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Abstract: As the adoption of electric vehicles increases, the challenge of managing bidirectional
energy flow while ensuring grid stability and respecting user preferences becomes increasingly
critical. This paper aims to develop an intelligent framework for vehicle-to-grid (V2G) energy
management that balances grid demands with user autonomy. The research presents VESTA (vehicle
energy sharing through artificial intelligence), featuring the semantic-aware vehicle access control
(SEVAC) model for efficient and intelligent energy sharing. The methodology involves developing a
comparative analysis framework, designing the SEVAC model, and implementing a proof-of-concept
simulation. VESTA integrates advanced technologies, including artificial intelligence, blockchain,
and edge computing, to provide a comprehensive solution for V2G management. SEVAC employs
semantic awareness to prioritise critical vehicles, such as those used by emergency services, without
compromising user autonomy. The proof-of-concept simulation demonstrates VESTA’s capability
to handle complex V2G scenarios, showing a 15% improvement in energy distribution efficiency
and a 20% reduction in response time compared to traditional systems under high grid demand
conditions. The results highlight VESTA’s ability to balance grid demands with vehicle availability
and user preferences, maintaining transparency and security through blockchain technology. Future
work will focus on large-scale pilot studies, improving AI reliability, and developing robust privacy-
preserving techniques.

Keywords: vehicle-to-grid (V2G); smart grid; electric vehicles; energy management; artificial intelligence;
blockchain; edge computing

1. Introduction

The global energy landscape is undergoing a profound transformation, driven by the
imperative to reduce greenhouse gas emissions and transition towards sustainable green
energy systems. This shift has led to a rapid increase in electric vehicle (EV) adoption, with
projections indicating that the number of EVs on the road globally will reach 245 million by
2030 [1]. This surge in EV adoption presents both opportunities and challenges for power
grid management, renewable energy integration, and security and privacy [2].

Vehicle-to-grid (V2G) technology has emerged as a promising solution to address
some of these challenges. V2G transforms EV users from simple consumers of energy to
active participants in the energy system [3]. Recent developments in V2G have enabled
bidirectional energy flow between electric vehicles and the electrical grid. This allows EVs
to act as mobile energy storage systems and, therefore, gives them the ability to supply
energy to the grid, if needed, rather than just consuming it. This capability not only helps
to stabilise the grid but also supports the integration of renewable energy sources, thereby
contributing to the decarbonisation goals of many governments [4].

The integration of V2G technology with energy storage systems is crucial for the
effective management of renewable energy resources. Research has shown that energy
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storage technologies play a vital role in renewable energy integration, emphasising the
importance of optimal scheduling models and sustainable adaptation policies, which are
directly relevant to V2G systems [5].

However, the widespread adoption of V2G technology faces significant challenges.
Studies have indicated potential adverse effects of V2G operations on EV battery life
due to frequent charge and discharge cycles [6]. Accurate battery health monitoring and
prediction of battery performance under bidirectional charging conditions are amongst
the measures that can be deployed to mitigate these challenges [7]. Concurrently, recent
advancements in artificial intelligence (AI) and blockchain technology have opened new
avenues for optimising V2G systems. For instance, AI techniques have been applied for
optimal coordination in V2G-integrated power distribution systems, enhancing operational
efficiency [8]. Blockchain-based solutions have been proposed to improve V2G energy
trading by ensuring security, transparency, and scalability [2].

Despite these advancements, several challenges continue to hinder the broader adop-
tion of V2G technology. Battery degradation remains a significant concern for EV owners, as
frequent charging and discharging cycles in V2G operations can accelerate battery ageing,
leading to economic losses [6]. This issue is particularly pertinent given the high cost of EV
batteries and their critical role in vehicle performance. Therefore, optimising charging and
discharging processes is crucial for the efficient operation of V2G systems. However, current
schemes often lack consideration for users’ participation and do not fully account for their
privacy concerns [1]. Efficient matching and scheduling of energy resources, particularly
considering both parked and driving vehicles, is also challenging [2]. Existing approaches
often assume static scenarios, neglecting the dynamic nature of real-world V2G operations
where vehicle availability fluctuates. This limitation hinders the full realisation of V2G’s
potential and calls for more adaptive and responsive management systems. Moreover,
research suggests that for V2G to contribute to a more sustainable future, the electricity
sector must accept more risk and consider the social, ethical, and cultural meanings that
users attach to the technology [9]. This perspective emphasises the need for a more holistic
approach to V2G implementation that goes beyond technical solutions.

To this end, securing users’ participation and consent are significant, as concerns
about mileage anxiety and maintaining a minimum battery level influence EV owners’
willingness to participate in V2G programs [1]. Research indicates that, while users are
generally open to sharing data for V2G purposes, their primary concerns revolve around
targeted marketing and unauthorised tracking of their locations [10]. As a result, privacy
and security are seen as key challenges in V2G networks. Additionally, V2G systems are
vulnerable to risks such as eavesdropping, tampering, and forgery, which can compromise
user privacy and degrade service quality [11]. Given the sensitive nature of data involved
in V2G transactions, including tracking user location, mining energy consumption patterns,
and handling financial information, robust security measures are essential. Specifically,
access to an EV’s battery should be managed through more robust mechanisms. Current
V2G systems typically employ basic access control mechanisms, such as mandatory access
control (MAC), which do not account for the diverse and dynamic nature of vehicles partic-
ipating in the grid. These approaches, while providing basic access control provisions, are
not comprehensive and can lead to security risks, resulting in inefficient energy distribution,
potential security vulnerabilities, and reduced user trust. Hence, there is a pressing need
for an enhanced, context-aware access control model that can differentiate between various
vehicle types, prioritise critical services, and take into account users’ preferences.

To address these challenges, this paper introduces VESTA (vehicle energy sharing
through artificial intelligence), a novel framework designed to enhance V2G energy man-
agement. VESTA integrates advanced AI techniques, blockchain technology, and edge
computing to create a comprehensive solution that addresses the limitations of current
V2G systems. At the core of VESTA is the semantic-aware vehicle access control (SEVAC)
model, which employs semantic awareness to classify vehicle types and make optimised
access control decisions, thus ensuring efficient energy distribution while prioritising crit-
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ical services and respecting users’ preferences. The key contributions of this work are
as follows:

• Development of the SEVAC model: The SEVAC model employs semantic awareness
to classify vehicles based on their types and make optimised access control decisions,
addressing the challenge of users’ participation and vehicle prioritisation.

• Integration of advanced AI techniques: AI-driven decision-making and machine
learning predictive analytics are employed to enhance the efficiency and reliability of
V2G operations, enabling real-time responses to grid demands and users’ preferences.

• Implementation of a multi-layered blockchain architecture: The framework encom-
passes a blockchain layer that also makes use of smart contracts to ensure the security
and privacy of V2G energy trading, thereby enhancing trust and accountability within
the system.

• Design of a dynamic scheduling algorithm: The framework accounts for vehicles
throughout their journey, whether they are recharging mid-trip or parked overnight,
addressing the limitations of current matching systems and incorporating real-world
time constraints to improve energy distribution and grid stability.

• Incorporation of edge computing for real-time data processing: Local processing units
at strategic locations such as charging stations reduce latency and server load, enabling
quicker adaptation to local energy demands and enhancing system resilience.

• Development of a user-centric interface and feedback loop: Tailored interfaces and a
feedback loop enhance user engagement, allowing for continuous system improve-
ment based on user interactions, preferences, and consent, thus addressing privacy
and user trust concerns.

The scope of this paper encompasses the design, conceptualisation, and evaluation of
the VESTA framework through a proof-of-concept simulation. By addressing the identified
challenges of user consent, privacy protection, vehicle type prioritisation, efficient energy
management, and dynamic scheduling, VESTA aims to advance the state-of-the-art in V2G
technology and contribute to the development of more resilient, efficient, and sustainable
energy infrastructures. The remainder of this paper is structured as follows: Section 2
reviews related work in V2G technology and smart grid management. Section 3 details the
VESTA framework, including its architecture and key components. Section 4 presents a
proof-of-concept implementation and results. Section 5 discusses the limitations and future
work, and Section 6 concludes the paper.

2. Related Work

The rapid evolution of vehicle-to-grid (V2G) and grid-to-vehicle (G2V) technologies
has sparked a flurry of research addressing key challenges in security, privacy, scalability,
user engagement, energy management, efficiency, optimal control strategies, and route
optimisation. This section reviews the advancements and persistent research challenges in
V2G implementation, offering a comprehensive look at the current state of the field.

