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Abstract: Counterfeit products have become a pervasive problem in the global marketplace, neces-
sitating effective strategies to protect both consumers and brands. This study examines the role of
cybersecurity in addressing counterfeiting issues, specifically focusing on a multi-level grayscale
watermark-based authentication system. The system comprises a generator responsible for creating a
secure 2D code, and an authenticator designed to extract watermark information and verify product
authenticity. To authenticate the secure 2D code, we propose various features, including the analysis
of the spatial domain, frequency domain, and grayscale watermark distribution. Furthermore, we
emphasize the importance of selecting appropriate interpolation methods to enhance counterfeit
detection. Our proposed approach demonstrates remarkable performance, achieving precision, recall,
and specificities surpassing 84.8%, 83.33%, and 84.5%, respectively, across different datasets.

Keywords: cybersecurity; authenticity; integrity; copy-detection pattern; counterfeit prevention;
digital watermarking

1. Introduction

Recent progress in scanning and printing technology, while beneficial to many as-
pects of human life, have led to various security challenges. These technologies have
inadvertently facilitated the replication of codes, making them less expensive and easier to
counterfeit and harder to detect, ultimately undermining efforts to ensure product authen-
ticity. This challenge has directly contributed to financial losses. It has been reported that
5% to 8% of global sales of branded products experience huge losses due to duplication
(https://www.oecd.org/gov/risk/counterfeits-and-the-uk-economy.pdf (accessed on 1
August 2022)). Various technologies have been developed to detect counterfeits. Past
works have focused on a range of solutions, including UV ink, holograms, and optical
variable devices (OVDs). UV ink, applied to a product, remains invisible until it is ex-
posed to ultraviolet light [1]. Holograms, available in different designs and integrated
into products, serve as unique identifiers to verify their authenticity [2]. Likewise, OVDs,
which exhibit altered appearances based on factors like rotation and tilting, have been
extensively employed [3]. However, these technologies are typically costly and require
intricate construction processes.

Various products have employed 2D codes (such as QR codes and bar codes) embed-
ded in products containing either public data or a specific URL linked to a product’s serial
number. This solution is popular mostly due to its simplicity and affordability. However,
these advantages come at a price: 2D codes are generally easier to duplicate or replicate.
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Researchers are actively investigating methods to develop a secure anti-counterfeit 2D code.
Several security measures have been employed in these efforts, such as encryption, which
involves converting plain text into an unreadable coded format that can only be deciphered
with a decryption key. Watermarking is another technique used, where an invisible code is
added to the image, making it challenging for counterfeiters to replicate the code accurately.
Additionally, digital signatures are utilized, employing mathematical algorithms to verify
the code’s authenticity and ensure it has not been tampered with. These measures aim to
enhance the security and integrity of the 2D codes in order to combat counterfeiting.

The aim of this paper is to investigate copy-detection patterns (CDPs) attached to the
2D code [4]. This CDP is generated using a combination of raw data embedded in the 2D
code and a secret code stored in a server, ensuring the integrity of the CDP itself. Each
time the 2D code is scanned and reprinted, some information within the CDP is lost, taking
advantage of the image quality degradation. Despite great interest in the CDP technique,
previous researchers utilized black-and-white elements (tiny black-and-white squares) in
the CDP, which limited the sensitivity of the binary CDP to image quality degradation.
This made it easier for counterfeiters to reproduce and counterfeit the code. The present
study focuses on investigating the use of grayscale gradation elements in CDP images to
address this limitation. The main contributions of this paper are as follows:

• We provide a comprehensive examination of grayscale gradation in CDPs and utilize
the distribution of grayscale histograms as a feature to assess the image quality
degradation;

• We investigate additional features in spatial and frequency domains using correlation
and distance metrics;

• We generate six datasets representing diverse environmental settings;
• Finally, the performance of the proposed approach is compared to a recent and highly

relevant paper, specifically the work in [5].

The structure of the paper is outlined as follows. In Section 2, we present a compre-
hensive review of previous studies focused on enhancing authenticity, with a particular
emphasis on techniques such as the copy detection pattern (CDP) and watermarking. The
experimental setup is described in Section 3, followed by the presentation of the experi-
ment’s results and a subsequent discussion in Section 4. Finally, a summary of our work is
provided in Section 5.

