
Citation: Li, Y. Area–Time-Efficient

High-Radix Modular Inversion

Algorithm and Hardware

Implementation for ECC over Prime

Fields. Computers 2024, 13, 265.

https://doi.org/10.3390/

computers13100265

Academic Editors: Helge Janicke and

Leandros Maglaras

Received: 10 September 2024

Revised: 8 October 2024

Accepted: 10 October 2024

Published: 12 October 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Area–Time-Efficient High-Radix Modular Inversion Algorithm
and Hardware Implementation for ECC over Prime Fields
Yamin Li

Computer Architecture Laboratory, Department of Computer Science, Faculty of Computer and Information
Sciences, Hosei University, Tokyo 184-8584, Japan; yamin@hosei.ac.jp

Abstract: Elliptic curve cryptography (ECC) is widely used for secure communications, because
it can provide the same level of security as RSA with a much smaller key size. In constrained
environments, it is important to consider efficiency, in terms of execution time and hardware costs.
Modular inversion is a key time-consuming calculation used in ECC. Its hardware implementation
requires extensive hardware resources, such as lookup tables and registers. We investigate the state-
of-the-art modular inversion algorithms, and evaluate the performance and cost of the algorithms
and their hardware implementations. We then propose a high-radix modular inversion algorithm
aimed at reducing the execution time and hardware costs. We present a detailed radix-8 hardware
implementation based on 256-bit primes in Verilog HDL and compare its cost performance to other
implementations. Our implementation on the Altera Cyclone V FPGA chip used 1227 ALMs (adaptive
logic modules) and 1037 registers. The modular inversion calculation took 3.67 ms. The AT (area–time)
factor was 8.30, outperforming the other implementations. We also present an implementation of ECC
using the proposed radix-8 modular inversion algorithm. The implementation results also showed
that our modular inversion algorithm was more efficient in area–time than the other algorithms.

Keywords: computer security; elliptic curve cryptography; modular inversion; hardware; Verilog
HDL; FPGA; cost performance evaluation

1. Introduction

Nowadays, Internet of Things (IoT) applications use hardware security modules to
ensure secure communications. In such a constrained environment, execution time and
hardware costs are critical to efficient system design. Elliptic curve cryptography (ECC) is
one of the most advanced public key cryptographic techniques. It requires a smaller key
than other methods, to achieve roughly the same level of security.

ECC can be used to provide secure key agreement between two parties over an insecure
network. It can also be used for digital signatures, to verify the authenticity and integrity
of digital messages. Modular inversion is a critical operation in ECC. ECC calculates points
on an elliptic curve over a finite field (such as a field of prime numbers) based on point
addition (PA) and point doubling (PD) computations. In affine coordinates, PA and PD
must calculate the slope of a line. Such calculations involve costly modular inversions.
In projective or Jacobian coordinates, PA and PD do not require such calculations, but a
modular inversion is still required to transform the points into affine coordinates to obtain
the same key for the two parties.

Given a prime number m, the inverse r of a number a with a < m is defined as
r = a−1 mod m. There are two main popular methods for calculating modular inversion:

1. Extended Euclidean algorithm (EEA) without using divisions.
2. Using Fermat’s little theorem am−1 = 1 mod m [1]: r = am−2 mod m = a−1 mod m.

We will see that the method using Fermat’s little theorem takes more time and requires
more registers than the EEA. Therefore, we focus our design on the use of the EEA.
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The EEA inherently needs divisions. It calculates the integer quotient and the remain-
der based on the quotient. The divisions can be replaced by addition, subtraction, and shift
operations. For simplicity, we will also refer to the EEA which does not use divisions as
an EEA.

To calculate r = a−1 mod m, the EEA first initializes the variables u, v, x, y with in-
puts a, m, 1, 0, respectively. Then, the EEA repeats calculations containing only addition,
subtraction, and shift operations on u, v, x, y until u = 1 or v = 1. Finally, the modular
inversion result is available by adjusting x or y, corresponding to u = 1 or v = 1. A modular
inversion algorithm is said to be fast if u or v reaches 1 quickly.

The most widely used modular inversion algorithm is Algorithm 2.22, proposed by
Hankerson, Menezes, and Vanstone [2]. It repeatedly shifts u or v to the right when u
or v is even. Correspondingly, x is also shifted to the right with the shift of u; y is also
shifted to the right with the shift of v. Note that, when x or y is odd, m will be added before
the shift. This guarantees that the value to be right-shifted is even, since the prime m is
odd. Next, if u ≥ v, u and x are replaced by u − v and x − y, respectively. Otherwise, v
and y are replaced by v − u and y − x, respectively. Finally, the result is x mod m if u = 1,
and y mod m otherwise. Hossain and Kong [3] revised Algorithm 2.22 by adding m to x
or y if it is negative. This ensures that x and y are non-negative. Daly, Marnane, Kerins,
and Popovici [4] revised Algorithm 2.22 by dividing u − v or v − u by two because the
subtraction result is even (both u and v are odd before the subtraction). Correspondingly,
x − y or y− x also needs to be divided by two: If x − y or y− x is odd, m is added before the
division. Division by two is performed by shifting one bit to the right. Mrabet, El-Mrabet,
Bouallegue, Mesnager, and Machhout proposed a modular inversion algorithm [5] with
u + v. Instead of u − v or v − u, as Algorithm 2.22 uses, they perform u + v for new u or v.
This operation slows down the speed at which u or v reaches 1, increasing the execution
time. Chen and Qin proposed a modular inversion algorithm [6] that only uses adders.
Subtractions are performed by addition with inversion and addition by 1. Choi, Lee, Kong,
and Kim proposed a modular inversion algorithm [7] that replaces the repeated shift of
u or v and the corresponding shift of x or y in Algorithm 2.22 by a selection of u, x or 0, 0,
or a selection of v, y or 0, 0, based on the even/odd of v or u. This simplifies the circuit by
replacing adders with multiplexers, reducing the circuit delay. In addition, they use −v
and −y, instead of v and y, during the calculation. This merges u − v and v − u into u + v
and merges x − y and y − x into x + y, reducing the circuit cost. Mixed radix-4 modular
inversion algorithms were investigated in [7–10]. If u or v is divisible by four, u or v is
shifted to the right by two bits. Otherwise, if u or v is even (divisible by two), u or v is
shifted to the right by one bit. Otherwise (both u and v are odd), u − v or v − u is shifted to
the right by one bit and assigned to u or v. Correspondingly, x or y is adjusted by adding
−m, m, or 2m and shifted to the right by two bits or one bit. [8] proposed a radix-4 modular
inversion algorithm that uses sequential condition checking for the calculation of u, v, x,
and y. [9] implemented the SM2 ECC protocol. The iterations of the modular inversion
are controlled by the bit counter ρ, resulting in unnecessary iterations. Using u and v to
control the iterations will finish the calculation quickly. [10] presented a radix-4 version
of Algorithm 2.22. Dong, Zhang, and Gao proposed a mixed radix-8 modular inversion
algorithm [11] that uses extensive hardware resources. Hao et al. presented a lightweight
architecture for elliptic curve scalar multiplication over prime fields [12]. They revised
Algorithm 2.22 by using only adders and forced x − y and y − x to be in the range 0 to m.
Guo et al. proposed a modular inversion algorithm [13] that makes v always be odd. If u is
even, it is shifted one bit to the right. Correspondingly, x is also shifted one bit to the right
(if x is odd, m is added before the shift). Otherwise (u is odd), u − v (if u ≥ v) or v − u (if
u < v) is shifted one bit to the right, and the shifted value is assigned to u. Meanwhile,
x − y or y − x is shifted one bit to the right, and the shifted value is assigned to x. Then,
v is updated with u or v; y is updated with x or y. The above calculations are repeated
until u becomes 1. Then, the result of the modular inversion is x. In lines 14 and 15 of their
algorithm, x′1 and x′2 are compared and x1 is guaranteed to be non-negative. However, due
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to the division by two, the dividend must be adjusted so that it is even. If it is odd, m (p in
their algorithm) must be added to it before the division. These codes were not presented in
their algorithm.