2.1. Blockchain-Based Solutions and Security Protocols for V2G Systems

The integration of blockchain technology in V2G systems has emerged as a promising
approach to tackle security, scalability, and fairness challenges. A lightweight blockchain-
based framework called the directed acyclic graph-based V2G network (DV2G) has been
proposed [12]. This model employs a tangle data structure for secure and scalable transac-
tion recording and utilises game theory for cost-optimised negotiation between the grid
and vehicles, offering a highly scalable solution for V2G networks.

Building on the potential of blockchain, a privacy-preserving fair exchange scheme for
V2G systems called V2GEx has been introduced [13]. This scheme addresses the critical
challenges of ensuring fairness and privacy during electricity and service exchanges, incor-
porating an extended blockchain supporting zero-knowledge funds, a fair exchange smart
contract, and a privacy-preserving protocol specifically designed for V2G interactions.
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Focusing on the emerging concept of energy internet (EI), research has proposed
a secure and lightweight key agreement protocol for EI-based V2G environments [14].
This approach integrates communication and computing technologies to enhance renew-
able energy distribution and intelligent transportation systems, achieving all required
security features while reducing communication, computation, and energy overheads by
approximately 28% compared to existing schemes.

2.2. Privacy-Preserving Protocols and Advanced Learning Techniques in V2G Communications

Ensuring privacy in V2G systems is paramount due to the exchange of sensitive user
data. A privacy-preserving authenticated key exchange protocol for V2G communications
using self-sovereign identity (SSI) concepts has been developed [15]. This approach lever-
ages decentralised identifiers (DID) and verifiable credentials (VCs) to empower users
with control over their identities, ensuring robust security against various attacks while
incorporating key recovery mechanisms and an effective user revocation policy.

An innovative approach to privacy preservation in wireless charging V2G systems by
integrating federated learning techniques has been proposed [16]. This adaptive demand-
side energy management framework combines federated learning with reinforcement
learning to enhance both privacy and cost-saving. The method demonstrates improved
privacy preservation compared to existing approaches, offering a significant advancement
in protecting user data within V2G networks while also optimising energy management.

2.3. User-Oriented V2G Schemes and Energy Management

Recognising the importance of user engagement and efficient energy management in
V2G systems, research has explored more user-centric and optimised approaches. A case
study in Shenzhen, China, focused on a user-oriented V2G scheme with multiple operation
modes for peak load shaving [17]. This work explored both centralised and decentralised
V2G operation modes and their impact on grid performance, highlighting the benefits of
tailoring V2G systems to user preferences and behaviours.

An innovative energy management model for residential buildings integrating plug-in
electric vehicles (PEVs) and on-site PV generation has been proposed [18]. This approach
introduces a transactive energy market among PEVs to determine optimal charge/discharge
scheduling while reimbursing PEV owners for their flexibility, achieving reduced charging
payments for PEV owners and decreased total costs for the building energy management
system (BEMS).

2.4. Artificial Intelligence and Optimal Control in V2G/G2V Systems

The application of artificial intelligence has shown great promise in optimising V2G/G2V
control strategies. An optimal V2G control strategy using deep reinforcement learning
(DRL), specifically the deep deterministic policy gradient (DDPG) algorithm, has been
proposed [19]. This approach aims to maximise profits for both EV owners and energy
aggregators while meeting driving demands and improving frequency regulation.

Research has advanced the field by developing an AI-based adaptive V2G and G2V
controller for electric vehicle charging stations (EVCS) [8]. This system integrates a solar
photovoltaic system (SPVS), storage battery (SB), electric vehicle (EV), and grid, demon-
strating the potential of AI in managing complex energy systems with multiple sources
and storage options.

The critical aspect of route selection and charging/discharging scheduling for EVs in
V2G networks has been addressed [20]. This work introduces a time-expanded V2G graph
and an AI-based A* algorithm to find optimal routes and schedules for EVs, aiming to
maximise economic profits while considering constraints such as energy supply variability
and charging station availability.
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2.5. Barriers to V2G Adoption and Implementation Challenges

While technological advancements in V2G systems are promising, a comprehensive
review of the barriers hindering widespread V2G adoption has been conducted [21]. This
study identifies 23 distinct barriers spanning technical, business, and user-related chal-
lenges. Through risk and cross-impact analysis, the interconnected nature of these barriers
has been highlighted, emphasising the importance of addressing business-related chal-
lenges as a priority.

One of the most significant barriers identified is the "parking-for-charging” business
model, which received the highest risk score. This highlights the need for innovative
business models that can effectively balance the needs of EV owners, charging infrastruc-
ture providers, and grid operators. The lack of large-scale demonstrations has also been
pointed out as a critical barrier, noting the challenges in organising such demonstrations
due to the need for consistent participation, substantial capital investment, and complex
stakeholder coordination.

2.6. Cybersecurity Challenges and Mitigation Strategies in V2G Networks

As V2G systems become increasingly integrated with smart grids and low-carbon
transportation infrastructure, cybersecurity has emerged as a critical concern. A compre-
hensive overview of the threats, vulnerabilities, and mitigation strategies specific to V2G
networks has been provided [22]. This work highlights the unique security challenges
posed by the bidirectional flow of energy and information in V2G systems.

Cyber security challenges in the broader context of low-carbon transportation have
been discussed [23]. The importance of addressing security threats such as denial of service
attacks and data breaches, which could potentially disrupt critical infrastructure and
compromise user privacy, has been emphasised. Various defence technologies, including
authentication mechanisms, encryption techniques, and intrusion detection systems, have
been reviewed, highlighting their applicability in protecting V2G networks.

Several encryption techniques have shown promise in addressing privacy and security
concerns in V2G systems, including homomorphic encryption, broadcast encryption, and
attribute-based encryption. These techniques offer different trade-offs between security,
efficiency, and access control granularity, providing a range of options for securing V2G
communications and data processing.

The integration of artificial intelligence (AI) in energy management presents both
opportunities and challenges from a security perspective. While AI can significantly
enhance system efficiency and decision-making, it also introduces new attack vectors that
must be carefully considered.

Real-world incidents, such as the 2015 Ukraine blackout caused by a false data in-
jection attack, underscore the potential consequences of cybersecurity breaches in power
systems. This highlights the need for robust security measures in V2G networks, which are
increasingly becoming critical components of national energy infrastructure.

The multifaceted nature of V2G research encompasses technological innovations in
blockchain, security protocols, privacy preservation, user-centric design, efficient energy
management, and AI-driven control strategies. The integration of blockchain technology and
advanced security protocols offers promising solutions for secure, fair, and private transactions
in V2G networks. The focus on user-oriented approaches and optimised energy manage-
ment emphasises the importance of considering user behaviour, preferences, and economic
incentives in V2G system design. Furthermore, the application of advanced AI techniques, in-
cluding federated learning, deep reinforcement learning, adaptive neural network controllers,
and route optimisation algorithms, demonstrates the potential for significant improvements in
grid stability, economic benefits, privacy preservation, system integration, and overall network
efficiency through intelligent V2G/G2V control strategies. These AI-driven approaches are
particularly crucial in managing the increasing complexity of energy systems that incorporate
renewable sources, energy storage, bidirectional power flow between vehicles and the grid,
and the spatial–temporal aspects of EV movement and charging. However, significant barriers
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to widespread adoption remain, including business model challenges, lack of large-scale
demonstrations, and cybersecurity concerns. Addressing these challenges will be crucial for
the successful implementation and scaling of V2G technologies.

Table 1 compares the VESTA framework with several key works in the V2G domain,
using “Yes”, “No”, and “Partially” to provide an analysis of each framework’s capabilities.

The features selected for comparison in Table 1 were chosen based on an analysis
of key elements essential for effective vehicle-to-grid (V2G) systems. These include user-
centric permissions, semantic vehicle classification, AI-driven decision-making, blockchain
integration, privacy-preserving techniques, and real-time grid adaptation. Each of these
features addresses critical challenges in V2G implementation, such as user trust, system
scalability, security, and energy management efficiency. Additionally, features like user be-
haviour analysis and renewable energy integration were included to highlight the growing
importance of user engagement and sustainable energy practices in modern V2G frame-
works. These criteria were selected to reflect the most significant advancements and gaps
in the current state of V2G technology, as identified in the literature review.

The scoring of “Yes”, “No”, and “Partially” in Table 1 is based on the presence,
implementation depth, and effectiveness of each feature in the reviewed frameworks. The
rationale for the scoring is as follows:

• “Yes”: A “Yes” indicates that the feature is fully implemented and integrated into the
framework with significant functionality and documented performance improvements.
For example, VESTA is marked “Yes” for AI-driven decision-making because it lever-
ages machine learning models for real-time grid demand prediction and optimises
energy contributions based on current and future grid states.

• “No”: A “No” indicates that the feature is either not present or insufficiently addressed
in the framework. For instance, works like [12] focus on blockchain integration but do
not incorporate AI-driven decision-making, thus receiving a “No” for this feature.

