Improved Deep Learning Model for Workpieces of Rectangular Pipeline Surface Defect Detection
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Materials Collection
3.2. Materials Processing
3.3. Methods
3.4. Model Structure
3.5. Hardware and Software Configuration
3.6. Evaluation Metrics
4. Results and Experimental Evaluation
4.1. Experimental Result
4.2. Error in Erea and Position
4.3. Comparison with Other Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Truong, V.D.; Xia, J.; Jeong, Y.; Yoon, J. An automatic machine vision-based algorithm for inspection of hardwood flooring defects during manufacturing. Eng. Appl. Artif. Intell. 2023, 123, 106268. [Google Scholar] [CrossRef]
- Yang, J.; Wang, K.; Luan, F.; Yin, Y.; Zhang, H. PreCaCycleGAN: Perceptual Capsule Cyclic Generative Adversarial Network for Industrial Defective Sample Augmentation. Electronics 2023, 12, 3475. [Google Scholar] [CrossRef]
- Behrouzi, S.; Dix, M.; Karampanah, F.; Ates, O.; Sasidharan, N.; Chandna, S.; Vu, B. Improving Visual Defect Detection and Localization in Industrial Thermal Images Using Autoencoders. J. Imaging 2023, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Verma, L.; Kremer, F.; Chevalier-Jabet, K. Defective PWR fuel rods detection and characterization using an Artificial Neural Network. Prog. Nucl. Energy 2023, 160, 104686. [Google Scholar] [CrossRef]
- Mahaur, B.; Mishra, K.K.; Kumar, A. An improved lightweight small object detection framework applied to real-time autonomous driving. Expert Syst. Appl. 2023, 234, 121036. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, X.; Yang, J. Automatic recognition of surface defects of hot rolled strip steel based on deep parallel attention convolution neural network. Mater. Lett. 2023, 353, 135313. [Google Scholar] [CrossRef]
- Dong, S.; Teng, Y.; Jiao, L.; Du, J.; Liu, K.; Wang, R. ESA-Net: An efficient scale-aware network for small crop pest detection. Expert Syst. Appl. 2024, 236, 121308. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, Z.; Song, C.; Yu, Z. FFR-SSD: Feature fusion and reconstruction single shot detector for multi-scale object detection. Signal Image Video Process. 2023, 17, 3145–3153. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Li, B. Data-driven model SSD-BSP for multi-target coal-gangue detection. Meas. J. Int. Meas. Confed. 2023, 219, 113244. [Google Scholar] [CrossRef]
- Liu, Q.; Bi, J.; Zhang, J.; Bu, X.; Hanajima, N. B-FPN SSD: An SSD algorithm based on a bidirectional feature fusion pyramid. Vis. Comput. 2023, 39, 6265–6277. [Google Scholar] [CrossRef]
- Cong, P.; Lv, K.; Feng, H.; Zhou, J. Improved YOLOv3 Model for Workpiece Stud Leakage Detection. Electronics 2022, 11, 3430. [Google Scholar] [CrossRef]
- Zheng, Y. Pipeline Multitype Artifact Recognition Method Based on Inception_Resnet _V2 Structure Improving SSD Network. Adv. Multimed. 2022, 2022, 6049013. [Google Scholar] [CrossRef]
- Xu, S.; Shao, Z. An Improved Faster RCNN based on Swin Transformer for Surface Defect Detection of Metal Workpieces. ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2022; pp. 120–125. [Google Scholar]
- Tang, L.; Zhao, H.; Wang, N.; Han, B.; Wang, Y.; Li, W. An augmentation method of defect detection dataset based on M-DCGAN. Dalian Haishi Daxue Xuebao J. Dalian Marit. Univ. 2023, 49, 148–160. [Google Scholar]
- Barbero-Aparicio, J.A.; Olivares-Gil, A.; Rodríguez, J.J.; García-Osorio, C.; Díez-Pastor, J.F. Addressing data scarcity in protein fitness landscape analysis: A study on semi-supervised and deep transfer learning techniques. Inf. Fusion 2024, 102, 102035. [Google Scholar] [CrossRef]