2. Related Work

Several works aimed to improve the confidentiality and integrity of 2D codes. One
example involved visual cryptography, as reported in [6]. In this work, an image was
divided into sub-images (transparencies). The sub-images did not contain any information,
thus keeping confidentially. Another approach was proposed in [7]. This approach makes
use of the distance and angle variable between a QR code and its scanner to improve
safety. Information from the code can only be retrieved once these variables match certain
pre-defined values. The authors of [8] performed a simple symmetric encryption. The key
used for the encryption process was attached to the QR code.

In the case of a QR code, the authenticity measure of the code is more important than
confidentiality, as the code is designed to provide public information, such as a public
URL or a unique serial number of a product. To this end, some researchers have proposed
techniques to detect duplication. For instance, some have developed methods to detect
counterfeiting attacks where a copied QR code is affixed to a fake item, as if it is the original
one [9]. Examples of these works include CDP (copy detection pattern) methods, as reported
in [4], or a more recent version combining CDP and QR codes [10,11]. Another line of work
focused on employing the watermarking technique [12]. The principle of this technique is
that the print-and-scan process creates pixel divergence and geometric distortion.

Various aspects of the CDP technique have been explored. For example, evalua-
tion features have been used to measure the efficiency of restoring algorithms. Recently,
Zhang et al. [13] proposed new features, denoted as the ‘486 feature-type’, extracted from
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a CDP image. This showed superior performance compared to existing features, such as,
entropy, wavelet domain sharpness, prediction error metric, Fourier domain sharpness,
and the features outlined in [14]. The evaluation and comparison of these features were
conducted using five restoration algorithms, including constrained least squares filter-
ing, Wiener filtering, the filter method, the Lucy–Richardson algorithm, and the smart
sharpen filter in Photoshop. These algorithms act as an “attack” to the CDP by making the
fraudulent CDP indistinguishable from the authentic one. Each algorithm was evaluated
using each of the five metrics, resulting in an error rate for each attack–metric pair. The 486
feature-type exhibited the lowest error rate across all attack methods, except for constrained
least squares filtering and Wiener filtering. The authors developed a novel classifier based
on the support vector domain description (SVDD) and evaluated its performance using the
486 features. The performance was evaluated based on three aspects: the false positive to
positive sample ratio (FR), the false negative to negative sample ratio (FA), and the error
rate (PE). The proposed SVDD classifier attained an FR of 16.67%, an FA of 6.85%, and a PE
of 7.15% when using all 486 features. When using only 15 selected features, the classifier
attained an FA of 8.54%, an FR of 6.67%, and a PE of 8.48%.

In another recent work, Chaban et al. compared two estimation methods, i.e., a
binarization method based on Otsu’s adaptive thresholding and a template estimation,
which was developed using the LDA algorithm [15]. The Hamming distance for binary
images (HAMMING), structural similarity index (SSIM), Jaccard index (JACCARD), and
normalized cross-correlation (CORR) similarity metrics were used to assess the effectiveness
of those procedures. The test was carried out across a variety of code densities in order to
more accurately reflect the method’s overall performance. A dataset’s density was used
with lower and higher entropy values. The actual dataset was produced using two sets
of print-and-scan equipment. The proposed estimation achieved probabilities of 6.17%
and 7.57% for the dataset with the maximum density tested (50%) using the Hamming
distance. The results were less than the two baseline approaches, i.e., the LDA method’s
15.24% and 16.34% and the Otsu method’s 18.13% and 20.01%. In order to attain the desired
performance, the authors evaluated the efficacy of the proposed approach through metric
pairing. In this experiment, the HAMMING and SSIM techniques emerged as the top
performers, registering the lowest miss and FA rates at 5.05% and 6.88%, respectively.