• “Partially”: A “Partially” score is assigned when a feature is present but lacks full im-
plementation or is constrained in its application. This is typically seen in frameworks
where the feature may be under development or only applicable in certain scenarios.
For example, some frameworks may incorporate basic AI models but fall short in
handling complex, real-time decision-making processes, hence receiving a “Partially”
for AI-driven decision -making. Similarly, user behavior analysis may be present in
limited forms, but not central to the framework’s core functions.

From Table 1, Hassija et al. [12] excelled in blockchain integration and scalability
considerations but lacked in other areas, such as user-centric permissions and AI-driven
decision-making. Parameswarath et al. [15] focused strongly on privacy-preserving tech-
niques and user permissions but did not address many other aspects of V2G management.
Saber et al. [18] provided robust solutions for real-time grid condition adaptation and scala-
bility, with partial consideration of user-centric approaches and AI-driven decision-making.

Alfaverh et al. [19] and Singh et al. [8] utilised AI for decision-making and adapted
well to real-time grid conditions with partial context-awareness and scalability consider-
ations. Liang et al. [2] introduced blockchain integration alongside AI-driven decision-
making, showing strong performance in real-time grid adaptation and scalability.
Kumar et al. [4] focused on AI-driven decision-making and renewable energy integration
with strong context-aware access control. Abdelsattar et al. [24] concentrated on renewable
energy integration and real-time grid adaptation with partial AI implementation.

Wang et al. [11] prioritised user-centric permissions, privacy-preserving techniques,
and blockchain integration, demonstrating strong scalability and context-aware access
control. Lucas-Healey et al. [9] and Bilousova [10] emphasized user behaviour analysis and
user-centric permissions, with Bilousova also focusing on privacy-preserving techniques.
Chen and Zhang [1] provided a comprehensive overview, partially addressing multiple
aspects, including user-centric permissions, AI-driven decision-making, and renewable
energy integration.
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Table 1. Comparison of VESTA with existing V2G frameworks.

Feature User-Centric
Permissions

Semantic
Vehicle

Classification

AI-Driven
Decision-
Making

Blockchain
Integration

Privacy-
Preserving
Techniques

Real-Time
Grid

Adaptation

Scalability
Considera-

tions

Context-
Aware Access

Control

User Behavior
Analysis

Renewable
Energy

Integration

VESTA Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
[12] No No No Yes No No Yes No No No
[15] Yes No No No Yes No No Partially No No
[18] Partially No Partially No No Yes Yes No No Yes
[19] No No Yes No No Yes Partially Partially No Yes
[8] Partially No Yes No No Yes Yes Partially No No
[2] No No Yes Yes Partially Yes Yes Partially No Yes
[4] No No Yes No No Yes Partially Yes No Yes

[24] No No Partially No No Yes Partially No No Yes
[11] Yes No No Yes Yes Partially Yes Yes No No
[9] Yes No No No Partially No No No Yes No

[10] Yes No No No Yes No No No Yes No
[1] Partially No Partially No No Yes Partially No Yes Yes
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VESTA introduces a unique combination of features, excelling in user-centric permis-
sions through its semantic-aware vehicle access control (SEVAC) model, semantic vehicle
classification, and context-aware access control. It integrates AI-driven decision-making,
blockchain technology, and privacy-preserving techniques while considering real-time grid
adaptation, scalability, and renewable energy integration. VESTA also incorporates user
behaviour analysis, addressing a crucial aspect often overlooked in technical solutions. This
comprehensive approach positions VESTA as a holistic solution to the complex challenges
of V2G systems, though continued research and development will further enhance its
capabilities in all areas.

3. Methodology

This section outlines the systematic approach employed in developing the VESTA
framework, adhering to standard scientific methods in computer science and software
engineering. The methodology comprises three main phases: problem identification
and literature review, framework design, and proof-of-concept implementation. Figure 1
illustrates the step-by-step process of the research methodology.

The methodology flowchart in Figure 1 provides a detailed visual representation of
the research process. It begins with the identification of the research problem, followed by
a comprehensive literature review. The research scope is then defined based on identified
gaps, leading to the selection of appropriate research methodologies. The framework design
phase includes the conceptualisation of VESTA components, comparative analysis with
existing models, and the development of the SEVAC model. The proof-of-concept imple-
mentation involves scenario definition, high-level pseudo-code development, and Python-
based simulation. The final stages encompass data generation, result analysis, framework
validation, conclusion drawing, and identification of future work areas. This structured
approach ensures the thorough and systematic development of the VESTA framework.

3.1. Problem Identification and Literature Review

This research was motivated by recent events in Australia, where electric vehicles
were utilised to stabilise the power grid during high-demand periods. This real-world
application highlights the potential of vehicle-to-grid (V2G) technology and prompts a
comprehensive exploration of existing solutions and research gaps.

A thematic literature review was conducted, focusing on areas such as artificial in-
telligence applications in V2G systems, privacy-preserving techniques for V2G commu-
nications, blockchain integration in energy management, user-centric approaches to V2G
implementation, and cybersecurity in V2G networks. The review process involved system-
atic searches of major academic databases using combinations of keywords such as “V2G”,
“AI”, “blockchain”, “privacy”, and “cybersecurity”. The literature was analysed to identify
current approaches, challenges, and potential areas for improvement.

The review revealed the need for a more comprehensive framework that integrates
context-aware decision-making, user permissions, and advanced security measures in V2G
systems. Specifically, it identified the importance of considering context, location, vehicle
types, and user permissions as key factors in V2G energy-sharing decisions.

3.2. Framework Design

Based on the insights from the literature review, the VESTA framework was concep-
tualised. The design phase focused on developing a novel access control model, SEVAC
(semantic-aware vehicle access control), which adapts principles from attribute-based
access control (ABAC) and context-aware access control approaches.
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Figure 1. Research methodology.
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The framework design process involved defining the core components of VESTA
and developing the SEVAC model to incorporate context, location, vehicle types, and
user permissions. It included designing the integration of AI decision-making modules
for adaptive control and incorporating blockchain technology for secure and transparent
transactions. Ensuring scalability and flexibility to accommodate various V2G scenarios
was also a key consideration. The VESTA framework was developed through an iterative
design process. This involved applying attribute-based access control (ABAC) principles,
refining these with context-aware decision-making, and integrating AI-driven predictive
models and blockchain technology. Specifically, the semantic-aware vehicle access control
(SEVAC) model was built using first-order logic for policy formulation, enabling it to adapt
to varying V2G conditions, vehicle types, and user permissions. Each vehicle’s context,
including its location and charge status, informed real-time energy-sharing decisions,
creating a dynamic and responsive system.

As a key component of the VESTA framework, the semantic-aware vehicle access
control (SEVAC) model was developed. The design process involved the following:

1. Defining the core components of SEVAC based on identified V2G challenges.
2. Adapting principles from ABAC and context-aware access control approaches.
3. Incorporating semantic vehicle classification and predictive analytics capabilities.
4. Designing an adaptable decision-making process using first-order logic for

policy definition.

3.3. Comparative Analysis Framework for Access Control Methods in V2G Systems

As part of the methodology to establish the significance of the proposed semantic-
aware vehicle access control (SEVAC) model, a comparative analysis framework was
developed. This framework aims to evaluate SEVAC against existing access control meth-
ods commonly used in vehicle-to-grid (V2G) systems. The comparative analysis framework
consists of the following steps:

1. Identification of key features: Critical features relevant to V2G access control were
identified, including context-awareness, semantic classification capabilities, predic-
tive analytics, adaptability, policy complexity, real-time decision-making, and V2G-
specific features.

2. Selection of baseline models: Two baseline models were selected for comparison:
traditional attribute-based access control (ABAC) and generic context-based access
control models. These were chosen as they represent common approaches in current
V2G systems.

3. Feature evaluation criteria: For each identified feature, criteria were established to as-
sess the performance level (e.g., No/Basic/Limited/Moderate/Advanced/Extensive)
based on the capabilities of each model.

4. Comparative matrix development: A matrix was created to visualise the comparison
across all selected features for SEVAC and the baseline models.

5. Analysis of comparative advantages: The completed matrix was analysed to identify
areas where SEVAC potentially offers advancements over existing methods.

This comparative framework provides a structured approach to evaluate the proposed
SEVAC model against current access control methods in V2G systems. Table 2 presents a
detailed comparison of SEVAC with traditional attribute-based access control (ABAC) and
other context-based models.

The results of this analysis, presented in subsequent sections, aim to demonstrate
SEVAC’s potential advancements in areas crucial for effective V2G energy management.
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Table 2. Comparison of ABAC, context-based access control models, and SEVAC.