- Khan, H.; Hussain, T.; Ullah Khan, S.; Ahmad Khan, Z.; Baik, S.W. Deep multi-scale pyramidal features network for supervised video summarization. Expert Syst. Appl. 2024, 237, 121288. [Google Scholar] [CrossRef]
- Chen, S.; Lang, B.; Liu, H.; Chen, Y.; Song, Y. Android malware detection method based on graph attention networks and deep fusion of multimodal features. Expert Syst. Appl. 2024, 237, 121617. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, S.; Lin, X.; Wu, L.; Liao, N.; Song, Y. Network traffic classification model based on attention mechanism and spatiotemporal features. Eurasip J. Inf. Secur. 2023, 2023, 6. [Google Scholar] [CrossRef]
- Zhao, G.; Zou, S.; Wu, H. Improved Algorithm for Face Mask Detection Based on YOLO-v4. Int. J. Comput. Intell. Syst. 2023, 16, 104. [Google Scholar] [CrossRef]
- Jia, X.; Bartlett, J.; Chen, W.; Song, S.; Zhang, T.; Cheng, X.; Lu, W.; Qiu, Z.; Duan, J. Fourier-Net: Fast Image Registration with Band-Limited Deformation. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, Washington, DC, USA, 7–14 February 2023; pp. 1015–1023. [Google Scholar]
- Wang, X.; Wang, C.; Zhang, F.; Jiang, S.; Sun, Z.; Zhang, H.; Duan, Z.; Liu, Z. Feature fusion-based fiber-optic distributed acoustic sensing signal identification method. Meas. Sci. Technol. 2023, 34, 125141. [Google Scholar] [CrossRef]
- Yi, C.; Liu, J.; Huang, T.; Xiao, H.; Guan, H. An efficient method of pavement distress detection based on improved YOLOv7. Meas. Sci. Technol. 2023, 34, 115402. [Google Scholar] [CrossRef]
- Pratibha, K.; Mishra, M.; Ramana, G.V.; Lourenço, P.B. Deep Learning-Based YOLO Network Model for Detecting Surface Cracks During Structural Health Monitoring. In RILEM Bookseries; Springer: Berlin/Heidelberg, Germany, 2024; Volume 47, pp. 179–187. [Google Scholar]
- Tang, J.; Wang, Z.; Zhang, H.; Li, H.; Wu, P.; Zeng, N. A lightweight surface defect detection framework combined with dual-domain attention mechanism. Expert Syst. Appl. 2024, 238, 121726. [Google Scholar] [CrossRef]
- Shen, D.; Liu, X.; Shang, Y.; Tang, X. Deep Learning-Based Automatic Defect Detection Method for Sewer Pipelines. Sustainability 2023, 15, 9164. [Google Scholar] [CrossRef]
- Xiao, M.; Yang, B.; Wang, S.; Mo, F.; He, Y.; Gao, Y. GRA-Net: Global receptive attention network for surface defect detection. Knowl. Based Syst. 2023, 280, 111066. [Google Scholar] [CrossRef]
- Shen, J.; Li, G.; Kumar, R.; Singh, R. CAD Fabric Model Defect Detection Based on Improved Yolov5 Based on Self-Attention Mechanism. Comput. Aided Des. Appl. 2024, 21, 63–71. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Behera, S.; Maurya, S.; Kale, P. Detection of Physical Impairments on Solar Panel Using YOLOv5. In Lecture Notes in Electrical Engineering; Springer Nature: Singapore, 2023; pp. 1–12. [Google Scholar]
- Gudhe, N.R.; Kosma, V.M.; Behravan, H.; Mannermaa, A. Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning. BMC Med. Imaging 2023, 23, 162. [Google Scholar] [CrossRef]
- Afshar, S.; Braun, P.R.; Han, S.; Lin, Y. A multimodal deep learning model to infer cell-type-specific functional gene networks. BMC Bioinform. 2023, 24, 47. [Google Scholar] [CrossRef]
Literature | Methods | mAP | Advantages | Disadvantages |
---|---|---|---|---|
[7] | ESA-Net | 75.3% | It can extract and construct advanced features for pyramid networks. | The network can better detect small features with further improvement in performance. |
[8] | FFR-SSD | 51.23% | Layered feature fusion for multi-scale object detection | Precision still needs improvement. |