Khermaza et al. collected the CDP dataset, containing a digital template, original
P&S, and fake CDP [5]. An experiment with several different types of data choices was
performed. The data choices included the printed unique CDP (consisting of 5000 original
CDPs, their templates, and 10,000 copies) and the printed CDP per batch (consisting of
2500 original CDPs, their templates, and 10,000 copies). The authors utilized a normalized
cross-correlation score as a feature and neural networks as classifiers with various architec-
tures. The original images were split into patches measuring 13 × 13. Two architectures
were proposed. The first one employed a fully connected layer consisting of two, three, and
four hidden layers, respectively, where the size of each layer was set to be the input size
(169). The second architecture employed a bottleneck DNN (BN DNN) model using two
fully connected hidden layers of 128 and 64 dimensions, respectively, at the encoder and
decoder parts, and leveraged a latent representation of size 32. These architectures were
based on an earlier work by Taran et al. [16]. The training parameters were set at 25 epochs
with a batch size of 128. The activation function, the loss function, and the optimizer
employed were ReLu, MSE (mean squared error), and Adam [17], with a learning rate of
10−3, respectively. The best-performing method, having the lowest BER percentage, was
shown to be the BN DNN method. It produced a mean BER of 23.27% for unique estimation
attacks and 18.47% for batch estimation attacks.

Taran et al. regenerated original digital codes from printed ones by utilizing deep
neural networks [16]. The neural network models learned digital codes and printed codes
in the training phase. The models then generated estimated binary codes via a simple
thresholding method. The estimated code was then printed and scanned on the correspond-
ing equipment. To determine the authenticity of the code, the Pearson correlation and



Computers 2023, 12, 183 4 of 14

normalized Hamming distance were utilized. The findings demonstrated that the integra-
tion of modern machine learning technologies in the system made it more challenging for
defenders to detect fakes. Taran et al., in their recent publication, examined the effectiveness
of QR code authentication in real-life conditions using mobile phones [18]. To simulate
real-life conditions, they printed the digital codes and captured images of the printed
codes using a mobile phone with automatic settings. The phone was positioned parallel
to the printed code at a distance of 11 cm. To create counterfeit copies, two standard copy
machines were used on white and gray papers. The fake images were acquired in the same
environment and with the same settings. The authors then employed machine learning
techniques to authenticate the original codes and the counterfeits. The findings indicate
that the classifier demonstrated a high level of accuracy when distinguishing between
the original codes and the counterfeits, with a classification error of approximately 0.28%.
Further, the classifier was capable of distinguishing fakes from different copy machines,
but the study encountered a limitation in effectively distinguishing between counterfeit
codes printed on white paper and those printed on gray paper.

The summarized works are presented in Table 1. The authors’ primary objective was
to differentiate between original and fake codes generated by a simple duplication or by
predicting original templates through image processing or machine learning approaches.
To differentiate counterfeit codes, a common thresholding approach was employed to
normalized correlation measures like the Pearson correlation. In this research, additional
features were introduced in both the spatial and frequency domains. Moreover, by explor-
ing grayscale gradation in watermark images, changes in grayscale histogram distribution
were utilized as indicators of counterfeit codes. Multiple machine learning techniques were
implemented and validated using six distinct datasets collected from diverse sources. Lastly,
a comparison was made between the proposed technique and the approach suggested by
Khermaza et al. [5].



Computers 2023, 12, 183 5 of 14

Table 1. Summary of related works.

Year 2023 2023 2021 2021 2021 2019 2019
Authors This Paper Taran et al. [18] Picard et al. [10] Khermaza et al. [5] Alfarozi and

Pratama [11] Zhang et al. [13] Taran et al. [16]

Binary/grayscale
codes grayscale CDP binary binary binary binary binary binary

Features for
counterfeit detection

Spatial and frequency
domain using a

correlation, distance
metrics, and
histogram

distribution

Pearson correlation
and Hamming

distance

Correlation
coefficient

Normalized
cross-correlation

Auto-generated
features

486 features,
including entropy,

wavelet, and Fourier
domain sharpness

Normalized
hamming distance,
Pearson correlation

Approach Gradient boosting
classifier

Support vector
machine Thresholding Thresholding CNN Support vector

domain description Thresholding

Dataset 6 datasets, total of
about 1200 images

Indigo mobile
dataset, 300 template

images, 1200 copy
fake images

Not available CDP dataset (27,500
images) CDP dataset by [5] 150 template images,