Feature ABAC Context-Based Models SEVAC

Context-Awareness Basic Moderate Advanced
Semantic Classification No Limited Yes
Predictive Analytics No No Yes
Adaptability Limited Moderate High
Policy Complexity Medium High Very High
Real-Time Decision-Making Limited Moderate Advanced
V2G-Specific Features No Limited Extensive

3.4. Proof of Concept Implementation

To validate the VESTA framework, a proof-of-concept (PoC) was implemented using
Python 3.9 The PoC aimed to demonstrate the feasibility of the framework and its core
components in a simulated environment.

As outlined in the methodology flowchart (Figure 1), the PoC implementation began
with developing a primary scenario: a grid operator’s request for vehicle battery access.
This scenario served as the foundation for creating a high-level pseudo-code that outlined
VESTA’s core logic.

The simulation environment was designed to model a simplified V2G ecosystem,
incorporating representations of various electric vehicle types with different attributes, grid
demand fluctuations, and the SEVAC Engine for access control decisions. Basic blockchain
transactions for energy sharing and AI-driven prediction of grid demand and energy
distribution were also integrated.

The simulation utilised Python libraries such as NumPy for numerical computations,
Pandas for data manipulation, Matplotlib for visualisation, and pycryptodome for crypto-
graphic functions and blockchain simulation.

Building upon the primary scenario, multiple sub-scenarios were simulated to thor-
oughly test the framework’s functionality. These included normal grid operation with
diverse vehicle types, high-demand periods, low grid demand with high vehicle availabil-
ity, and prioritisation of critical service vehicles. Each sub-scenario featured vehicles with
varying attributes and initial charge levels, whilst grid demand conditions were simulated
using simplified models based on typical patterns.

The PoC implementation followed a model-driven engineering approach, where
specific models (e.g., vehicle energy models and grid demand models) were developed
and tested in a controlled simulation environment. The simulation used Monte Carlo
methods to simulate various grid demand scenarios and assess how SEVAC responded
under fluctuating conditions. AI models were trained using historical grid demand data,
which informed real-time predictions and adjustments in energy contributions.

For the blockchain integration, smart contracts were implemented to simulate secure
energy transactions. Cryptographic algorithms, such as those from the PyCryptodome
library, were employed to ensure the integrity and traceability of these transactions.

The evaluation of the PoC involved assessing the framework’s ability to prioritise
critical vehicles, respect user preferences, and maintain grid stability. Performance metrics
such as grid stability, energy efficiency, and adherence to user-defined rules were analysed
using Python libraries.

This comprehensive approach allowed for the generation of diverse simulation data,
the collection of results across various V2G scenarios, and the subsequent analysis. The
results demonstrated the feasibility and effectiveness of the VESTA framework in managing
complex V2G scenarios, validating its potential for real-world application.

4. Overview of the Proposed Vehicle Energy Sharing through AI Framework (VESTA)

The vehicle energy sharing through AI (VESTA) framework introduces an innovative
approach to vehicle-to-grid (V2G) energy sharing, designed to enhance grid stability,
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optimise user engagement, and support sustainable energy practices. By integrating
advanced technologies with user-centric principles, VESTA ensures that every aspect
of V2G energy sharing is managed with precision and adaptability. The framework’s
architecture is presented in Figure 2. It comprises of several interconnected layers that
addresses the complex challenges faced by modern energy systems, focusing on user
consent, context-aware operations, privacy, and security through the implementation of
smart contracts and AI-driven decision-making.

Figure 2. VESTA architecture showing all its layers and components.
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4.1. User Interface Layer

The user interface layer in VESTA is tailored to cater to the diverse needs of stakehold-
ers, including vehicle owners, grid operators, policymakers, and service technicians. Each
interface is designed to present relevant data, controls, and analytics, facilitating efficient
management and informed decision-making. Vehicle owners benefit from intuitive mobile
and web interfaces, enabling them to manage energy-sharing settings, monitor participa-
tion statistics, and track accrued benefits. A robust notification system ensures that all users
are kept informed about critical updates, such as energy requests during peak times, policy
changes, and reward statuses. This layer plays a crucial role in optimising user interaction
with the system, thereby enhancing overall engagement and operational efficiency.

4.2. Application Layer

At the core of VESTA lies the application layer, which integrates several key compo-
nents that drive the framework’s intelligent operations. The semantic-aware vehicle access
control (SEVAC) engine classifies vehicles by type, whether emergency, commercial, or
private, and dynamically manages access permissions based on this classification, as well
as factors like battery status, location, and user preferences. This ensures that energy is
not inappropriately drawn from critical service vehicles, thereby maintaining readiness
and operational integrity. The AI decision-making module utilises artificial intelligence
to make informed, real-time decisions regarding energy allocation across the grid, taking
into account vehicle availability and user-defined parameters to optimise distribution
while preserving system stability. Complementing these, the ML predictive analytics
engine processes both historical and real-time data to accurately predict grid energy re-
quirements, forecast peak demand periods, and plan energy requests, thus enhancing the
system’s responsiveness and efficiency. Moreover, the user feedback and learning loop
directly integrate user feedback into the system’s learning processes, continuously refin-
ing AI algorithms to better align with user preferences, ultimately improving satisfaction
and engagement.

4.3. Blockchain Layer

The blockchain layer underpins VESTA’s operations by providing security and trans-
parency. Smart contracts automate transactions and enforce policies, embedding terms
directly into code to ensure reliable, manual-intervention-free operations. The distributed
ledger maintains a transparent and immutable record of all transactions and activities,
enhancing trust and accountability within the ecosystem. Additionally, this layer facilitates
real-time interactions with energy markets, enabling dynamic pricing and allowing users
to monetise their energy contributions securely.

4.4. Integration Layer

Ensuring seamless operation across various systems and platforms, the integration
layer plays a pivotal role in VESTA’s architecture. The interoperability module facilitates
effective communication with other energy management systems, smart city infrastructures,
and V2G platforms, thereby enhancing VESTA’s adaptability and scalability. Furthermore,
APIs connect VESTA to external systems, such as vehicle telematics, charging stations, and
the electrical grid, enabling real-time data exchange that is essential for the AI and ML
engines to adapt to user needs and grid demands efficiently.

4.5. Edge Computing Layer

The edge computing layer is introduced to decentralise data processing, ensuring that
VESTA remains responsive even in distributed environments. Local processing units strate-
gically positioned at locations such as charging stations manage real-time data processing
and adapt quickly to local energy demands, thereby reducing latency and alleviating
server load.
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4.6. Data Layer

The data layer is integral to the security and integrity of the system’s operations. Secure
data storage employs advanced encryption and robust protection measures to safeguard
user data and transaction records. Privacy-enhancing technologies, such as differential
privacy and secure multi-party computation, ensure that user privacy is maintained without
compromising system functionality. This layer also supports extensive data processing and
analytics, allowing the system to learn from patterns, enhance predictive accuracy, and
continually refine user experiences.

4.7. Monitoring and Compliance Layer

VESTA’s monitoring and compliance layer ensures that the system operates within
established regulatory frameworks. System monitoring tracks performance and user
activity, maintaining operational standards and identifying potential issues early. Regular
audits and compliance checks are integral to this layer, ensuring adherence to energy
regulations, vehicle safety standards, and privacy laws. This continuous evaluation process
fosters a secure and reliable environment for V2G operations, ensuring that all activities
within VESTA comply with legal and safety standards.

VESTA represents a paradigm shift in how V2G energy sharing is conceptualised
and executed, integrating advanced technological solutions with a deep understanding
of user needs and system requirements. This comprehensive framework is tailored to
meet the demands of a dynamic energy landscape, promising enhanced grid stability, user
empowerment, and sustainable energy utilisation.

5. Semantic-Aware Vehicle Access Control Model (SEVAC): Formal
Framework Definition

The SEVAC framework is defined formally by the following tuple:

SEVAC = (S, O, A, E, ATT, POL, DEC, CONST), (1)

where S represents the set of subjects or vehicle owners, O represents the set of objects
or available energy resources, A includes the actions that subjects can perform such as
charging, discharging, or sharing energy, and E encompasses the set of environmental
states, which includes grid conditions and time variables.

The attribute set ATT is a comprehensive collection of attributes relevant to the
system, and POL contains policies expressed in a structured policy language. The decision
function DEC and system constraints CONST ensure compliance with operational and
safety standards.

5.1. Detailed Components

Attributes are categorised into subsets as follows:

ATTS : Attributes related to subjects such as user preferences and behaviour;

ATTO : Attributes related to objects including energy capacity;

ATTE : Environmental attributes like grid load;

ATTV : Vehicle-specific attributes such as type and priority level.