[9] | SSD-BSP | 94.16% | Integrating deep learning with computer vision | The increase in model complexity has raised computational costs. |
[10] | B-FPN-SSD | 76.48% | Implementing feature fusion at different scales on the feature layer | There is a slight deficiency in recognition speed. |
[11] | Improved YOLOv3 | 80.42% | Multi-scale shallow feature fusion | The robustness in low-light conditions is not ideal. |
[12] | Inception Resnet-SSD | 83.50% | Incorporating inhibitory loss to optimize the model’s loss function | Optimization is required for the model’s prediction boxes. |
Name | Version |
---|---|
CPU | Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz 2.19 GHz |
GPU | GeForce RTX 2070 Super |
Memory Bank | 32 G |
Operating System | Windows 10 |
Software environment | Cuda 10.1.1 |
Python Version | Python 3.7 |
Deep learning framework | TensorFlow2.8 |
No. | Category | Actual Location | Identified Location | Actual Area | Identified Area | Location Error | Area Error |
---|---|---|---|---|---|---|---|
1 | Inclusion | (2523.5, 1428.5) | (2526, 1429) | 11,975 | 119,328 | (2.5, 0.5) | 147 |
2 | Inclusion | (2790, 1328.5) | (2788.5, 1322.5) | 145,350 | 146,157 | (1.5, 6) | 807 |
3 | Inclusion | (2398.5, 208) | (2394.5, 209) | 35,750 | 36,100 | (4, 1) | 350 |
4 | Inclusion | (3004, 1166) | (2992, 1168) | 194,636 | 197,408 | (12, 2) | 2772 |
5 | Inclusion | (1932.5, 964.5) | (1930.5, 951) | 326,781 | 319,800 | (2, 13.5) | 6981 |
6 | Scratch | (2421, 1967.5) | (2441.5, 1944.5) | 460,750 | 470,557 | (20.5, 23) | 9807 |
7 | Scratch | (2624.5, 1320.5) | (2612, 1305) | 387,481 | 401,544 | (12.5, 15.5) | 14,063 |
8 | Scratch | (1732.5, 941) | (1730.5, 936.5) | 349,160 | 335,111 | (2, 4.5) | 14,049 |
9 | Scratch | (1143.5, 2316) | (1152.5, 2277.5) | 135,992 | 142,107 | (9, 38.5) | 6115 |
10 | Scratch | (2093.5, 1366) | (2086, 1374) | 98,010 | 102,816 | (7.5, 8) | 4806 |
11 | Speckle | (2754.5, 1583) | (2755, 1564) | 361,020 | 353,760 | (0.5, 19) | 7260 |
12 | Speckle | (2098, 1819) | (2090, 1815) | 63,036 | 64,480 | (8, 4) | 1444 |
13 | Speckle | (2509, 1975.5) | (2490, 1963.5) | 406,334 | 415,950 | (19, 12) | 9616 |
14 | Speckle | (2066.5, 1119) | (2070.5, 1105) | 324,450 | 333,064 | (4, 14) | 8614 |
15 | Speckle | (1787, 1914.5) | (1792.5, 1911.5) | 88,796 | 86,355 | (5.5, 3) | 2441 |
Model | Inclusion AP/% | Scratch AP/% | Speckle AP/% | mAP% | Time (Fps) |
---|---|---|---|---|---|
SSD | 94.56% | 94.56% | 97.68% | 96.29% | 13.27 |
YOLOV3 | 91.84% | 92.32% | 96.48% | 93.55% | 12.43 |
YOLOV4 | 92.54% | 93.24% | 91.34% | 92.37% | 19.56 |
Faster R-CNN | 93.42% | 90.36% | 93.46% | 92.41% | 14.36 |
Proposed model | 99.96% | 99.99% | 100.00% | 99.98% | 12.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Azman, A. Improved Deep Learning Model for Workpieces of Rectangular Pipeline Surface Defect Detection. Computers 2024, 13, 30. https://doi.org/10.3390/computers13010030
Chen C, Azman A. Improved Deep Learning Model for Workpieces of Rectangular Pipeline Surface Defect Detection. Computers. 2024; 13(1):30. https://doi.org/10.3390/computers13010030
Chicago/Turabian StyleChen, Changxing, and Afizan Azman. 2024. "Improved Deep Learning Model for Workpieces of Rectangular Pipeline Surface Defect Detection" Computers 13, no. 1: 30. https://doi.org/10.3390/computers13010030
APA StyleChen, C., & Azman, A. (2024). Improved Deep Learning Model for Workpieces of Rectangular Pipeline Surface Defect Detection. Computers, 13(1), 30. https://doi.org/10.3390/computers13010030