750 fake copy images
PGC dataset, 384 ori

images

Evaluation metrics Precision, recall, and
specificity

Percentage of
classification error Not available BER BER

False alarm rate,
missing alarm rate,
and mean error rate

ROC curves

Aims

Improving 2D secure
QR codes and
authentication

method performance

Authentication QR
codes in real-life
conditions using
mobile phones

Protecting copy
attacks by integrating
CDP into QR codes

Presenting a publicly
available dataset and
evaluating estimation
attacks using neural
network models as

in [16]

Improving
authentication

method using CNN

Improving
authentication
performance

Generating
reconstructed codes
using deep neural

networks to test the
clonability attacks of

QR codes.
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3. Methodology

In this section, we discuss the proposed 2D secure code approach to prevent counter-
feiting. The system consists of a SQR generator and authenticator, as shown in Figure 1.

Data

Secret

Hashed Distribution

Embed CDP to QR

Generate nxn  
gray scale CDP

Ordinary QRSe
cu

re
 Q

R
 G

en
er

at
or

Printing Process

Printed Secure QR

Se
cu

re
 Q

R
 A

ut
he

nt
ic

at
or

Get QR Data Generate CDP
template

Scanned
Secure QR

Feature
Engineering: 

Spatial distance,
frequency distance,

and distribution
distance

Classifier  
(Original OR Fake) 

Extract CDP

Media

Figure 1. Print and scan process of SQR.

3.1. Secure QR Generator

The proposed secure QR (SQR) code is based on a CDP. The CDP is a pseudo-random
digital image that contains high-frequency information, embedded in the QR code for
counterfeit detection.

To construct CDP, we initially computed grayscale distribution based on QR data and
a secret. While the QR data are public data stored in the 2D code, the secret is a private key
stored in a central server. Thus, we generate a multinomial distribution P = [p1, p2, . . . pL]
and its gray-level values V = [v1, v2, . . . , vL], where L is the quantization number deter-
mined by a hashing function. We opted for an L = 8 level grayscale quantization because a
two-level intensity is deemed insufficiently secure against estimation attacks, as reported
in [5]. We generate n× n CDP, such that

Ii,j = choice(Vi,j; dist = P) (1)

where Ii,j is the intensity level of the i-th row and j-th column. A static random number
generator (RNG) in (1) is used to ensure that the unique generation of the hashing function
results in the same CDP every time it is generated for a given set of d and s values, which
corresponds to the data and secret respectively. Finally, the generated CDP is embedded
into the SQR code and is ready to attach to a product. In our case, the CDP is generated
with a size of 80× 80 and a symbol size 1× 1, printed on 0.14 mm for each symbol.

3.2. Dataset

We collected six datasets, each possessing unique characteristics based on the used
P&S devices, such as the camera type, printer type, and lighting conditions. We invited six
volunteers to print and capture our generated QR codes as original sets. We then asked
them to reprint the sets and recapture them to create fake copies. These datasets were
subsequently loaded into our detector. The summary of our dataset is shown in Table 2.
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Table 2. Collected dataset for validation purposes.

Dataset Printer Camera
Scanned

QR
Resolution

Number of
Original

Number of
Copy

1 Fuji Xerox
Versant

Realme GT
Neo 3T 2025 × 2025 120 119

2 Canon C650 Fujifilm X-A7 3334 × 3334 200 155

3 Canon C650 Samsung A33
5G 1272 × 1286 200 200

4 Canon C650 iPhone XR 3024 × 3024 200 200

5 Canon C650 Realme GT
Master ed. 1998 × 1998 200 199

6 Canon C650 POCO X3
NFC 2725 × 2725 200 227

The datasets were collected under various environmental settings, resulting in varia-
tions in quality and style due to different devices and lighting conditions. The SQR data for
the original and copied images in each dataset are presented in Table 3. Dataset 1, dataset 3,
and dataset 6 demonstrate a higher degree of consistency in terms of the lighting quality
between the original and copy SQR images, where the intensity differences are smaller.
Moreover, dataset 1 and dataset 6 exhibit higher levels of lighting compared to the other
datasets, with the mean intensity of the whitespace border approaching a value of 255.