(2)

A classification function maps each subject to a vehicle class:

CLASS : S→ C, (3)

where C includes categories like emergency, commercial, and private vehicles, enhancing
decision accuracy.
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5.2. Policy Language and AI Integration

Policies in POL are defined using first-order logic-based language:

POL : First-order logic-based language supporting complex conditions. (4)

The decision function DEC integrates AI-driven predictions and attribute updates:

DEC : S×O× A× E→ {PERMIT, DENY}. (5)

The function permits an action if there exists a policy p in POL, such that the evaluated
policy conditions return true, considering all relevant attributes.

5.3. Dynamic Components

Dynamic components of the system include the UPDATE and PREDICT functions,
which ensure responsiveness to real-time data:

UPDATE : ATT × E× T → ATT, (6)

PREDICT : ATT × E× T → E′. (7)

5.4. Temporal Dynamics and Constraints

Temporal dynamics are introduced by incorporating time, capturing the dynamic
nature of V2G systems:

ATT : S ∪O ∪ E× T → V, (8)

where V denotes the set of possible attribute values.

5.5. Security Properties

The formal security properties of SEVAC aim to ensure the system maintains critical
functionalities and adheres to fairness in energy distribution.

Theorem 1. Key properties include availability, ensuring critical services such as emergency vehicle
charging are prioritised, and fairness, guaranteeing that energy resources are distributed equally
among users.

5.6. SEVAC: A Holistic Approach to V2G Access Control

The semantic-aware vehicle access control (SEVAC) model, illustrated in Figure 3,
represents a significant advancement in vehicle-to-grid (V2G) energy management systems.
This model addresses the critical challenges of dynamic resource allocation and context-
aware decision-making in smart grid environments.

SEVAC’s innovation lies in its integration of semantic vehicle classification (CLASS)
with a comprehensive set of attributes (ATT), including subject, object, environmental, and
vehicle-specific factors. This approach enables fine-grained access control decisions that
consider the immediate state of the grid and vehicles and predict future states through the
PREDICT function.

The model’s decision function (DEC) synthesises inputs from various components,
including real-time environmental data (E), user-defined policies (POL), and system con-
straints (CONST). This holistic approach ensures that energy-sharing decisions are not only
efficient but also align with user preferences and critical infrastructure needs.

A key strength of SEVAC is its adaptability, which is facilitated by the UPDATE func-
tion. This feature allows the model to refine its decision-making process based on new
data and changing conditions, which is crucial in the dynamic V2G landscape. More-
over, the incorporation of first-order logic in policy definition provides the flexibility to
express complex conditions, which is essential for managing diverse vehicle types and
grid scenarios.
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Figure 3. SEVAC model.

By encapsulating these elements within a unified framework, SEVAC offers a robust
solution to the challenges of balancing grid stability, user preferences, and vehicle priorities
in V2G systems. This model forms the cornerstone of the VESTA framework, providing a
theoretical foundation for implementing intelligent, context-aware energy sharing in smart
grid ecosystems.
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5.7. Enhanced Context-Aware Decision-Making in SEVAC

Building upon traditional attribute-based access control (ABAC) models, SEVAC
integrates advanced context-aware decision-making and semantic vehicle classification
into the access control process. As compared in Table 1, SEVAC enhances the foundation of
ABAC by incorporating features tailored specifically for V2G systems. This model’s ability
to integrate real-time environmental data, vehicle-specific attributes, and user-defined
policies allows for a more nuanced and responsive approach to energy distribution.

By classifying the vehicles based on their type, e.g., as emergency services, commercial,
and private vehicles, SEVAC ensures that critical resources are prioritised appropriately,
especially during high-demand periods. The model’s predictive analytics capability further
enhances decision-making by forecasting future grid states and vehicle availability, enabling
proactive energy management.

Additionally, SEVAC’s dynamic policy update mechanism allows the system to adapt
to changing conditions in real-time, ensuring that energy-sharing decisions remain aligned
with both grid requirements and user preferences. The use of first-order logic in defining
access control policies adds a layer of complexity and flexibility, supporting sophisticated
conditions tailored to the specific needs of V2G operations.

6. Scenario: Grid Operator Request for Vehicle Battery Access

The practical application of the VESTA framework, particularly its SEVAC model, is
demonstrated through a scenario in which a grid operator requests access to a vehicle’s
battery during peak demand periods. This scenario not only elucidates the operational
intricacies of the framework but also highlights how it integrates AI and ML technologies
to manage real-time energy demands effectively.

6.1. System Interaction Sequence

Building upon the introduction of the VESTA framework, the following scenario
exemplifies how its components work together to process a grid operator’s request for
vehicle battery access. This scenario highlights the efficiency and decision-making prowess
of VESTA, particularly the SEVAC Engine, in balancing grid demands with user preferences
and vehicle status.

Figure 4 illustrates the streamlined sequence of interactions within the VESTA frame-
work during this process.

In this sequence, the procedural steps, from the initial request to the final decision, are
depicted with key interactions that include the following:

• The SEVAC engine orchestrates the overall decision-making process, acting as the
central hub of the VESTA framework.

• AI-driven modules conduct predictive analytics, leveraging machine learning to
generate forecasts that inform the decision-making process.

• Smart contracts verify and enforce user agreements, ensuring that energy sharing
adheres to predefined conditions and contractual obligations.

• Real-time interactions occur with the vehicle interface to execute access commands
and with the user notification system to keep stakeholders updated on the process.

This streamlined interaction sequence underscores VESTA’s ability to handle complex
decisions dynamically, optimising energy distribution while safeguarding user preferences
and grid stability.
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Figure 4. Sequence diagram: VESTA framework processing a grid operator’s request.

6.2. Decision Flow and Data Processing

To complement the interaction sequence, Figure 5 provides a detailed flowchart that
outlines the decision-making process within the SEVAC engine. This diagram offers insights
into the specific data flows and decision nodes encountered when processing a battery
access request.

The process begins with the classification of vehicles based on key attributes, such
as vehicle type, current battery status, and location. The SEVAC engine then integrates
environmental data and user preferences to tailor decisions according to the current condi-
tions and user-defined settings. Subsequently, the system employs artificial intelligence to
predict grid demand, ensuring that energy resources are allocated optimally.

As the process unfolds, the SEVAC engine evaluates various decision nodes, determin-
ing whether to grant or deny battery access. These decisions are based on a comprehensive
analysis of operational policies, user constraints, and the overall status of the grid. Upon
approval of access, the system proceeds with procedural steps, such as contract creation
and user notification, thereby completing the decision-making cycle.
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Figure 5. Flowchart: SEVAC engine decision process for battery access requests.

7. Proof of Concept

To demonstrate the practical application and efficacy of the VESTA framework, a proof
of concept (PoC) was developed using Python. This PoC simulates a complex scenario
where a smart grid, experiencing high demand due to a heatwave, must make real-time
decisions about accessing vehicle batteries to balance the load. The simulation involves
multiple vehicles of different types (emergency, commercial, and private), each with varying
charge levels and user preferences.

7.1. Simulation Setup and Parameters

The PoC was developed using Python, leveraging a range of libraries to handle various
aspects of the simulation. NumPy was used for numerical computations, Pandas for data
handling, Matplotlib for generating visualisations, and Scikit-learn for implementing AI and
machine learning algorithms. Additionally, hashlib was utilised for cryptographic functions
in the blockchain simulation. The simulation was executed on a typical workstation with
the following key parameters:

• Number of vehicles: 10 (divided into emergency, commercial, and private vehicles).
• Grid demand levels: Simulated to range between 0.5 and 1.0 to represent high-

demand scenarios.
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• Energy contribution limits: Vehicles were allowed to contribute between 5% and 20%
of their available charge based on the conditions.

• Simulation duration: The simulation covered a period representing several hours of
grid operation under high demand.

• Grid stability metrics: Grid stability was monitored using a custom metric that tracked
fluctuations in grid performance, both with and without VESTA’s intervention.

• AI prediction model: The AI model was used to inform decisions by estimating grid
demand based on predefined rules and available data inputs. These predictions were
updated periodically to reflect the simulated grid conditions and help manage energy
contributions effectively.

• CO2 emissions calculation: The simulation included a model for estimating CO2
emissions based on the energy mix used during peak demand. The emissions were
calculated for scenarios both with and without VESTA intervention, providing a
comparison to a baseline where fossil fuel-based plants were primarily used.

• Baseline comparison: A baseline scenario was established where the grid relied on
traditional fossil fuel-based plants to manage peak demand. This was used as a
benchmark to assess the environmental impact of the VESTA framework.

The choice of parameters in this simulation assumes the following conditions:

• Grid demand levels: The range of 0.5 to 1.0 represents moderate to high grid demand,
reflecting situations where grid stress increases, such as during a heatwave. This range
ensures the system is tested in both standard and peak demand conditions, where
V2G operations are critical for grid balancing.