The AT (area–time) factor is often used for comparisons between implementations.
It is defined as the execution time in milliseconds multiplied by the required hardware
resources consisting of registers and lookup tables or ALMs (adaptive logic modules).

In this paper, we implement and evaluate all the algorithms mentioned above. We then
propose a mixed radix-8 modular inversion algorithm aimed at reducing the execution time
and hardware costs. We give a detailed hardware implementation in Verilog HDL based
on 256-bit prime numbers. This had lower hardware costs for ALMs and registers and had
better performance than the other algorithms. The implementation on the Altera Cyclone V
FPGA chip used 1227 ALMs and 1037 registers and took 3.67 ms for the modular inversion
computation. It achieved an AT factor of 8.30, lower than all other implementations. We
show that the proposed algorithm is also efficient for 192-bit and 521-bit prime numbers.
We implemented ECC using different modular inversion algorithms and compared their
cost performance. The ECC implementation results showed that our modular inversion
algorithm was more efficient in area–time than the other algorithms. We also present an
efficient implementation of the Montgomery ladder scalar point multiplication algorithm,
a constant execution time algorithm that is resistant to side-channel attacks. The short
execution time and low hardware cost of our algorithm and implementation are significant
advantages, especially in constrained environments where computing and battery power
are limited.

The rest of this paper is organized as follows: Section 2 introduces ECC and modular
inversion algorithms. In Section 3, we propose a mixed radix-8 modular inversion algo-
rithm, give its hardware implementation in Verilog HDL, and compare its cost performance
with other algorithms. In Section 4, we provide an ECC implementation using the pro-
posed radix-8 modular inversion algorithm and compare its cost performance with ECC
implementations using other modular inversion algorithms. This section also presents an
efficient implementation of the Montgomery ladder scalar point multiplication algorithm.
In Section 5, we discuss some issues related to the algorithm and hardware design. We
conclude the paper and suggest some future research topics in Section 6.

2. ECC and Modular Inversion Algorithms

This section introduces ECC and modular inversion algorithms based on the EEA.

2.1. Elliptic Curve Cryptography

ECC [14,15] relies on the fact that scalar point multiplication Q = dP can be computed,
but it is almost impossible to compute d given only the original point P and the point
of the product Q. An ECC over the finite field of an n-bit prime number m can use the
following equation:

y2 = x3 + ax + b mod m (1)

For example, the Secp256k1 [16] elliptic curve used in Ethereum Blockchain uses a 256-bit
m = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1. Secp256k1 defines y2 = x3 + ax + b = x3 + 7
and gives a point P = [x, y] on the elliptic curve, as follows:

a = 0x0000000000000000000000000000000000000000000000000000000000000000
b = 0x0000000000000000000000000000000000000000000000000000000000000007
m = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
x = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
y = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

The elliptic curve Diffie–Hellman (ECDH) key exchange protocol can be used by
two parties, Alice and Bob for example, to establish a shared secret key over an insecure
network [16,17]. The ECDH protocol is shown in Table 1.
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Table 1. ECDH key exchange.

Expose an Elliptic Curve y2 = x3 + ax + b mod m and a Point P
on the Elliptic Curve to the World

Alice Bob

Generate a secret da Generate a secret db
Calculate Qa = daP Calculate Qb = dbP

Expose Qa Expose Qb

Get Qb from Bob Get Qa from Alice
Calculate Qab = daQb Calculate Qba = dbQa

Use x of Qab as the key Use x of Qba as the key

Because Qab = daQb = dadbP, Qba = dbQa = dbdaP, and dadb = dbda, we have
Qba = Qab. Below is an ECDH key exchange example using Secp256k1. We can see that the
two parties, Alice and Bob, have the same shared secret key (Qabx = Qbax).

Alice generates and keeps da secret and exposes Qa = daP:

da = 0x650aa7095daeaa37ab9051541f0ce304f8969a6d88bb3bebb4fe680fca9a2595
Qax = 0x167d2537aa6bbd8d978b58be0f9466520b7b184e205ff96a9ff567b35b32c7b7
Qay = 0xde3961553d36551f92726fee0e332133960edddccd2784b98b2af730d2fc6e14

Bob generates and keeps db secret and exposes Qb = dbP:

db = 0xedc68f194c4e30d6ef90467df822b00e5ef122dea48c9d1c54817080d1a341f4
Qbx = 0x839da64a414c2243a5526230603109be9c615613a9e98c3d650bb0488580bbda
Qby = 0x96e88e99304a5afcdd77c4f3b3327a28162627ebe08194baa0c78dfb67a11042

Alice obtains Qb and calculates Qab = daQb:

Qabx = 0x1f254c7da15899275cdcab9d992f58251a4ab630fe9864d20cf317ab57749947
Qaby = 0xd6cb400b3c49d33d3df28f9d34fa09f8b6c8edf117a378c5a45d0a51e6c0debc

Bob obtains Qa and calculates Qba = dbQa:

Qbax = 0x1f254c7da15899275cdcab9d992f58251a4ab630fe9864d20cf317ab57749947
Qbay = 0xd6cb400b3c49d33d3df28f9d34fa09f8b6c8edf117a378c5a45d0a51e6c0debc

Now, Alice and Bob have the same secret key (Qabx = Qbax). They can use symmetric-
key cryptography for subsequent communications. A third party, Eve for example, knows
y2 = x3 + ax + b mod m, P, Qa, and Qb, but cannot calculate the same secret key.

2.2. Point Addition and Point Doubling

Scalar point multiplication Q = dP uses point addition (PA) and point doubling (PD).

2.2.1. Point Addition

Given P = [xp, yp] and Q = [xq, yq], the formulas for point addition R = [xr, yr] = P + Q
on elliptic curve y2 = x3 + ax + b mod m are shown as follows, where λ is the slope of the
line through points P and Q. The derivation of the formulas can be found in [18].


λ =

yq − yp

xq − xp
mod m

xr = (λ2 − xp − xq) mod m

yr = (λ(xp − xr)− yp) mod m

(2)

The point at infinity, denoted O, is included in the group of elliptic curves and is de-
fined as P + (−P) = O for Q = −P. By this definition, P +O = P. In our implementation,
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O is represented as [−1,−1]. In the case of P = O, R = P + Q = O + Q = Q. In the case
of Q = O, R = P + Q = P +O = P. We give the point addition R = P + Q algorithm over
the finite field of Fm in Algorithm 1. In the case of Q = −P, R = P + Q = P + (−P) = O
(line 5 in the algorithm). In the case of Q = P, R = P + Q = P + P = 2P, we perform the
point doubling R = 2P (line 6 in the algorithm).

Algorithm 1 PA (P, Q, m, a) (Point Addition in Affine Coordinates).

inputs: Points P = [Px, Py] and Q = [Qx, Qy]; m and a in y2 = x3 + ax + b mod m
output: R = P + Q = [Rx, Ry] = [xr, yr]
begin

1 xp = Px, yp = Py, xq = Qx, yq = Qy, O = [−1,−1]
2 if P = O return Q /* O + Q = Q */
3 if Q = O return P /* P +O = P */
4 if xp = xq
5 if (yp + yq) mod m = 0 return O /* P + (−P) = O */
6 else return PD (P, m, a) /* P + P = 2P */
7 λ = ((yq − yp)/(xq − xp)) mod m
8 xr = (λ2 − xp − xq) mod m
9 yr = (λ(xp − xr)− yp) mod m

10 return [xr, yr] /* R = P + Q */
end

An example of point addition R = P + Q on the Secp256k1 curve is shown below,
where [Px, Py] = P, [Qx, Qy] = Q, and [Rx, Ry] = R in affine coordinates.