Table 3. Sample data of the original and copied secure 2D codes of 6 environment settings.

Class Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

Original

Copy

Intensity
difference * 0.2 13 4.9 18.0 12.6 0.0

* The absolute mean difference intensity, I ∈ (0, 255), of the whitespace border of the QR code between the original
and copy.

To assess the performance of the proposed method, 10-fold cross-validation is per-
formed on each dataset. Finally, all datasets are combined into a single dataset and evalu-
ated using the same procedure as the individual sets of data.

3.3. Secure QR Authenticator

Given a product with SQR, one may authenticate it by scanning the code. As the sizes
of the scans may be different, scaling and resizing might be needed. The authenticator then
extracts CDP and generates the CDP template based on the QR data (d) and secret key (s).
This approach enhances the challenge for potential attackers attempting to forge counterfeit
CDPs, as the template will differ for every unit item or product even with the same type of
product, contingent on the QR data (i.e., serial number of the unit). The authenticator then
extracts several features and classifies the code to show the originality states.

3.3.1. Scaling Methods

The scanned CDP and template are resized to the same dimensions so that the features
can be measured. The original resolution of the CDP template is 80× 80 pixels. This
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template is resized to be four times bigger, reaching 320× 320 pixels. As the resolution
of the scanned QR code (and the scanned CDP, correspondingly) might be different, we
resize the scanned CDP to the same size as the scaled CDP template. The resized factors
are different depending on the scanner or camera resolution.

Furthermore, since we encompass eight distinct gray intensity levels, it is necessary
to estimate or generate intermediate gray-level values by considering the existing values
of adjacent pixels when we scale the image. To achieve this, we employ both linear and
non-linear interpolation techniques. In the former, we estimate the gray value between
two given data points by projecting the values equidistantly between them, while in the
latter, we interpolate the gray value between two known data points by assuming that the
interpolation follows a polynomial function of degree 3.

3.3.2. Watermark localization

The watermark is placed in the center of a QR code. Thus, we need to extract the
watermark from the image using the localization technique. In practice, the SQR image
is not always aligned horizontally or vertically, it could be subject to rotation or affine
transformations due to camera variations.

A four-point homography transformation is employed to align the QR image, ensuring
it maintains a perfect square dimension. The homography transformation is described as
the following equation, x′

y′

w′

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

x
y
w


where (x′, y′, w′) represents the transformed coordinates and (x, y, w) represents the origi-
nal coordinates. The homography matrix is denoted by H and has the following form:

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33


To compute the homography matrix, we need to solve a system of equations using the

four corresponding points in the original and transformed coordinate systems [19]. After
the transformation, the extraction of the watermark is straightforward due to its central
positioning within the image, with its dimensions being proportionate to the QR code’s size,
as depicted in Figure 2. We utilize the OpenCV library to implement this transformation
with its default interpolation technique, i.e., linear interpolation.

Homography transformation
and cropping

Figure 2. Localization and cropping method using four corners of a QR image. Stars represent the
four-point homography transformation, while the red square denote watermark.

3.3.3. Feature Engineering

We utilize three feature representations of the CDP images: the spatial domain, fre-
quency domain, and the grayscale distribution. An image can be represented in both
the spatial and frequency domains. The spatial domain refers to the actual pixel values
of an image, where each pixel is assigned a specific intensity value. On the other hand,
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the frequency domain represents the image in terms of its frequency components. This
representation transforms the image from the spatial domain to the frequency domain
using techniques such as the Fourier transform. In our case, discrete cosine transform (DCT)
is used. The result involves a set of coefficients, describing the image’s frequencies. In the
frequency domain, low-frequency components represent the image’s general structure and
large-scale features, while high-frequency components represent fine details and small-
scale structures. Analyzing an image in the frequency domain makes it possible to identify
patterns and features that are not easily noticeable in the spatial domain representation.
Specifically, the high frequency pertains to the existence of swiftly changing or fluctuat-
ing pixel values within the image. Within the DCT, high-frequency elements symbolize
intricate details like distinct or sharp edges, textures, or swift pixel-intensity transitions
in the image. On the other hand, lower frequencies depict the image’s general structure
or gradual variations. As shown by Schulze et al. [20], photocopied images and the first
printing show different representations in the frequency domain. Such a representation
offers superior performance in detecting copied documents compared to spatial features.