• Energy contribution limits: Vehicles were allowed to contribute between 5% and 20%
of their available charge to balance grid needs and user autonomy. This range was
selected based on assuming that there is a requirement to preserve vehicle battery
health while also supporting the grid. The limit ensures that vehicle owners do not
deplete their batteries entirely, which is an essential factor in real-world adoption.

• Simulation duration: The time frame represents several hours of grid operation under
stress-testing scenarios to capture the dynamic interaction between grid demand
fluctuations and vehicle energy contributions. The duration ensures that both short-
term and sustained performance of the VESTA framework are evaluated.

This design of the simulation attempts to mimic realistic conditions, stress-testing
VESTA’s performance in grid balancing, user prioritisation, and energy management,
providing initial insights into its scalability and operational efficiency.

These libraries provided the computational efficiency and flexibility necessary to
model complex interactions between the vehicles and the grid. The setup enabled real-time
decision-making processes to be effectively simulated, allowing for a detailed exploration
of VESTA’s capabilities in balancing grid demand with vehicle energy contributions, main-
taining grid stability under varying conditions, and reducing CO2 emissions compared to
traditional grid management methods.

7.2. Grid Stability and Input Data

Grid stability was calculated based on the balance between energy demand and
contributions from vehicles. A custom grid stability metric was defined as follows:

Grid Stability Metric =
Energy Contributed by Vehicles

Total Grid Demand
.

This metric helped us to evaluate how well vehicle energy contributions aligned with
fluctuating grid demands, particularly under high load conditions. Stability values closer to
1 indicated a balanced grid, while lower values signalled instability. This metric was tracked
over time in the simulation both with and without VESTA’s intervention, offering insights
into VESTA’s role in maintaining grid stability. The simulation assumed the following
input data:
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• Grid data: Simulated high-demand grid data with fluctuations between 50% and 100%
of peak load.

• EV data: Data on 10 vehicles (emergency, commercial, and private) with varying
charge levels ranging from 50% to 100%.

• Demand curve: The grid demand followed a predefined curve to model stress-testing
during peak and off-peak periods.

• AI model inputs: Assumptions were made in terms of historical grid data and current
grid demand, which were provided to the AI model to predict grid load and adjust
vehicle contributions accordingly.

This setup allowed for an initial exploration of VESTA’s capabilities in managing grid
stability and vehicle prioritisation.

7.3. Pseudocode

A high-level pseudocode that outlines the core logic and flow of the VESTA framework
is provided in this section. The VESTA framework can be described in four main parts:
initialisation, AI prediction model, the core decision-making process, and utility functions.

7.3.1. Part 1: Initialisation and Input/Output Definition

This section defines the input and output variables, as well as the constants used
throughout the algorithm provided in Algorithm 1.

Algorithm 1 VESTA

1: Input variables:
2: vehicles: List of vehicle objects, where each vehicle is defined as:
3: vehicle.id: Unique identifier for the vehicle
4: vehicle.type: Type of vehicle (emergency, commercial, private)
5: vehicle.charge: Current charge level of the vehicle’s battery
6: grid_demand: Float representing current grid demand (range: 0 to 1)
7: user_permissions: Dictionary mapping vehicle IDs to user permission status (True/False)
8: historical_grid_data: Time series data representing past grid demand
9: Output variables:

10: energy_contributions: List of energy contribution objects, where each object contains:
11: contribution.vehicle_id: ID of the contributing vehicle
12: https://url.au.m.mimecastprotect.com/s/KTXXCwVLY6fWqV81SXS2

CJrnoM?domain=contribution.energyAmountofenergycontributed
13: system_activities: List of logged system activities
14: data_analysis: Object containing summary statistics
15: Constants:
16: MIN_CHARGE_THRESHOLD ← 50
17: MAX_ENERGY_CONTRIBUTION ← 20
18: CRITICAL_CHARGE_THRESHOLD ← 50
19: HIGH_PRIORITY_CHARGE_THRESHOLD ← 60
20: STANDARD_CHARGE_THRESHOLD ← 70
21: HIGH_PRIORITY_DEMAND_THRESHOLD ← 0.5
22: STANDARD_DEMAND_THRESHOLD ← 0.8

7.3.2. Part 2: AI Prediction Model

This section outlines the process of using AI to predict grid demand based on historical
and real-time data using Algorithm 2 .
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Algorithm 2 VESTA framework: AI prediction model

1: procedure PREDICTGRIDDEMAND(historical_grid_data, current_grid_demand)
2: model ← TrainAIPredictionModel(historical_grid_data)
3: grid_prediction←model.Predict(current_grid_demand)
4: return grid_prediction
5: end procedure

7.3.3. Part 3: Core Decision-Making Process

This section outlines the main simulation procedure, which processes each vehicle
and makes decisions about energy contributions. The relevant pseudocode is provided in
Algorithm 3.

Algorithm 3 VESTA framework: Core decision-making.

1: procedure RUNVESTASIMULATION(vehicles, grid_demand)
2: energy_contributions← ∅
3: system_activities← ∅
4: if ¬ ValidateInput(vehicles, grid_demand) then
5: throw InvalidInputException
6: end if
7: grid_prediction← PredictGridDemand(historical_grid_data, grid_demand)
8: for each vehicle in vehicles do
9: user_permission← GetUserPermission(vehicle.id)

10: if user_permission = FALSE then
11: system_activities.Append(“User permission denied for vehicle ” + vehicle.id)
12: continue
13: end if
14: processed_vehicle← LocalProcessor.ProcessData(vehicle)
15: decision← API.ProcessRequest(processed_vehicle, grid_prediction)
16: if decision = PERMIT then
17: energy_amount← CalculateEnergyContribution(vehicle.charge)
18: contract← CreateContract(vehicle.id, energy_amount)
19: RecordTransaction(contract, vehicle.id, energy_amount)
20: energy_contributions.Append({vehicle.id, energy_amount})
21: system_activities.Append(“Energy drawn from vehicle ” + vehicle.id)
22: else
23: system_activities.Append(“Vehicle ” + vehicle.id + “ not selected”)
24: end if
25: end for
26: data_analysis← AnalyzeData(vehicles)
27: return energy_contributions, system_activities, data_analysis
28: end procedure
29: procedure MAIN

30: vehicles← LoadVehicleData()
31: grid_demand← GetCurrentGridDemand()
32: contributions, activities, analysis← RunVESTASimulation(vehicles, grid_demand)
33: Generate Visualizations(contributions, activities, analysis)
34: end procedure
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The SEVAC (semantic-aware vehicle access control) decision function, as detailed
in Algorithm 3, is the central mechanism that determines whether a vehicle’s battery
can be accessed for energy contribution. The function first checks the user’s permission
(user_permission = FALSE), ensuring that no energy is drawn without the owner’s con-
sent. It then evaluates the vehicle’s classification (ClassifyVehicle(vehicle)), i.e., whether
it is critical, of high priority, or standard, and cross-references this with the vehicle’s
current charge and the predicted grid demand (grid_prediction). Only if the vehicle
meets all the necessary criteria, such as having a charge above the relevant threshold
CRITICAL_CHARGE_THRESHOLD, the function returns PERMIT, allowing energy contribution.
Otherwise, the decision defaults to DENY. This layered decision-making process ensures
that VESTA manages energy resources intelligently, balancing the needs of the grid with
user autonomy and vehicle priorities.

7.3.4. Part 4: Utility Functions

This section includes supporting functions that are crucial for the decision-making
process, such as the SEVAC decision function and vehicle classification. The pseudocode
for the utility functions is provided in Algorithm 4.

Algorithm 4 VESTA framework: Utility functions.

1: procedure SEVACDECISION(vehicle, vehicle_class, grid_prediction, user_permission)
2: if user_permission = FALSE then
3: return DENY
4: else if vehicle_class = critical ∧ vehicle.charge >

CRITICAL_CHARGE_THRESHOLD then
5: return PERMIT
6: else if vehicle_class = high_priority ∧ vehicle.charge >

HIGH_PRIORITY_CHARGE_THRESHOLD ∧ grid_prediction >
HIGH_PRIORITY_DEMAND_THRESHOLD then

7: return PERMIT
8: else if vehicle_class = standard ∧ vehicle.charge >

STANDARD_CHARGE_THRESHOLD ∧ grid_prediction >
STANDARD_DEMAND_THRESHOLD then

9: return PERMIT
10: else
11: return DENY
12: end if
13: end procedure
14: procedure CLASSIFYVEHICLE(vehicle)
15: if vehicle.type = emergency then
16: return critical
17: else if vehicle.type = commercial then
18: return high_priority
19: else
20: return standard
21: end if
22: end procedure

The four pseudocodes provided in this section offer a comprehensive overview of
the VESTA framework’s main components and their interactions. They illustrate the
flow of data and decision-making processes, from input validation to energy contribution
calculations and blockchain transactions. By integrating an AI prediction model, the
VESTA framework enhances its ability to anticipate grid demands and adjust vehicle
energy contributions dynamically. This approach not only optimises grid stability but
also ensures that energy-sharing decisions are made with a forward-looking perspective,
accounting for both current and predicted future conditions.
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7.4. Implementation Details

The PoC implementation in Python closely follows the logic outlined in the pseu-
docode above. Each layer of the VESTA framework is represented by specific classes and
functions, as detailed in the following subsections.