Px = 0xfc7dafb820a20da1a73c36465f2fe37bfd98ce4ef3a10a5df110abda03b20a3d
Py = 0xa442a2d1b8bde4a09e45725add5daae89e726b56f0e8fe6609dacaf5279b2564
Qx = 0xe106c069450b2663febb83e29b67fa93c4c48a45d5fbe7ce4ddb8ceb601fcc1d
Qy = 0xc9da9bd440909c8862c06a44d432d2dd45284636b7049b9bf4695f9e4018d2f2
Rx = 0xfd52a0334e16f8cf45a6b0820887a9e8b1b180516a76c8adfef95df98aeef376
Ry = 0xb0fe3f04cc4c64fd66a133b8c97b4905771238f8ba89631efb85a8059e969a49

2.2.2. Point Doubling

Given P = [xp, yp], the formulas for point doubling R = [xr, yr] = 2P on elliptic curve
y2 = x3 + ax + b mod m are shown as follows, where λ is the slope of the tangent line of
the elliptic curve at point P. The derivation of the formulas can be found in [18].

λ =
3x2

p + a
2yp

mod m

xr = (λ2 − 2xp) mod m

yr = (λ(xp − xr)− yp) mod m

(3)

We give the point doubling R = 2P algorithm over the finite field of Fm in Algorithm 2.
In the case of Py = 0 (vertical tangent line), R = 2P = O (line 2 in the algorithm).

An example of point doubling R = 2P on the Secp256k1 curve is shown below, where
[Px, Py] = P and [Rx, Ry] = R in affine coordinates.

Px = 0x6034b56424fb31ea6ec5483b52ae5d07d6f3ef80264d769ae2714abb83fb279a
Py = 0xfe4cde1ff7546a87f906f50ab1002fda7811828ea6fc467a44d1c6c11aa65a37
Rx = 0x5491ee8b73a4ed9713ed32e467de5100b80861babf8ffd09fd595ab457d042c9
Ry = 0xf91e6a4e132a1bdf4f5c846559431ec7373de8872b719f188b5902932f0a2b30

The computation of λ in PA and PD requires modular division, which can be realized
using a modular inversion algorithm based on the EEA.
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Algorithm 2 PD (P, m, a) (Point Doubling in Affine Coordinates).

inputs: Point P = [Px, Py]; m and a in y2 = x3 + ax + b mod m
output: R = 2P = [Rx, Ry] = [xr, yr]
begin
1 xp = Px, yp = Py, O = [−1,−1]
2 if yp = 0 return O /* vertical tangent */
3 λ = ((3x2

p + a)/(2yp)) mod m
4 xr = (λ2 − 2xp) mod m
5 yr = (λ(xp − xr)− yp) mod m
6 return [xr, yr] /* R = 2P */
end

2.3. Modular Inversion Algorithms

Given a prime number m, the inverse r of a number a with a < m is defined as

r = a−1 mod m (4)

Algorithm 3 (modinv_fermat) implements the modular inversion calculation using
Fermat’s little theorem. If m is prime and a ̸= 0 (mod m), Fermat’s little theorem says that
am−1 = 1 mod m. Multiplying both sides by a−1 gives us am−2 mod m = a−1 mod m. Then,
we can calculate the modular inversion with r = am−2 mod m. This modular exponenti-
ation can be performed using the multiply-squaring method, as shown in Algorithm 3
(modinv_fermat). This calculation consists of costly modular multiply and modular squar-
ing, very similar to RSA exponentiation [19].

Algorithm 3 modinv_fermat (a, m) (Modinv using Fermat’s little theorem).
inputs: Prime m and a with a < m
output: a−1 mod m
begin
1 k = m − 2; x = 1; y = a
2 while k ̸= 0
3 if k is odd
4 x = xy mod m /* modular multiply */
5 y = y2 mod m /* modular squaring */
6 k = k ≫ 1
7 return x
end

The Python code below implements Algorithm 3 (modinv_fermat). When executed, it
outputs 4 4 4. The first value is calculated by the code, and the rest are for checking.

# modinv_fermat.py, Fermat's Little Theorem, a^{-1} = a^{m-2} mod m
def modinv_fermat (a, m): # return a^{-1} mod m

k = m - 2; x = 1; y = a
while k != 0:

if k & 1 == 1:
x = x * y % m # modular multiply

y = y * y % m # modular squaring
k = k >> 1

return x
a = 3; m = 11
print (modinv_fermat(a, m), pow(a, -1, m), pow(a, m-2, m))
"""
$ python3 modinv_fermat.py
4 4 4
"""
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The EEA can be used for the modular inversion calculation. Algorithm 4 (modinv1)
gives the fundamental EEA for the modular inversion calculation. Line 4 calculates the
integer quotient q of u divided by v. Lines 5 and 6 calculate the remainders v = u − qv and
y = x − qy based on the quotient q and store the original v and y in u and x, respectively.
These calculations are repeated until v = 0.

Algorithm 4 modinv1 (b, a, m) (Modular Inversion Algorithm 1).
inputs: Prime m, a, and b with a, b < m
output: ba−1 mod m
begin
1 u, v = a, m /* u = a and v = m */
2 x, y = b, 0 /* x = b and y = 0 */
3 while v ̸= 0
4 q = ⌊u/v⌋ /* q: integer quotient */
5 u, v = v, u − qv
6 x, y = y, x − qy
7 return x mod m
end

Considering b = 1. u and x are initialized with a and 1, respectively. At each iteration,
u and x are modified with similar calculations. Therefore, when u reaches 1 from a, x
reaches the reciprocal of a from 1:

u : a → (/a) → 1; x : 1 → (/a) → a−1; x : b → (/a) → ba−1

If m is a prime number, the greatest common divisor of a and m is guaranteed to be
1, and we can always obtain the inverse result of a. With the initialization of x with b, the
algorithm performs the modular division r = ba−1 mod m.

An execution example of Algorithm 4 (modinv1) with b = 1, a = 3, and m = 11 is
shown in Table 2. The calculation finishes when v = 0. The result r = a−1 mod m = x
mod m = 4 mod 11 = 4. We can check the correctness as follows: ra mod m = 4 × 3
mod 11 = 12 mod 11 = 1 mod 11.

Table 2. Execution example of Algorithm 4 (modinv1) with b = 1, a = 3, and m = 11. It calculates
r = 3−1 mod 11. The result is x mod m = 4 mod 11 = 4.

i u v x y q

0 3 = a 11 = m 1 = b 0 q = u/v

0 u = v v = u − q ∗ v x = y y = x − q ∗ y

1 0 = 3/11

1 11 = v 3 = 3 − 0 ∗ 11 0 = y 1 = 1 − 0 ∗ 0

2 3 = 11/3

2 3 = v 2 = 11 − 3 ∗ 3 1 = y −3 = 0 − 3 ∗ 1

3 1 = 3/2

3 2 = v 1 = 3 − 1 ∗ 2 −3 = y 4 = 1 − 1 ∗ (−3)

4 2 = 2/1

4 1 = v 0 = 2 − 2 ∗ 1 4 = y −11 = (−3)− 2 ∗ 4

End u = 1 v = 0 x = 4

The algorithm requires division, which is expensive. As shown in Algorithm 5 (mod-
inv2), we can eliminate the division by setting the quotient to 0 or 1.
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Algorithm 5 modinv2 (b, a, m) (Modular Inversion Algorithm 2).
inputs: Prime m, a, and b with a, b < m
output: ba−1 mod m
begin
1 u, v = a, m
2 x, y = b, 0
3 while v ̸= 0
4 q = 0 if u < v else 1
5 u, v = v, u − qv
6 x, y = y, x − qy
7 return x mod m
end

The algorithm yields a quotient of 0 or 1 based on the comparison of u and v. If the
quotient is a 1, subtractions u − v and x − y are performed (lines 5 and 6). Otherwise no
calculations are performed (simply swapping u with v and swapping x with y), which
make the computation slower. The execution of Algorithm 5 (modinv2) with b = 1, a = 3,
and m = 11 requires nine iterations, as shown in Table 3.

