

/** DELETE : d e l e t e the item from the server */
dele te I tem (item : Item | number) : Observable <Item> {

const id = typeof item === ’number ’ ? item : item . id ;
const u r l = ‘ $ { t h i s . i temsUrl }/ $ { id } ‘ ;

re turn t h i s . ht tp . de le te <Item >(url , t h i s . httpOptions) . pipe (
tap (_ => console . log (‘ dele ted item id=$ { id } ‘)) ,
ca t chError (t h i s . handleError <Item >(’ deleteI tem ’))
) ;

}

/** PUT : update the item on the server */
updateItem (item : Item) : Observable <any> {

re turn t h i s . ht tp . put (t h i s . itemsUrl , item , t h i s . httpOptions) . pipe (
tap (_ => console . log (‘ updated item id=$ { item . id } ‘)) ,
ca t chError (t h i s . handleError <any >(’ updateItem ’))
) ;

}

/**
* Handle Http operat ion t h a t f a i l e d .
* Let the app continue .
* @param operat ion − name of the operat ion t h a t f a i l e d
* @param r e s u l t − opt iona l value to return as the observable r e s u l t
*/

p r i v a t e handleError <T> (operat ion = ’ operation ’ , r e s u l t ? : T) {
re turn (e r r o r : any) : Observable <T> => {
console . e r r o r (e r r o r) ; // log to console ins tead
console . log (‘ $ { operat ion } f a i l e d : $ { e r r o r . message } ‘) ;
re turn of (r e s u l t as T) ;
} ;

}
}

References
1. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.M. Design Patterns: Elements of Reusable Object-Oriented Software, 1st ed.; Addison-

Wesley Professional: Boston, MA, USA , 1994.
2. Kouli, M.; Rasoolzadegan, A. A Feature-Based Method for Detecting Design Patterns in Source Code. Symmetry 2022, 14, 1491.

[CrossRef]

http://doi.org/10.3390/sym14071491

Computers 2023, 12, 149 18 of 19

3. Martin, R.C. Clean Architecture: A Craftsman’s Guide to Software Structure and Design, 1st ed.; Prentice Hall Press: Hoboken, NJ,
USA, 2017; pp. 304–306.

4. Jaiswal, M. Software Architecture and Software Design. Int. Res. J. Eng. Technol. 2019, 6, 2452–2454. [CrossRef]
5. Understand the Most Reliable Frontend Architecture|Bits and Pieces. Available online: https://blog.bitsrc.io/understand-the-

most-reliable-frontend-architecture-c8578e3166b (accessed on 13 June 2023).
6. Aggarwal, S.; Verma, J. Comparative analysis of MEAN stack and MERN stack. Int. J. Recent Res. Asp. 2018, 5, 127–132.
7. Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, 3rd ed.;

Pearson: London, UK, 2004.
8. Richards, M. Software Architecture Patterns, 1st ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015; pp. 1–9.
9. Top JavaScript Trends in 2023: Frameworks & Libraries|Codica. Available online: https://www.codica.com/blog/top-javascript-

trends/ (accessed on 13 June 2023).
10. Duarte, C.H.C. Software Productivity in Practice: A Systematic Mapping Study. Software 2022, 1, 164–214. [CrossRef]
11. Krishnan, M.S.; Kriebel, C.H.; Kekre, S.; Mukhopadhyay, T. An Empirical Analysis of Productivity and Quality in Software

Products. Manag. Sci. 2000, 46, 745–759. [CrossRef]
12. Mills, H.D. Software Productivity; Dorset House Publishing: New York, NY, USA, 1988.
13. Trendowicz, A.; Münch, J. Chapter 6: Factors Influencing Software Development Productivity—State-of-the-Art and Industrial