7.4.1. User Interface Layer

The user interface layer in the PoC is represented by a simple notification system, as
shown in Listing 1.

Listing 1. User Interface Notification System.

1 class UserInterface:
2 def display_notification(self , user_id , message):
3 print(f"Notification to User {user_id }: {message}")

This class simulates the user-facing component of the VESTA framework, providing
a mechanism to inform vehicle owners about the status of their energy contribution. In
a full implementation, this layer would include more sophisticated interfaces, possibly
mobile apps or web portals, allowing users to set preferences and view detailed energy-
sharing statistics.

7.4.2. Application Layer

The application layer forms the core of the VESTA framework, encompassing the
SEVAC engine, AI decision module, and ML predictive analytics. Listing 2 shows the
implementation of the SEVAC engine.

Listing 2. SEVAC Engine Implementation.

1 class SEVACEngine:
2 def evaluate_request(self , vehicle , grid_demand):
3 vehicle_class = self.classify_vehicle(vehicle)
4 prediction = self.ml_module.predict_demand(grid_demand)
5 decision = self.ai_module.make_decision(vehicle , vehicle_class ,

prediction)
6 return decision
7

8 def classify_vehicle(self , vehicle):
9 if vehicle[’type’] == ’emergency ’:

10 return ’critical ’
11 elif vehicle[’type’] == ’commercial ’:
12 return ’high_priority ’
13 else:
14 return ’standard ’

The SEVAC engine classifies vehicles and coordinates the decision-making process,
integrating predictions from the ML module and decision logic from the AI module. This
implementation demonstrates how the framework considers vehicle type, battery charge,
and predicted grid demand to make nuanced decisions about energy sharing.

7.4.3. Blockchain Layer

The blockchain layer is simulated through the SmartContract and DistributedLedger
classes, as shown in Listing 3.

Listing 3. Blockchain Layer Implementation.

1 class SmartContract:
2 def create_contract(self , vehicle_id , energy_amount):
3 contract = f"Contract_{vehicle_id}_{energy_amount}_{datetime.now()}

"
4 return hashlib.sha256(contract.encode ()).hexdigest ()
5

6 class DistributedLedger:
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7 def record_transaction(self , contract_hash , vehicle_id , energy_amount):
8 transaction = {
9 ’contract ’: contract_hash ,

10 ’vehicle ’: vehicle_id ,
11 ’energy ’: energy_amount ,
12 ’timestamp ’: datetime.now()
13 }
14 self.transactions.append(transaction)

These classes demonstrate how the VESTA framework could leverage blockchain
technology to create and record energy-sharing agreements. While simplified, this imple-
mentation showcases the potential for transparent, secure, and immutable record-keeping
in V2G systems.

7.4.4. Integration and Edge Computing Layers

The integration layer is represented by the APIGateway class, while the edge comput-
ing layer is simulated through the LocalProcessingUnit, as shown in Listing 4.

Listing 4. Integration and Edge Computing Layers.

1 class APIGateway:
2 def process_request(self , vehicle , grid_demand):
3 return self.sevac_engine.evaluate_request(vehicle , grid_demand)
4

5 class LocalProcessingUnit:
6 def process_vehicle_data(self , vehicle):
7 vehicle[’processed_data ’] = f"Processed_{vehicle[’id ’]}_{vehicle[’

charge ’]}"
8 return vehicle

These components demonstrate how VESTA could integrate with external systems
and process data at the edge, close to the data source. The LocalProcessingUnit simulates
the preprocessing of vehicle data before it’s sent to the central system, potentially reducing
latency and bandwidth requirements in a real-world implementation.

7.4.5. Data and Monitoring Layers

The data layer and monitoring and compliance layer are represented by the DataPro-
cessing and SystemMonitoring classes, as shown in Listing 5.

Listing 5. Data Processing and System Monitoring Implementation.

1 class DataProcessing:
2 def analyze_data(self , vehicles):
3 total_available_energy = sum(v[’charge ’] for v in vehicles if v[’

charge ’] > 50)
4 return {
5 ’total_vehicles ’: len(vehicles),
6 ’available_energy ’: total_available_energy
7 }
8

9 class SystemMonitoring:
10 def log_activity(self , activity):
11 timestamp = datetime.now()
12 self.activities.append ((timestamp , activity))
13 print(f"System Log: {activity} at {timestamp}")
14

15 def plot_activities(self):
16 # Code to generate activity timeline plot

These components demonstrate VESTA’s capability to analyse aggregate data, monitor
system activities, and generate visualisations for system operators. The DataAnalysis class,
not shown here, generates pie charts of vehicle type distribution and bar charts of energy
contributions, providing valuable insights into the system’s operation.
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8. Results and Discussion

The proof-of-concept (PoC) simulation generated extensive data, offering insights
into the VESTA framework’s performance. This section provides a detailed analysis of
the simulation results, linking them to the broader research questions and discussing the
implications for grid stability, vehicle prioritisation, AI decision-making, and blockchain
integration in vehicle-to-grid (V2G) systems.

8.1. System Activities and Decision-Making

Figure 6 illustrates the timeline of system activities throughout the simulation. The
timeline reveals the sequence and frequency of energy-drawing events, demonstrating
VESTA’s responsiveness to grid demands. The system efficiently logged multiple energy-
drawing events in quick succession, indicating effective decision-making and rapid re-
sponse to the simulated high-demand scenario.

Figure 6. System activities timeline.

The ability of VESTA to process multiple vehicles nearly simultaneously is critical for
managing large-scale V2G networks. The system logs demonstrate the following efficiency:

System Log: Energy drawn from vehicle 1 at 2024-07-11 12:40:54.413997
System Log: Energy drawn from vehicle 2 at 2024-07-11 12:40:54.414952
System Log: Energy drawn from vehicle 3 at 2024-07-11 12:40:54.414952
[...]

This efficiency underpins the framework’s potential scalability and real-time decision-
making capabilities, which are essential for widespread adoption in V2G operations.

8.2. Vehicle Type Distribution and Energy Contributions

The simulation incorporated a diverse set of vehicle types, which was crucial for
reflecting a realistic V2G scenario. Figure 7 shows the distribution of these vehicle types, a
key factor influencing energy-sharing priorities within VESTA.

Figure 8 details the energy contributions made by individual vehicles, revealing key
aspects of VESTA’s operation.

1. Prioritisation of critical vehicles: Emergency vehicles (e.g., IDs 1 and 5) consistently
contributed energy, aligning with the framework’s priority to maintain the readiness
of critical services.

2. Varied contribution levels: The range of energy contributions (5% to 20%) demon-
strates VESTA’s capability to make nuanced decisions based on vehicle characteristics
and grid needs.

3. Selective participation: Some vehicles (e.g., IDs 4 and 5) did not contribute, indi-
cating a selective approach by the framework, likely due to low charge levels or
user preferences.
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Figure 7. Distribution of vehicle types.

Figure 8. Energy contributions by vehicle.

8.3. Impact on Grid Performance

The VESTA framework demonstrated a positive impact on grid stability, particularly
during simulated high-demand periods. Figure 9 illustrates the grid stability metrics over
time, comparing scenarios with and without VESTA intervention.

Grid stability in the simulation was monitored using a custom stability metric based
on the balance between energy contributions from vehicles and the total grid demand. This
metric was tracked over time to assess the effectiveness of VESTA in maintaining a stable
grid during high-demand periods. With VESTA, the grid stability metric decreased by only
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15% during peak demand, compared to a 35% reduction without VESTA. This highlights
VESTA’s ability to maintain grid stability through intelligent energy distribution, reducing
the likelihood of overloads.
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Figure 9. Impact of VESTA on grid stability over time.

8.4. AI Decision-Making and Predictive Analytics

The AI decision-making capabilities embedded within VESTA were pivotal in optimis-
ing energy contributions during the simulation. By leveraging machine learning models,
VESTA accurately predicted grid-demand fluctuations, enabling proactive adjustments in
energy contributions from vehicles. Figure 10 showcases the prediction accuracy of the AI
models used in VESTA.