Table 3. Execution example of Algorithm 5 (modinv2) with b = 1, a = 3, and m = 11. It calculates
r = 3−1 mod 11. The result is x mod m = −7 mod 11 = (11 − 7) mod 11 = 4.

i u v x y q

0 3 11 1 0 0
1 11 3 0 1 1
2 3 8 1 −1 0
3 8 3 −1 1 1
4 3 5 1 −2 0
5 5 3 −2 1 1
6 3 2 1 −3 1
7 2 1 −3 4 1
8 1 1 4 −7 1
9 1 0 −7 11

The algorithm can be modified to remove the no calculations, as shown in Algorithm 6
(modinv3). The code in lines 4 and 5 ensures that u and v are non-negative. Note that u and
x are one pair, and v and y are another pair. Algorithm 6 (modinv3) reduces the number of
iterations by about half, as shown in Table 4.

Algorithm 6 modinv3 (b, a, m) (Modular Inversion Algorithm 3).
inputs: Prime m, a, and b with a, b < m
output: ba−1 mod m
begin
1 u, v = a, m
2 x, y = b, 0
3 while u ̸= 1 and v ̸= 1
4 if u < v : v, y = v − u, y − x
5 else u, x = u − v, x − y
6 if u = 1 return x mod m
7 else return y mod m
end
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Table 4. Execution example of Algorithm 6 (modinv3) with b = 1, a = 3, and m = 11. It calculates
r = 3−1 mod 11. The result is x mod m = 4 mod 11 = 4, because u = 1.

i u v x y

0 3 11 1 0
1 3 8 1 −1
2 3 5 1 −2
3 3 2 1 −3
4 1 2 4 −3

In Table 4, because v > u for i = 0 to 2, we update v with v − u. Correspondingly, we
update y with y − x. For i = 3, because u > v, we update u with u − v. Correspondingly,
we update x with x − y. For i = 4, because u = 1, the result is x mod m = 4.

We can check u first, before the subtractions. If it is even, we shift it to the right by one
bit (the least significant bit 0 is shifted out). Correspondingly, x must also be shifted. To
ensure that the value to be right-shifted is even, m will be added before the shift if x is odd.
Note that m is odd because it is a prime number. These shifts of u and x can be performed
repeatedly until u becomes an odd number.

Similarly, if v is even, we shift it to the right by one bit. Correspondingly, y must also
be shifted. If y is odd, m will be added before the shift. These shifts of v and y can be
performed repeatedly until v becomes an odd number.

Then, we obtain the algorithm shown in Algorithm 7 (modinv4). The idea behind it is
that division makes u and v reach 1 faster than subtraction. In fact, this is Algorithm 2.22
provided in [2] and implemented in Verilog HDL in [18].

Algorithm 7 modinv4 (b, a, m) (Modular Inversion Algorithm 4).
inputs: Prime m, a, and b with a, b < m
output: ba−1 mod m
begin

1 u, v = a, m
2 x, y = b, 0
3 while u ̸= 1 and v ̸= 1
4 while u is even
5 u = u/2
6 if x is even: x = x/2
7 else x = (x + m)/2
8 while v is even
9 v = v/2

10 if y is even: y = y/2
11 else y = (y + m)/2
12 if u < v : v, y = v − u, y − x
13 else u, x = u − v, x − y
14 if u = 1 return x mod m
15 else return y mod m
end

Algorithm 7 (modinv4) has been widely adopted in ECC implementations. When the
two inner while loops (lines 4 to 11) finish, u and v are both odd numbers. Therefore, u − v
or v − u is even. Then, we can shift it to the right by one bit. Correspondingly, x − y or
y − x must also be shifted. If x − y or y − x is odd, m must be added before the shift so that
the bit being shifted out is 0. This algorithm is shown in Algorithm 8 (modinv5). The shifts
are performed by the code in lines 12 to 19.
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Algorithm 8 modinv5 (b, a, m) (Modular Inversion Algorithm 5).
inputs: Prime m, a, and b with a, b < m
output: ba−1 mod m
begin

1 u, v = a, m
2 x, y = b, 0
3 while u ̸= 1 and v ̸= 1
4 while u is even
5 u = u/2
6 if x is even: x = x/2
7 else x = (x + m)/2
8 while v is even
9 v = v/2

10 if y is even: y = y/2
11 else y = (y + m)/2
12 if u < v
13 v, y = (v − u)/2, y − x
14 if y is even: y = y/2
15 else y = (y + m)/2
16 else
17 u, x = (u − v)/2, x − y
18 if x is even: x = x/2
19 else x = (x + m)/2
20 if u = 1 return x mod m
21 else return y mod m
end

The two inner while loops in Algorithm 8 (modinv5) can be replaced by assigning u,
x, v, y, or 0 to the temporary variables tu, tx, tv, ty, so that tu − tv is an even number. Next,
tu − tv is shifted one bit to the right. Correspondingly, tx − ty is also shifted one bit to the
right. Note that if tx − ty is odd, m is added before the shift. This algorithm is shown in
Algorithm 9 (modinv6). Note that only tx − ty is executed; it may be negative. The code in
lines 12 and 13 ensures that u and v are non-negative.

Algorithm 9 modinv6 (b, a, m) (Modular Inversion Algorithm 6).
inputs: Prime m, a, and b with a, b < m
output: ba−1 mod m
begin

1 u, v = a, m
2 x, y = b, 0
3 while u ̸= 1 and v ̸= 1
4 if u is odd: tv, ty = v, y
5 else tv, ty = 0, 0
6 if v is odd: tu, tx = u, x
7 else tu, tx = 0, 0
8 tuv, txy = tu − tv, tx − ty
9 uv = tuv/2

10 if txy is even: xy = txy/2
11 else xy = (txy + m)/2
12 if uv < 0 : v, y = −uv, −xy
13 else u, x = uv, xy
14 if u = 1 return x mod m
15 else return y mod m
end



Computers 2024, 13, 265 11 of 30

Algorithm 9 (modinv6) requires calculations of tu− tv, tv− tu, tx− ty, and ty− tx. We
can unify these calculations with negative assignments −v and −y to v and y, respectively,
so that only tu + tv and tx + ty are sufficient for the calculations. That is, with negative
assignments −v and −y to v and y, u = u − v = u + (−v) becomes u = u + v, and
x = x − y = x + (−y) becomes x = x + y. Similarly, v = −(u − v) becomes v = u + v,
and y = −(x − y) becomes y = x + y with negative assignments −v and −y to v and y.
Therefore, u + v and x + y are sufficient for the calculations, saving hardware costs.

The algorithm is given in Algorithm 10 (modinv7). Because of the negative assign-
ments to v and y, v is initialized with −m and y is initialized with −0 = 0. Note that x is
never greater than or equal to m. Therefore, for the final result, no adjustment of x = x − m
or x = x mod m is required. All we need is x = x + m for x < 0.

Algorithm 10 modinv7 (b, a, m) (Modular Inversion Algorithm 7).
inputs: Prime m, a, and b with a, b < m
output: ba−1 mod m
begin

1 u, v = a, −m
2 x, y = b, −0
3 while u ̸= 1
4 if u is odd: tv, ty = v, y
5 else tv, ty = 0, 0
6 if v is odd: tu, tx = u, x
7 else tu, tx = 0, 0
8 tuv, txy = tu + tv, tx + ty
9 uv = tuv/2

10 if txy is even: xy = txy/2
11 else
12 if txy < 0 : xy = (txy + m)/2
13 else xy = (txy − m)/2
14 if uv < 0 : v, y = uv, xy
15 else u, x = uv, xy
16 if x < 0 : x = x + m
17 return x
end

The Python codes for Algorithms 4–10 (modinv1 to modinv7) are given in Appendix A.
We generate random numbers b and a that are smaller than a fixed 256-bit m. For the same
b, a, m inputs, all modular inversion algorithms have the same output.

A modular inversion algorithm is said to be good when u reaches 1 quickly (high
performance) and the algorithm uses a small number of adders and subtractors (low cost).