The grayscale distribution of an image refers to the distribution of gray-level values or
pixel intensities in an image. In a grayscale image, each pixel is assigned an intensity value
ranging from 0 (black) to 255 (white), with intermediate values representing shades of gray.
The grayscale distribution of an image describes the distribution of these intensity values
across the entire image.

The grayscale distribution can be visualized using a histogram, which is a graph that
shows the frequency of occurrence of each intensity value in the image. The histogram of a
grayscale image typically has a bell-shaped curve that reflects the most common intensity
values in the image. The shape of the histogram can reveal information about the image’s
contrast, brightness, and overall tonality. When a document is copied, the details will be
degraded and the images will be visually blurred. As a result, the grayscale distribution
will also be affected. Lim et al. [21] illustrated the difference in the histogram distribution
between blurred and sharpened images, demonstrating that the histogram can detect
texture loss in an image.

This study incorporates multiple distance metrics to assess the similarity between ex-
tracted features from a sample and a reference template for each feature representation (i.e.,
histogram, and spatial and frequency domains). Four distance metrics, namely Euclidean
distance, Cosine distance, Canberra distance, and correlation distance, are utilized. In
addition, normalized cross-correlation is also employed, as described in [22]. The classifier
is then supplied with a total of 13 distance metrics, which encompass the 12 different
distance metrics derived from 3 domains, along with the normalized cross-correlation.

3.3.4. Machine Learning Authenticator

The gradient boosting classifier is a widely adopted and powerful machine learning
algorithm that excels at handling complex and non-linear problems, such as a classifier [23].
By aggregating multiple weak models into a single strong model, it has the ability to
effectively deal with multiple features and the intricate relationships among them, resulting
in superior authentication performance. Additionally, the algorithm can manage noisy or
irrelevant features, reducing the likelihood of overfitting and guaranteeing good general-
ization performance. These attributes make gradient boosting an ideal candidate for use
as an authenticator in this study. Furthermore, our preliminary experiments on the CDP
dataset demonstrated that gradient boosting is more stable than logistic regression and
support vector machines (SVMs) in terms of performance.

In this study, we use the gradient boosting classifier with 100 estimators and a maxi-
mum depth of 1, creating an ensemble of 100 decision trees, where each tree has a maximum
depth of 1. It starts by training the first tree on the data and updating weights based on
prediction errors. Then, subsequent trees are trained to focus on the previously misclassi-
fied examples. The final prediction is made by aggregating the predictions of all the trees.
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This approach gradually learns complex patterns by combining multiple simple trees. The
input consists of 13 features and the output classifies the CDP as either original or fake.

3.4. Metrics

The machine learning models are evaluated in terms of five metrics, namely, accuracy,
precision, recall, F1 score, and specificity. These metrics are used to calculate the model
performance based on 10-fold cross-validation results. Specifically, the model is trained
on nine folds and tested on the remaining fold. This process is repeated 10 times, each
time using a different fold as the testing set, and the results are averaged to obtain the final
evaluation of the model.

3.4.1. Accuracy

The accuracy measures the number of predictions of original and fake QR codes that
are correct as a percentage of the total number of predictions that are made.

Accuracy =
TP + TN

TP + FP + TN + FN

3.4.2. Precision

The precision in detecting the original QR code is defined as the ratio of true positives
(real original QR codes correctly identified) to the total number of QR codes classified as
original. The Precision is defined as

Precision =
TP

TP + FP

3.4.3. Recall

The recall—in regard to detecting the original QR code—is defined as the ratio of true
positives (original QR codes correctly identified) to the total number of actual original QR
codes, regardless of whether they were detected as original or fake. Recall is defined as

Recall =
TP

TP + FN

3.4.4. F1 Score

The F1 score is the harmonic mean of precision and recall with an equal weight.