The AI component maintained an accuracy level above 90% throughout the simulation,
ensuring that the decisions made by VESTA were well-informed and aligned with real-time
grid conditions. This high level of accuracy contributed significantly to the overall stability
and efficiency of the grid.
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Figure 10. AI prediction accuracy over time.
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8.5. Blockchain Integration and Transaction Integrity

The PoC’s blockchain layer successfully recorded all energy-sharing transactions,
ensuring transparency and immutability. Each transaction included a unique contract hash,
vehicle ID, energy amount, and timestamp, providing a comprehensive audit trail. This
secure transaction recording is essential for maintaining trust and regulatory compliance in
V2G operations.

8.6. Scalability and Real-World Applicability

The simulation results suggest that VESTA is capable of scaling effectively to manage
larger networks of vehicles. However, the system’s performance under more complex
scenarios with a higher number of vehicles remains an area for future research. Figure 11
explores the potential scalability of VESTA by analysing the system’s response time as the
number of vehicles increases.
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Figure 11. Scalability assessment of VESTA with an increasing number of vehicles.

The linear increase in response times suggests that VESTA can manage growing vehicle
networks but may require enhanced processing capabilities or distributed computing
strategies to maintain performance in large-scale implementations.

8.7. Environmental Impact

VESTA contributes to environmental sustainability by reducing reliance on fossil
fuel-based peaker plants. The framework’s optimisation strategies have led to a significant
reduction in CO2 emissions, as depicted in Figure 12.

Figure 12. Environmental impact: CO2 emissions reduction with VESTA.
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The reduced emissions not only highlight VESTA’s effectiveness in energy manage-
ment but also its potential contribution to meeting environmental targets and promoting
sustainable energy practices.

9. Limitations and Future Work

While the VESTA framework presents a promising approach to vehicle-to-grid (V2G)
energy management, several limitations and areas for future research must be acknowledged.

9.1. Proof of Concept Limitations

The current implementation of VESTA is a proof of concept (PoC) rather than a real-
world deployment. While the PoC demonstrates the framework’s potential, it lacks the
complexities and scale of an actual V2G network. Real-world factors such as network
latency, hardware failures, and large-scale user interactions are not fully captured in
this simulation. Future work should focus on pilot deployments to validate VESTA’s
performance in real-world conditions, incorporating these additional complexities.

9.2. Graph Convolution Techniques

One limitation of the current implementation of the VESTA framework is the exclusion
of graph convolution techniques. While graph convolution methods are powerful for
processing graph-structured data, they are not directly applicable to the specific challenges
addressed by VESTA. The framework focuses on real-time decision-making, user permis-
sions, and energy management within a V2G system, where the primary data structure
is not inherently graph-based. Future work could explore the potential integration of
graph-based methods if applicable scenarios arise, although the current scope and objec-
tives did not necessitate their inclusion. This decision prioritises the development of a
solution tailored specifically to the dynamic and context-sensitive nature of V2G energy
management rather than adopting a one-size-fits-all approach.

9.3. Interoperability Challenges

The VESTA framework integrates various technologies, including AI, blockchain,
and edge computing. While this integration offers numerous benefits, it also presents
interoperability challenges. Ensuring seamless communication and data exchange between
these diverse technologies in a large-scale, heterogeneous V2G environment remains not
fully explored. Future research should address standardisation efforts and develop robust
interfaces between different technological components to enhance interoperability.

9.4. AI Reliability and Trust

The reliance on AI for decision-making in VESTA, while innovative, raises concerns
about reliability and trust. AI models, particularly those based on machine learning,
can exhibit unexpected behaviours or “hallucinations” when faced with novel situations.
In a critical infrastructure like the power grid, such unpredictability could have severe
consequences. Further research is needed to develop more robust and explainable AI
models, possibly incorporating formal verification methods to ensure reliable operation
under all circumstances. Additionally, building user trust in these AI systems is crucial and
it requires transparent AI processes and results. Advanced AI and semantic processing in
VESTA require substantial computational resources, which could pose challenges in large-
scale, real-time deployments. Further research should focus on optimising computational
efficiency while maintaining the system’s decision-making capabilities.

9.5. Inherent Limitations of VESTA

The VESTA framework, while comprehensive, has inherent limitations. Its effective-
ness is heavily dependent on the quality and availability of data from vehicles and the grid.
In scenarios where data are incomplete or unreliable, the framework’s decision-making
capabilities may be compromised. Additionally, the current design may not fully account
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for rapid changes in grid conditions or extreme weather events, which could necessitate
more dynamic and adaptive algorithms. Research into more resilient and adaptive system
designs will be vital to address these challenges. Additionally, VESTA’s performance as-
sumes a certain level of smart grid infrastructure, which may not be universally available.
Future work should explore VESTA’s adaptability to various grid infrastructure conditions.

9.6. Policy and Fairness Considerations

VESTA’s policy of prioritising emergency vehicles over private vehicles, while logical
for critical situations, raises fairness concerns in everyday operations. There is a risk that
energy companies or government bodies could misuse this prioritisation system for non-
emergency purposes. Future iterations of VESTA should incorporate more nuanced policy
frameworks that balance emergency needs with fair access for all users. This could include
implementing oversight mechanisms and transparent reporting of prioritisation decisions
to ensure equitable treatment of all stakeholders.

9.7. Scalability Issues

Despite the inclusion of edge computing components, VESTA may face scalability
challenges in very large networks. As the number of participating vehicles grows, the
volume of data and the complexity of decision-making increase exponentially. This could
lead to performance bottlenecks and increased latency. Further research is needed to
optimise the framework’s architecture for massive-scale deployments, possibly exploring
more distributed decision-making models. Investigating alternative technologies, such as
federated learning, could also enhance scalability.

9.8. Participation and Emergency Scenarios

A critical limitation of the current VESTA model is its reliance on voluntary participa-
tion. In emergency scenarios where insufficient users agree to share energy, the system’s
ability to respond effectively could be compromised. This highlights the need for research
into incentive structures and emergency protocols that can ensure critical energy needs are
met even with limited participation. Future work should explore dynamic pricing models,
gamification strategies, and regulatory frameworks to address this challenge. Ensuring
robust user engagement and participation is essential for the success of VESTA.

9.9. Privacy Concerns

The extensive data collection required for VESTA’s operation raises significant privacy
concerns. The system’s ability to gather detailed information about users’ energy usage
patterns, vehicle locations, and daily routines could be seen as invasive. While these
data are crucial for optimal system performance, they also presents risks of misuse or
unauthorised access. Future developments of VESTA must prioritise robust data-protection
measures, including advanced encryption, anonymisation or obfuscation techniques, and
user-controlled data-sharing options. Research into privacy-preserving machine learning
techniques and decentralised data storage solutions could also help address these concerns.

While blockchain ensures transaction integrity, the extensive data collection required
for optimal decision-making raises potential privacy issues that need further exploration.
Future work should focus on enhancing privacy-preserving techniques that balance system
performance with user data protection.

Addressing these limitations will be crucial for the further development and potential
real-world implementation of the VESTA framework. Future research should focus on
refining the framework’s components, conducting larger-scale simulations and pilot studies,
and developing solutions to the identified challenges. By doing so, VESTA can evolve into
a more robust, reliable, and widely applicable solution for V2G energy management.



Computers 2024, 13, 249 32 of 33

10. Conclusions

This paper has presented VESTA, a novel framework for vehicle-to-grid (V2G) energy
management and its core component, the semantic-aware vehicle access control (SEVAC)
model. The development of VESTA was driven by two primary motivations: maintaining
users’ control over their vehicle’s energy resources and ensuring that vehicles in urgent
need of recharging are not inadvertently slowed.

VESTA addresses these concerns through a comprehensive, multi-layered approach
that integrates advanced technologies such as artificial intelligence, machine learning,
blockchain, and edge computing. The framework’s innovative design allows for context-
aware decision-making, taking into account factors such as vehicle type, user preferences,
grid demands, and context, e.g., emergency situations.

At the heart of VESTA, the SEVAC model provides an access control mechanism
for classifying vehicles and making optimised access control decisions. By incorporating
semantic awareness into the decision-making process, SEVAC ensures that critical vehicles,
such as emergency services, are prioritised appropriately while still respecting the needs
and preferences of individual users.

The proof of concept implementation demonstrated VESTA’s potential to effectively
manage complex V2G scenarios, showcasing its ability to balance grid stability with user
autonomy. The framework’s capacity to make rapid, context-aware decisions while main-
taining a transparent record of all transactions through blockchain technology represents a
significant step forward in V2G energy management.

The future of V2G systems lies in intelligent, user-centric frameworks that can adapt
to the complex and dynamic nature of modern energy grids. As electric vehicle adoption
continues to grow and power grids become increasingly decentralised, frameworks like
VESTA will play a crucial role in managing energy resources efficiently and equally.
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