3. Proposed Radix-8 Modular Inversion Algorithm and Its Performance

The proposed mixed radix-8 modular inversion algorithm is given in Algorithm 11
(modinv_radix8). To calculate r = ba−1 mod m, we initialize u = a, v = −m, x = b, and
y = −0 with the negative assignment to v and y. The temporary variable tu is assigned
with u or 0 and the temporary variable tv is assigned with v or 0, so that tuv = tu + tv
is even. Correspondingly, the temporary variable tx is also assigned with x or 0 and the
temporary variable ty is assigned with y or 0. If the least significant three bits of tuv are
000, it is shifted to the right by three bits (radix-8). Otherwise, if the least significant two
bits of tuv are 00, it is shifted to the right by two bits (radix-4). Otherwise, it is shifted to the
right by one bit (radix-2), because tuv is even. This is also called a hybrid radix algorithm.
It is difficult to develop a complete radix-8 algorithm without using radix-4 or radix-2
arithmetic. We need to handle all cases where the least significant three bits of tuv are not
000 (there are seven cases) and perform the corresponding radix-8 arithmetic.
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Algorithm 11 modinv_radix8 (b, a, m) (Radix-8 Modular Inversion Algorithm).
inputs: Prime m, a, and b with a, b < m
output: ba−1 mod m
begin

1 u, v = a, −m
2 x, y = b, −0
3 while u ̸= 1
4 if u is odd: tv, ty = v, y
5 else tv, ty = 0, 0
6 if v is odd: tu, tx = u, x
7 else tu, tx = 0, 0
8 tuv, txy = tu + tv, tx + ty /* tuv is even */
9 if tuv & 6 = 0 /* radix 8 */

10 uv = tuv/8
11 if txy & 1 = 0
12 if txy & 2 = 0
13 if txy & 4 = 0 : xy = txy/8
14 else xy = (txy + 4m)/8
15 else
16 if txy & 4 = (2m & 4) : xy = (txy − 2m)/8
17 else xy = (txy + 2m)/8
18 else
19 if txy & 6 = m & 6 : xy = (txy − m)/8
20 else
21 if txy & 2 = m & 2 : xy = (txy + 3m)/8
22 else
23 if txy & 4 ̸= m & 4 : xy = (txy + m)/8
24 else xy = (txy − 3m)/8
25 else
26 if tuv & 2 = 0 /* radix 4 */
27 uv = tuv/4
28 if txy & 1 = 0
29 if txy & 2 = 0 : xy = txy/4
30 else xy = (txy + 2m)/4
31 else
32 if txy & 3 = m & 3 : xy = (txy − m)/4
33 else xy = (txy + m)/4
34 else /* radix 2 */
35 uv = tuv/2
36 if txy & 1 = 0 : xy = txy/2
37 else
38 if txy < 0 : xy = (txy + m)/2
39 else xy = (txy − m)/2
40 if uv < 0 : v, y = uv, xy
41 else u, x = uv, xy
42 if x < 0 : x = x + m
43 return x
end

Correspondingly, tx and ty are arranged and txy = tx + ty is also shifted to the right
by three bits, two bits, or one bit. The bits being shifted out must be 0. Therefore, we need
to adjust txy using the prime number m before the shift. Table 5 lists such adjustments
based on the least significant three bits of txy and the least significant three bits of m for the
radix-8 operations, where x represents a don’t-care term. The least significant three bits of
the adjusted value are 000, as shown in the Comment column of the table.
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Table 5. XY adjustment for shift right by three bits in the proposed modular inversion algorithm.

txy m 2m 3m 4m xy Comment

000 xx1 txy / 8 0 + 0 = 0
100 xx1 100 (txy + 4m) / 8 4 + 4 = 8

010 x01 010 (txy − 2m) / 8 2 − 2 = 0
110 x11 110 (txy − 2m) / 8 6 − 6 = 0

010 x11 110 (txy + 2m) / 8 2 + 6 = 8
110 x01 010 (txy + 2m) / 8 6 + 2 = 8

001 001 (txy − m) / 8 1 − 1 = 0
011 011 (txy − m) / 8 3 − 3 = 0
101 101 (txy − m) / 8 5 − 5 = 0
111 111 (txy − m) / 8 7 − 7 = 0

001 101 010 111 (txy + 3m) / 8 1 + 7 = 8
011 111 110 101 (txy + 3m) / 8 3 + 5 = 8
101 001 010 011 (txy + 3m) / 8 5 + 3 = 8
111 011 110 001 (txy + 3m) / 8 7 + 1 = 8

001 111 (txy + m) / 8 1 + 7 = 8
011 101 (txy + m) / 8 3 + 5 = 8
101 011 (txy + m) / 8 5 + 3 = 8
111 001 (txy + m) / 8 7 + 1 = 8

001 011 110 001 (txy − 3m) / 8 1 − 1 = 0
011 001 010 011 (txy − 3m) / 8 3 − 3 = 0
101 111 110 101 (txy − 3m) / 8 5 − 5 = 0
111 101 010 111 (txy − 3m) / 8 7 − 7 = 0

Similarly, Table 6 lists the adjustments based on the least significant two bits of txy
and the least significant two bits of m for the radix-4 operations. The least significant two
bits of the adjusted value are 00, as shown in the Comment column of the table.

Table 6. XY adjustment for shift right by two bits in the proposed modular inversion algorithm.

txy m 2m xy Comment

00 x1 txy / 4 0 + 0 = 0
10 x1 10 (txy + 2m) / 4 2 + 2 = 4

01 01 (txy − m) / 4 1 − 1 = 0
11 11 (txy − m) / 4 3 − 3 = 0

01 11 (txy + m) / 4 1 + 3 = 4
11 01 (txy + m) / 4 3 + 1 = 4

The Python code for the proposed algorithm is also given in Appendix A. The mod-
inv_radix8 algorithm takes 206 iterations to reach u = 1 and v = −1. In contrast, the
modinv_radix4 and modinv_radix2 algorithms require 243 and 356 iterations, respectively.

To reduce the number of adders, we use a multiplexer to select an appropriate value
and assign it to the temporary variable tz. Then, we perform txy = tx + ty + tz. Based on
the least significant three bits of tuv, we assign txy ≫ 1, txy ≫ 2, or txy ≫ 3 to xy.

Figure 1 shows the block diagram of the proposed radix-8 modular inversion circuit.
To perform the addition txy = tx + ty + tz, −2m and −3m are replaced by +6m and +5m,
respectively. This is because, for example, for an integer i, (i − 3m) mod m = (i − 3m + 8m)
mod m = (i + 5m) mod m. Furthermore, for the addition, we prepare −m that can be
obtained by inverting all the bits of m and setting the right-most bit to 1 because m is odd.
The Verilog HDL implementation uses continuous assignment to compute uv and xy and
writes them to the corresponding registers on the rising edge of the clock signal. Note that
we have to use adders for generating 3m, 5m, and 6m, which are not shown in the figure.
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Figure 1. Block diagram of the proposed mixed radix-8 modular inversion circuit.

Below we give the hardware implementation code in Verilog HDL for the proposed
radix-8 modular inversion algorithm (modinv_r8.v). The signals start and ready indicate
the start of the modular inversion calculation and the availability of the calculation result,
respectively. Because we use the Secp256k1 elliptic curve, the input and output signals
b, a, m, and c are 256 bits. We use 260 bits for the internal signals. Instead of the 260-bit
txy = tx + ty in the Python code, we achieve it with 3 bits (t3). This reduces the execution
time and hardware costs. And we perform (tx < 0) | (ty < 0) for txy < 0. This guarantees
(tx + ty + m)/2 < m.