F1 = 2 · recall · precision
recall + precision

3.4.5. Specificity

The specificity in detecting a fake QR code is defined as the ratio of the fake/copied
QR code that is identified correctly (true negative) over the whole fake/copied QR codes,
detected as fake or original QR codes. The Speci f icity is defined as

Speci f icity =
TN

TN + FP

4. Results and Discussion

We use the approach proposed by Khermaza et al. as a baseline for comparison in
counterfeit detection [5]. Thus, we present our proposed approach on the same datasets to
assess its improvements.

4.1. Baseline

We adopt the single-feature cross-correlation technique introduced in [5,22]. Addition-
ally, we investigate the effects of interpolation methods on the authentication performance.
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Table 4 shows the experimental results, bold typeface indicates the a particular interpolation
method is better. The ’all’ dataset row represents the results of the combined six datasets.
In the baseline scenario, neither the linear nor third-degree polynomial interpolation shows
significant enhancement in performance. Both methods yield a mere 2% difference, suggest-
ing that neither scaling method demonstrates superiority when considering a single feature.

Table 4. Counterfeit detection evaluation based on a single feature proposed by [5], with different
scaling methods (i.e., linear interpolation and third-order polynomial).

Dataset
Accuracy Precision Recall F1 score Specificity

Linear Poly3 Linear Poly3 Linear Poly3 Linear Poly3 Linear Poly3

1 49.76% 48.91% 48.97% 50.10% 50.00% 50.00% 48.64% 49.62% 49.32% 47.80%
2 56.40% 57.81% 58.89% 60.62% 74.50% 73.50% 65.37% 65.90% 32.92% 37.46%
3 51.75% 54.25% 53.07% 54.70% 46.50% 51.00% 48.70% 52.61% 57.00% 57.50%
4 54.75% 48.25% 54.40% 48.97% 65.00% 49.50% 58.66% 48.77% 44.50% 47.00%
5 53.14% 55.38% 52.73% 55.87% 57.50% 55.50% 54.83% 54.79% 48.76% 55.34%
6 53.33% 52.45% 49.24% 49.62% 49.00% 45.50% 48.66% 46.56% 57.17% 58.64%

all 54.28% 52.30% 53.58% 52.07% 70.09% 70.71% 60.63% 59.87% 38.18% 33.55%

When considering counterfeit detection using a single feature, we can expect an
accuracy range between 49% and 57% and an F1 score range between 48% and 65%.
The dataset with the poorest performance is dataset 1, while dataset 2 exhibits the best
performance in this setup. These discrepancies can primarily be attributed to the quality
of the replicated data. As outlined in Section 3.2, dataset 1 is collected under consistent
lighting conditions, resulting in minimal visual variations between the original and copied
SQR images (i.e., an intensity difference of 0.2). In contrast, the original and copied images
in dataset 2 possess some degree of visual distinctiveness (i.e., an intensity difference of
13.0), resulting in improved classification outcomes. A similar pattern is observed in dataset
4, where the original and copied images exhibit visual distinctiveness (i.e., an intensity
difference of 18.0). The variation in visual characteristics likely influences the differences in
performance when detecting counterfeits in this dataset

Upon closer examination of dataset 2, it is apparent that the specificity is below 38%,
whereas the F1 score reaches 65.90%. This outcome indicates a deficiency in the capability
to detect counterfeit QR codes within the dataset. One potential explanation for this is
that the single-feature cross-correlation approach is unable to differentiate between copied
and fake QR codes, even when dealing with a dataset containing substantial intensity
differences between the original and copied codes, as seen in dataset 2. Consequently, there
is a notable occurrence of false positive detections (identifying false original QR codes) and
a low detection rate for true negatives.

4.2. Multiple Features

The incorporation of multiple features has been proven to significantly improve
the performance of authentication systems, as illustrated in Table 5. Using the linear
interpolation scaling method, the accuracy of the authentication system varies between
83% and 99%. Notably, when dealing with visually distinct data with intensity differences
of more than 10, such as datasets 2, 4, and 5, the system exhibits excellent detection of
original and copied QR codes, achieving F-measure scores of up to 99%. For the other three
datasets, the system achieves a minimum F-measure of 83%. These positive results are also
evident in the specificity metric, demonstrating the effectiveness of the proposed features
in identifying original QR codes and minimizing the false detection of original QR codes.