Experiences. Adv. Comput. 2009, 77, 185–241.
14. Boehm, B.W. Improving Software Productivity. Computer 1988, 20, 43–57. [CrossRef]
15. Jeremy, D.K.; Sfenrianto, S. Analysis Software Developer Productivity Based on Work Schedule Scheme with Git Commit Metric

and Deployment with CI/CD. J. Pendidik. Konseling 2022, 4, 966–977. [CrossRef]
16. Latte, B.; Henning, S.; Wojcieszak, M. Clean Code: On the Use of Practices and Tools to Produce Maintainable Code for Long-

Living Software. In Proceedings of the 6th Collaborative Workshop on Evolution and Maintenance of Long-Living Systems,
Stuttgart, Germany, 18–22 February 2019.

17. Xing, Y.; Huang, J.; Lai, Y. Research and Analysis of the Front-end Frameworks and Libraries in E-Business Development. In
Proceedings of the 2019 11th International Conference on Computer and Automation Engineering, Perth, Australia, 23–25
February 2019. [CrossRef]

18. Savolainen, J.E.; Myllärniemi, V. Layered Architecture Revisited—Comparison of Research and Practice. In Proceedings of the
2009 Joint Working IEEE/IFIP Conference on Software Architecture & European Conference on Software Architecture, Cambridge,
UK, 14–17 September 2009. [CrossRef]

19. Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. Pattern-Oriented Software Architecture Volume 1: A System of
Patterns; John Wiley & Sons: Chichester, UK, 1996.

20. Shklar, L.; Rosen, R. Web Application Architecture: Principles, Protocols and Practices; John Wiley & Sons Ltd.: Chichester, UK, 2003.
21. Cincovic, J.; Delcev, S.; Draskovic, D. Architecture of web applications based on Angular Framework: A Case Study. In

Proceedings of the 9th International Conference on Information Systems and Technologies (ICIST 2019), Cairo, Egypt, 24–26
March 2019; pp. 254–259.

22. Angular Architecture Patterns—High Level Project Architecture * NETMedia. Available online: https://netmedia.agency/dev/
angular-architecture-patterns-high-level-project-architecture_5589 (accessed on 13 June 2023).

23. Geetha, G.; Mittal, M.; Mohana, P.K.; Ponsam, G. Interpretation and Analysis of Angular Framework. In Proceedings of the
International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India, 8–9 December 2022.

24. Matic, D.; Butorac, D.; Kegalj, H. Data Access Architecture in Object-Oriented Applications Using Design Patterns. In Proceedings
of the 12th IEEE Mediterranean Electrotechnical Conference, Dubrovnik, Croatia, 12–15 May 2004. [CrossRef]

25. Inclouded. Available online: http://inclouded.hu/ (accessed on 13 June 2023).
26. @inclouded/fhirapi—npm. Available online: https://www.npmjs.com/package/@inclouded/fhirapi (accessed on 13 June 2023)
27. Rathinam, S. Analysis and Comparison of Different Frontend Frameworks. In Proceedings of the Applications and Techniques in

Information Security, Manipal, India, 30–31 December 2022. [CrossRef]
28. Al-Hawari, F. Software Design Patterns for Data Management Features in Web-Based Information Systems. J. King Saud

Univ.—Comput. Inf. Sci. 2022, 34, 10028–10043. [CrossRef]
29. Komolov, S.; Dlamini, G.; Megha, S.; Mazzara, M. Towards Predicting Architectural Design Patterns: A Machine Learning

Approach. Computers 2022, 11, 151–170. [CrossRef]
30. Aniche, M. Java Code Metrics Calculator (CK). 2015. Available online: https://github.com/mauricioaniche/ck/ (accessed on 13

June 2023).
31. Wagner, S.; Ruhe, M. A Systematic Review of Productivity Factors in Software Development. arXiv 2018, arXiv:1801.06475.