`timescale 1ns/1ns // proposed radix-8 implementation for c = b * a^{-1} mod m
module modinv_r8 (clk, rst_n, start, b, a, m, c, ready, busy, ready0);

input clk, rst_n;
input start;
input [255:0] b, a, m;
output [255:0] c;
output ready, ready0;
output reg busy;
reg ready0, ready1;
assign ready = ready0 ^ ready1;
reg [259:0] u, v, x, y; // registers
wire [259:0] p = {4'h0,m}; // p = m
wire [259:0] mm = {4'hf,~m[255:1],1'b1}; // mm = -m
wire [259:0] tu = v[0] ? u : 0;
wire [259:0] tx = v[0] ? x : 0;
wire [259:0] tv = u[0] ? v : 0;
wire [259:0] ty = u[0] ? y : 0;
wire [259:0] tuv = tu + tv; // adder for uv
wire [259:0] uv2 = {tuv[259],tuv[259:1]}; // tuv // 2
wire [259:0] uv4 = {{2{tuv[259]}},tuv[259:2]}; // tuv // 4
wire [259:0] uv8 = {{3{tuv[259]}},tuv[259:3]}; // tuv // 8
wire [259:0] uv = tuv[1] ? uv2 : tuv[2] ? uv4 : uv8; // uv
wire [2:0] t3 = tx[2:0] + ty[2:0]; // t3 & 7
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wire equ = t3[1:0] == p[1:0]; // t3 & 3 == m & 3
wire [259:0] m2 = {p[258:0],1'b0}; // 2m
wire [259:0] m4 = {p[257:0],2'b0}; // 4m
wire [259:0] m3 = m2 + p; // 3m adder
wire [259:0] m5 = m4 + p; // 5m adder
wire [259:0] m6 = m4 + m2; // 6m adder
wire [259:0] tz2 = t3[0] ? (tx[259]|ty[259]) ? p : mm : 260'h0; // z2
wire [259:0] tz4 = t3[0] ? equ ? mm : p : t3[1] ? m2 : 260'h0; // z4
wire [259:0] tz8 = t3[0] ? t3[2:1] == p[2:1] ? // z8

mm : t3[1] == p[1] ? m3 : t3[2] != p[2] ?
m : m5 : t3[1] ? t3[2] == p[1] ?
m6 : m2 : t3[2] ? m4 : 260'h0;

wire [259:0] tz = tuv[1] ? tz2 : tuv[2] ? tz4 : tz8; // tz
wire [259:0] txy = tx + ty + tz; // adder for xy
wire [259:0] txy2= {txy[259],txy[259:1]}; // txy // 2
wire [259:0] txy4= {{2{txy[259]}},txy[259:2]}; // txy // 4
wire [259:0] txy8= {{3{txy[259]}},txy[259:3]}; // txy // 8
wire [259:0] xy = tuv[1] ? txy2 : tuv[2] ? txy4 : txy8; // xy
wire [259:0] xpp = x + p; // x + m
wire [259:0] r = x[259] ? xpp : x; // x + m ? x ?
assign c = r[255:0]; // result c
always @(posedge clk or negedge rst_n) begin

if (!rst_n) begin // reset
ready0 <= 0;
ready1 <= 0;
busy <= 0;

end else begin
ready1 <= ready0;
if (start) begin // load

u <= {4'b0,a}; // u <= a
v <= mm; // v <= -m
x <= {4'b0,b}; // x <= b
y <= {260'b0}; // y <= 0
ready0 <= 0;
ready1 <= 0;
busy <= 1;

end else begin
if (u == 1) begin // if u == 1

ready0 <= 1; // ready0 = 1
busy <= 0; // busy = 0

end else begin // else
if (uv[259]) begin // if uv < 0

v <= uv; // v = uv
y <= xy; // y = xy

end else begin // else
u <= uv; // u = uv
x <= xy; // x = xy

end
end

end
end

end
endmodule

Below is the testbench Verilog HDL code used to simulate modinv_r8.v.

`timescale 1ns/1ns
module modinv_r8_tb;

reg clk, rst_n, start;
reg [255:0] b, a, m;
wire [255:0] c;
wire ready, busy, ready0;
modinv_r8 inst (clk, rst_n, start, b, a, m, c, ready, busy, ready0);
initial begin

clk = 1;
rst_n = 0;
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start = 0;
b = 256'h9cfa1c993911914be0f15bd74a878abe0079c6254b961b82e1abda76387d1d85;
a = 256'hd5076ae274e874c2eb0f7778717c39460236549ddd9fc651e68a0c0e787b4ce8;
m = 256'hfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f;
#1 rst_n = 1;
#0 start = 1;
#2 start = 0;
wait(ready); // 416ns
#40 $stop;

end
always #1 clk = !clk;

endmodule

Figure 2 shows the functional simulation waveform, generated with ModelSim. The
result c was available in 416 ns. That is, the calculation took 208 clock cycles. Note that the
value of the result c is the same as the output of the Python code in Appendix A.

Figure 2. Waveform of the proposed radix-8 modular inversion algorithm.

We implemented the modular inversion algorithms on the Altera Cyclone V 5CGXFC9
E7F35C8 FPGA chip. The EDA tool we used is Quartus Prime Version 20.1.1 Build 720
11/11/2020 SJ Lite Edition. This is the latest edition that integrates with ModelSim for
simulation. All algorithms were evaluated in the same environment.

Table 7 lists the cost performance of the modular inversion algorithms. The column
Cycles shows the required number of clock cycles when executing the modular inversion
algorithm. The column Freq.(MHz) shows the clock frequency in MHz at which the circuit
can work. The column Latency(µs) shows the execution time in microseconds calculated
by dividing the clock cycles by the clock frequency. The column ALMs shows the required
number of adaptive logic modules. The column Registers shows the required number of
flip-flops. The flip-flops are mainly used to store u, v, x, and y. Their contents are updated
in every clock cycle. The last column shows the AT factor, which is the product of the
Latency in milliseconds and the sum of the ALMs and Registers:

AT = Latency × (ALMs + Registers) (5)

The row [1] in the table shows the performance and cost of modular inversion using
Fermat’s little theorem r = am−2 mod m. It consists of costly modular multiply and
modular squaring. Its AT factor is much higher than the others. The remaining rows show
the performance and cost of the EEA-based modular inversion algorithms. The numbers of
registers used by [2,3,8,10] were larger than the others. This is because extra registers are
used to adjust the value of x or y, so that the modular inversion result is within the range
of 0 and m. Our algorithm implementation achieved an execution time of 3.67 µs and an
AT factor of 8.30, outperforming all other implementations. Figure 3 shows an intuitive
view of the latency and AT histograms.
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Table 7. Comparison of modular inversion algorithms (on Altera Cyclone V FPGA chip).

Algorithm Cycles Freq. (MHz) Latency (µs) ALMs Registers AT

[1] 2011, Burton 66,264 57.54 1151.63 2004 2775 5503.66

[2] 2004, Hankerson 534 54.66 9.77 2619 1302 38.31

[3] 2015, Hossain 535 54.52 9.81 3735 1303 49.42

[4] 2005, Daly 358 39.73 9.01 2474 1038 31.64

[5] 2017, Mrabet 1205 64.55 18.67 1596 1043 49.26

[6] 2009, Chen 723 72.21 10.01 1968 1042 30.13

[7] 2017, Choi 358 63.60 5.63 959 1037 11.24

[8] 2023, Wang 423 59.56 7.10 3475 1303 33.92

[9] 2019, Yang 356 60.43 5.89 3950 1057 29.50

[10] 2007, Yan 423 54.99 7.69 3644 1303 38.05

[11] 2018, Dong 334 56.93 5.87 5276 1057 37.15

[12] 2022, Hao 534 54.66 9.77 2619 1302 38.31

[13] 2023, Guo 356 33.95 10.49 1653 1039 28.23

Ours 208 56.71 3.67 1227 1037 8.30
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Figure 3. Latency and AT comparison of modular inversion algorithms. Details (year and first
author’s name) of the numbers [n] (algorithm) on the horizontal axis are in Table 7.