Although the individual sets of data demonstrate high levels of accuracy, F-measure,
and specificity, the same measures in the combined dataset (i.e., ’all’ datasets) decline
to 77.88%, 78.05%, and 75.55%, respectively, due to the presence of diverse variations
and styles across the datasets. Consequently, developing a model specifically tailored to
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a particular dataset or a specific P&S (print and scan) device yields better performance
compared to a model trained on multiple datasets simultaneously. However, in certain
cases, such as in supply chain management, it may be challenging to build separate anti-
counterfeit models for each dataset or device, as multiple individuals are involved in the
business process.

In addition to the proposal of incorporating more features, it is noteworthy that the
linear interpolation method consistently outperforms the third-order polynomial inter-
polation scaling method across all evaluation metrics. This finding could be attributed
to the fact that the higher-order polynomial interpolation method alters the curvature of
high-frequency data, resulting in a smoother signal compared to the linear interpolation
method. Further research is necessary to fully understand these implications and explore
the potential for optimizing the performance of authentication systems through advanced
interpolation methods.

Table 5. Counterfeit detection evaluation based on multiple features with different scaling methods
(i.e., linear interpolation and third-order polynomial).

Dataset Accuracy Precision Recall F1 score Specificity

Linear Poly3 Linear Poly3 Linear Poly3 Linear Poly3 Linear Poly3

1 84.15% 81.25% 84.84% 84.00% 83.33% 77.50% 83.17% 79.06% 84.92% 85.00%
2 98.04% 92.44% 98.52% 94.75% 98.00% 92.00% 98.23% 92.77% 98.08% 92.83%
3 84.00% 77.25% 85.72% 79.87% 83.50% 75.00% 83.89% 76.62% 84.50% 79.50%
4 99.00% 97.50% 99.09% 98.50% 99.00% 96.50% 99.01% 97.46% 99.00% 98.50%
5 94.49% 86.98% 94.39% 87.44% 95.00% 87.00% 94.52% 87.06% 94.00% 86.97%
6 86.70% 87.86% 85.83% 85.98% 87.00% 90.50% 85.85% 87.66% 86.40% 85.53%

all 77.88% 68.92% 78.69% 69.47% 80.18% 70.80% 78.05% 67.54% 75.55% 67.00%

5. Conclusions

Our study examined the effectiveness of different approaches in detecting counterfeit
items by utilizing both single and multiple features. When focusing on a single feature,
we observed accuracy ranging from 49% to 57% and F1 scores ranging from 48% to 65%.
However, when incorporating multiple features, we observed a substantial improvement
in the performance of the authentication system, with accuracy ranging from 84% to 99%
and F1 scores ranging from 83% to 99%. These enhancements can be attributed to the
effectiveness of the proposed features, specifically the utilization of grayscale distribution
and image frequency, which significantly contribute to the classification process. It is worth
noting that selecting appropriate interpolation methods in counterfeit detection systems
may improve the performance of counterfeit detection. In our cases, linear interpolation
mostly outperforms the third-order polynomial interpolation.

The classification performance in counterfeit detection is significantly influenced by
the quality of the original and copied dataset. When the original and fake images are
more similar, the classification process becomes more challenging. Dataset 2 consistently
demonstrates the best performance, likely due to the visual distinctiveness between the
original and copied images. Conversely, dataset 1 demonstrates the poorest performance,
attributed to consistent lighting conditions that result in minimal visual variations.

While developing a model specifically tailored to a particular dataset yields superior
performance, it may not always be practical in operational scenarios where images are
captured by multiple individuals under various conditions. Our work demonstrates that a
combined dataset (’all’ datasets) consisting of approximately 2000 QR images achieves an
F-measure of 78% and a specificity of 75.55%.

In summary, our study highlights the importance of dataset quality, the impact of
interpolation methods, and the effectiveness of multiple features in the spatial domain,
frequency domain, and grayscale distribution. These findings contribute to the understand-
ing and improvement of counterfeit detection systems. In future works, we will explore



Computers 2023, 12, 183 13 of 14

more advanced testing methods, including the use of post-processing techniques like visual
enhancement or machine learning to generate fake images after reprinting; moreover, we
will assess whether modifications to the proposed secure QR codes are necessary.
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