[CrossRef]
32. Choudhary S.; Bogart, C.; Rose, C.; Herbsleb, J. Using Productive Collaboration Bursts to Analyze Open Source Collaboration

Effectiveness. In Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), London, ON, Canada, 18–21 February 2020. [CrossRef]

33. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the
International Conference on Learning Representations, Scottsdale, AZ, USA, 2–4 May 2013. [CrossRef]

http://dx.doi.org/10.2139/ssrn.3772387
https://blog.bitsrc.io/understand-the-most-reliable-frontend-architecture-c8578e3166b
https://blog.bitsrc.io/understand-the-most-reliable-frontend-architecture-c8578e3166b
https://www.codica.com/blog/top-javascript-trends/
https://www.codica.com/blog/top-javascript-trends/
http://dx.doi.org/10.3390/software1020008
http://dx.doi.org/10.1287/mnsc.46.6.745.11941
http://dx.doi.org/10.1109/MC.1987.1663694
http://dx.doi.org/10.31004/jpdk.v4i6.8307
http://dx.doi.org/10.1145/3313991.3314021
http://dx.doi.org/10.1109/WICSA.2009.5290685
https://netmedia.agency/dev/angular-architecture-patterns-high-level-project-architecture_5589
https://netmedia.agency/dev/angular-architecture-patterns-high-level-project-architecture_5589
http://dx.doi.org/10.1109/MELCON.2004.1347000
http://inclouded.hu/
https://www.npmjs.com/package/@inclouded/fhirapi
http://dx.doi.org/10.1007/978-981-99-2264-2_19
http://dx.doi.org/10.1016/j.jksuci.2022.10.003
http://dx.doi.org/10.3390/computers11100151
https://github.com/mauricioaniche/ck/
http://dx.doi.org/10.48550/arXiv.1801.06475
http://dx.doi.org/10.1109/SANER48275.2020.9054852
http://dx.doi.org/10.48550/arXiv.1301.3781

Computers 2023, 12, 149 19 of 19

34. Vora, P.; Khara, M.; Kelkar, K., Classification of Tweets based on Emotions using Word Embedding and Random Forest Classifiers.
Int. J. Comput. Appl. 2017, 178, 1–7. [CrossRef]

35. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019. [CrossRef]

36. Lappas, T.; Arai, B.; Platakis, M.; Kotsakos, D.; Gunopulos, D. On burstiness-aware search for document sequences. In Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July
2009. [CrossRef]

37. Rehurek, R.; Sojka, P. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, ELRA, Valletta, Malta, 22 May 2010; pp. 45–50.

38. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

39. bert_en_uncased_preprocess. Available online: https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3 (accessed on 13
June 2023).

40. bert_en_uncased_L-12_H-768_A-12. Available online: https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
(accessed on 13 June 2023).

41. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://static.googleusercontent.com/media/
research.google.com/en//pubs/archive/45166.pdf (accessed on 18 July 2023).

42. Index—FHIR v5.0.0. Available online: https://www.hl7.org/fhir/ (accessed on 17 July 2023).
43. TM Forum—How to Manage Digital Transformation, Agile Business Operations & Connected Digital Ecosystems. Available

online: https://www.tmforum.org/ (accessed on 17 July 2023).
44. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering: An Introduction;

The Kluwer International Series in Software Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5120/ijca2017915773
http://dx.doi.org/10.18653/v1%2FN19-1423
http://dx.doi.org/10.1145/1557019.1557075
https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf
https://www.hl7.org/fhir/
https://www.tmforum.org/

	Introduction
	Background
	Layered Architecture in Front-End Applications
	The WebDAO Design Pattern

	Related Work
	Materials and Methods
	Dataset
	WebDAO Detection
	Data Preprocessing for Training
	Burst Detection and Productivity Measurements

	Results
	RQ1: WebDAO Classifier Solutions
	RQ2: Utilization of The WebDAO Design Pattern in Open-Source Projects
	RQ3: Impact of WebDAO on Development Productivity

	Discussion
	Threats to Validity
	Conclusions
	Appendix A
	References