The proposed radix-8 algorithm was demonstrated to be efficient for 256-bit primes.
Table 8 compares the cost performance on the Secp192k1 192-bit prime field curve and
Secp521r1 521-bit prime field curve [16]. Here, we only provide a comparison with
Algorithm 2.22 [2]. For ease of comparison, we also show the case when using the
Secp256k1 256-bit prime field curve in the table. Our algorithm’s AT outperformed [2]
by 17.57/4.38 = 4.01 times, 38.31/8.30 = 4.62 times, and 253.31/55.44 = 4.57 times for
the curves of Secp192k1, Secp256k1, and Secp521r1, respectively. This shows that our
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algorithm also demonstrated scalability to other prime sizes and adaptability to other
cryptographic curves.

Table 8. Comparison on Secp192k1 192-bit and Secp521r1 521-bit prime field curves.

Curve Algorithm Cycles Freq. (MHz) Latency (µs) ALMs Registers AT

[2] 404 67.78 5.96 1965 982 17.57Secp192k1 Ours 151 59.38 2.54 940 781 4.38

[2] 534 54.66 9.77 2619 1302 38.31Secp256k1 Ours 208 56.71 3.67 1227 1037 8.30

[2] 1109 36.36 30.50 5678 2627 253.31Secp521r1 Ours 429 33.60 12.77 2245 2097 55.44

4. ECC Implementation with Proposed Modular Inversion Algorithm

ECC relies on scalar point multiplication. Suppose P = [xp, yp] is a point on the curve,
the scalar point multiplication Q = dP obtains the Q = [xq, yq] that is also on the curve,
where d = ⟨dn−1 · · · d1d0⟩ is an n-bit scalar. Scalar point multiplication can be conducted
with PA and PD, as shown in Algorithm 12.

Algorithm 12 ScaMul (d, P, m, a) (Scalar Point Multiplication).

inputs: d = ⟨dn−1 · · · d1d0⟩ and point P = [Px, Py]; m and a in y2 = x3 + ax + b mod m
output: Q = dP
begin
1 Q = O, R = P, k = d /* Q = O and R = P */
2 while k ̸= 0 do
3 if k0 = 1
4 Q = PA (Q, R, m, a) /* Q = Q + R (Algorithm 1) */
5 R = PD (R, m, a) /* R = 2R (Algorithm 2) */
6 k = k ≫ 1
7 endwhile
8 return Q /* Q = dP */
end

The algorithm calls point addition PA (P, Q, m, a) and point doubling PD (P, m, a).
Table 9 gives an example to show the calculation steps of the scalar point multiplication.
For a 5-bit d = 101012 = 21, we calculate Q = dP in five steps to obtain Q = 21P. We can
see that the algorithm is similar to RSA exponentiation [19].

Table 9. Execution example of Q = dP with d = 101012 = 21.

Weight Point Addition Point Doubling

Initial Q = O R = P

d0 = 1 1 Q = Q + R = O + P = P R = 2R = 2P

d1 = 0 2 R = 2R = 4P

d2 = 1 4 Q = Q + R = P + 4P = 5P R = 2R = 8P

d3 = 0 8 R = 2R = 16P

d4 = 1 16 Q = Q + R = 5P + 16P = 21P R = 2R = 32P

We used the ECDH key exchange protocol, described in Table 1, to establish a shared
secret key for two parties. An ECDH key exchange algorithm in Python code is given in
Appendix B. The algorithm invokes the scalar point multiplications that use two computa-
tions — point addition and point doubling. Four primitive modular calculations (addition,
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subtraction, multiplication, and inversion) are used for these two computations, as shown
in Figure 4. The Python function names in Appendix B are also shown in the figure.

Elliptic Curve Diffie–Hellman (ECDH) Key Agreement

Scalar Point Multiplication
scalar_point_multiplication (P, d, m, a)

Point Addition
point_addition (P, Q, m, a)

Point Doubling
point_doubling (P, m, a)

Modular Inversion
modinv (b, a, m)

Modular Multiplication
modmul (a, b, m)

Modular Addition
modadd (a, b, m)

Modular Subtraction
modsub (a, b, m)

Figure 4. The ECDH key exchange algorithm uses scalar point multiplication, which uses two
operations, point addition and point doubling, which use the four basic modular operations (addition,
subtraction, multiplication, and inversion).

See Appendix B, the Python code is hardware-oriented. Essentially, a Python function
defined using the def keyword was implemented in a Verilog HDL module. For integrity,
we listed the modinv_radix8 code again, but now with +6m and +5m instead of −2m and
−3m, respectively, and the function name has been changed to modinv.

Based on the Python code, we implemented ECC using our radix-8 modular inversion
algorithm for calculating λ in PA and PD. Figure 5 shows the functional simulation wave-
form of scalar point multiplication Q = dP with P = [x, y] and Q = [qx, qy]. The result was
available in 635,362 ns. That is, the calculation took 317,681 clock cycles. Outputs qx and qy
are the same as the outputs Qax and Qay, respectively, of the Python code in Appendix B.

Figure 5. Waveform of the scalar point multiplication Q = dP with P = [x, y] and Q = [qx, qy] using
proposed the radix-8 modular inversion algorithm.

An ECC cost performance comparison is given in Table 10 when implementing on
the Altera Cyclone V 5CGXFC9E7F35C8 FPGA chip. We also used Quartus Prime Version
20.1.1 Lite Edition for the implementation. All ECC implementations used the same circuit,
except for the modular inversion part.

Figure 6 shows the latency and AT histogram. The ECC latency using our proposed
radix-8 modular inversion algorithm was 0.01970 s and its AT factor was 393,546.29. From
the table and histogram, we can see that our ECC implementation achieved lower latency
and lower AT factor than all other implementations.
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Table 10. ECC comparison using modular inversion algorithms (on Altera Cyclone V FPGA chip).

Algorithm Cycles Freq. (MHz) Latency (ms) ALMs Registers AT

[2] 2004, Hankerson 402,145 15.94 25.23 15,043 8355 590,300.42

[3] 2015, Hossain 402,400 15.58 25.83 17,585 8355 669,977.92

[4] 2005, Daly 357,262 16.06 22.25 14,975 7821 507,107.38

[5] 2017, Mrabet 570,142 16.07 35.48 13,292 7834 749,522.08

[6] 2009, Chen 455,425 16.15 28.20 14,211 7831 621,577.58

[7] 2017, Choi 356,878 16.01 22.29 12,114 7820 444,347.67

[8] 2023, Wang 372,127 15.98 23.29 17,292 8353 597,196.30

[9] 2019, Yang 352,761 15.72 22.44 17,841 7860 576,737.31

[10] 2007, Yan 372,127 16.08 23.14 18,548 8355 622,595.32

[11] 2018, Dong 346,194 15.88 21.80 20,716 7859 622,952.99

[12] 2022, Hao 402,145 15.89 25.31 15,041 8354 592,081.96

[13] 2023, Guo 356,496 15.64 22.79 13,571 7824 487,674.68

Ours 317,681 16.13 19.70 12,160 7822 393,546.29
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Figure 6. ECC latency and AT comparison of modular inversion algorithms. Details (year and first
author’s name) of the numbers [n] (algorithm) on the horizontal axis are in Table 10.

Algorithm 12, the traditional scalar point multiplication, suffers from side-channel
attacks, because its execution time depends on the input scalar d. Side-channel attacks at-
tempt to reveal the secret key from leaked information, such as timing, power consumption,
or electromagnetic radiation. We can use the Montgomery ladder algorithm [20] to perform
the scalar point multiplication, as shown in Algorithm 13. Its execution takes the same
constant time regardless of the input scalar d, making it resistant to side-channel attacks.



Computers 2024, 13, 265 21 of 30

Algorithm 13 ScaMulMont (d, P, m, a) (Montgomery Ladder Scalar Point Multiplication).

inputs: d = ⟨1dn−2 · · · d1d0⟩ and point P = [Px, Py]; m and a in y2 = x3 + ax + b mod m
output: Q = dP
begin

1 Q = P, R = PD (P, m, a) /* Q = P and R = 2P */
2 for i = n − 2 downto 0 do
3 if di = 1
4 Q = PA (Q, R, m, a) /* Q = Q + R (Algorithm 1) */
5 R = PD (R, m, a) /* R = 2R (Algorithm 2) */
6 else
7 R = PA (Q, R, m, a) /* R = Q + R (Algorithm 1) */
8 Q = PD (Q, m, a) /* Q = 2Q (Algorithm 2) */
9 endfor

10 return Q /* Q = dP */
end

We give the Montgomery ladder scalar point multiplication algorithm’s Python code
as follows, and give the block diagram of the Montgomery ladder circuit in Figure 7b.

def scalar_point_multiplication (P, d, m, a): # scalar point multiplication
if d == 0: return [-1, -1] # Point O
Q = P # Q = P
R = point_doubling (P, m, a) # R = 2P
for i in range(254, -1, -1): # 254, 253, ..., 2, 1, 0

if (d >> i) & 1:
Q = point_addition (Q, R, m, a) # Q = Q + R
R = point_doubling (R, m, a) # R = 2R

else:
R = point_addition (Q, R, m, a) # R = Q + R
Q = point_doubling (Q, m, a) # Q = 2Q

return Q

O P P P

RQ

mux mux

PA PD

RQ

mux mux

mux

RQ

PA PD

RQ

mux mux

R

write_enable

(a) (b)

R

Figure 7. Block diagrams of scalar point multiplication circuits. (a) Traditional scalar point multipli-
cation circuit; (b) Montgomery ladder scalar point multiplication circuit.

Since multiple PA or PD operations are not performed simultaneously, one PA module
and one PD module are sufficient (PA and PD operate in parallel). Note that the iterative



Computers 2024, 13, 265 22 of 30

control part based on the scalar d is omitted in the figure. In contrast, the block diagram of
the traditional scalar point multiplication circuit is shown in Figure 7a.

Algorithm 13 is resistant to side-channel attacks, while requiring approximately the
same execution time and the same hardware resources compared to Algorithm 12, as shown
in Table 11. Because the Montgomery ladder scalar point multiplication circuit (Figure 7b)
uses more multiplexers, the number of ALMs is larger than Algorithm 12. Algorithm 12
uses a 256-bit register to shift the scalar d, and Algorithm 13 uses a 9-bit counter to control
the iterations. Therefore, Algorithm 12 uses more registers than Algorithm 13.

Table 11. Comparison of scalar point multiplication circuits (on Altera Cyclone V FPGA chip).

Algorithm Cycles Freq. (MHz) Latency (ms) ALMs Registers AT

Traditional (Algorithm 12) 317,681 16.13 19.70 12,160 7822 393,546.29

Mont.ladder (Algorithm 13) 318,831 15.86 20.10 12,723 7577 408,087.60

5. Discussion of Design Issues

In the previous sections, we demonstrated through simulations using ModelSim and
implementations with the Quartus II EDA tool that the proposed high-radix modular
inversion algorithm works correctly and is efficient in terms of execution time and hard-
ware costs. We also showed that the ECC implementation using the proposed algorithm
outperformed implementations using other investigated algorithms.

The modular inversion algorithm repeatedly performs addition, subtraction, and shift
operations on the variables u, v, x, and y. These variables are typically implemented using
registers that are updated on the rising edge of a clock signal. The clock frequency of the
circuit is determined by the operation delay between two successive clock rising edges (a
clock cycle). Increasing the clock frequency requires decreasing the delay of operations
within a clock cycle.

We can use a finite state machine to divide sequential computations into multiple steps
and store the results of the steps in registers. This reduces the latency within one clock
cycle and increases the clock frequency. However, implementing a finite state machine
requires more clock cycles and more registers.

Multiplexers have much lower latency and lower hardware cost compared to carry
propagate adders. To reduce hardware costs, if some additions have the same input, instead
of using adders and then a multiplexer, we can use a multiplexer before an adder. For
example, instead of s = mux (a+ b, a+ c, a+ d, a+ e), we can have s = a+ mux (b, c, d, e),
which reduces the number of adders. The circuit for calculating txy in Figure 1 is designed
in this way to generate tz using a multiplexer before the adder. In addition, to reduce
hardware costs, we only use addition for both addition and subtraction calculations. For
example, in Figure 1 we only perform the addition txy = tx + ty + tz. For radix-8 modular
operations, the subtractions −2m and −3m are replaced by +6m and +5m, respectively.

The carry-select adder (CSLA) can be used to reduce the latency of the carry propagate
adder. For an n bits carry propagate adder, we split the n bits into two n/2 bits, the
upper n/2 bits and the lower n/2 bits. The addition of the upper n/2 bits is performed
simultaneously by two adders, assuming that the carry-in of one adder is 0 and the carry-in
of the other adder is 1. Three n/2-bit adders (including one for the lower n/2 bits) operate
in parallel. When the carry-out of the lower n/2-bit adder is available, a multiplexer is
used to select the correct result from the upper two adders. Using a CSLA by dividing n
bits into two n/2 bits can reduce the latency by approximately half. On the other hand,
the hardware cost increases by more than 50% (one extra n/2-bit adder and one n/2-bit
multiplexer are required). In general, splitting n bits into m (n/m)-bits reduces the latency
by about a factor of m, but increases the hardware cost exponentially.

The use of a carry-save adder (CSA) can significantly reduce latency. There is no
ripple carry between bits. The result is represented as a carry set and a sum set. A single
carry-save adder is equivalent to a 1-bit full adder, which has a low latency. Because of the
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representation of the two sets, it is not possible to know the final addition result and its sign
(negative or positive) without performing an additional addition, with a carry look-ahead
adder for example. Therefore, a CSA is commonly used for intermediate calculations. It
takes three sets of inputs and produces two sets of outputs.

As shown in Algorithm 11, our proposed radix-8 modular inversion algorithm allows
for arbitrary bit primes, because we considered all combinations of the least significant
three bits of prime numbers, as shown in Table 5. If we use a fixed prime m, defined
by Secp256k1 [16] for instance, the circuit can be simplified by removing the parts of
prime number m whose least significant three bits are not 111. Furthermore, 3m, 5m,
and 6m can be calculated and stored in a constant table in advance. Then, the hardware
can use them directly, without any calculations. This speeds up the radix-8 modular
inversion calculations.

Our radix-8 modular inversion algorithm allows any bit prime and has no special
requirements on the prime, so we can easily use different elliptic curves with the same or
different prime sizes, as shown in Table 8. In addition, the hardware implementation of
the algorithm is provided in Verilog HDL, which does not rely on special circuit libraries,
allowing the algorithm to be implemented on a variety of different platforms.

This paper mainly focused on the modular inversion algorithm and the hardware
implementation. We presented the performance and hardware cost of simple low-cost ECC
implementations using different modular inversion algorithms, to demonstrate the benefits
of the proposed algorithm. To make a fair comparison between implementations, all ECC
hardware circuits were identical, except for the modular inversion circuit. From Table 10,
we can see that the frequencies of all ECC implementations were quite low. To increase the
clock frequency, we can also use pipeline techniques to divide computations into multiple
stages and use pipeline registers to store intermediate results. However, the hardware costs
will increase due to the use of pipeline registers.

6. Concluding Remarks

In this paper, we proposed a mixed radix-8 modular inversion algorithm and hardware
implementation based on 256-bit primes in Verilog HDL and compared its cost performance
with other implementations on the Altera Cyclone V FPGA chip. The algorithm and
its hardware implementation were area–time efficient with an AT factor of 8.30, which
outperformed the other algorithms and implementations. We showed that our algorithm
also demonstrates scalability to other prime sizes and adaptability to other cryptographic
curves. We also presented the cost performance of an ECC implementation using the
proposed modular inversion algorithm. Implementation results also showed that our
algorithm reduces the execution time and requires fewer hardware resources than the other
investigated algorithms. We presented an efficient implementation of the Montgomery
ladder scalar point multiplication algorithm that is resistant to side-channel attacks.

Future work could include shortening the critical path and using carry-select adders
and carry-save adders to speed up the addition of large operands. In addition, using a
fixed prime m, Secp256k1 for example, we could simplify the circuit by considering only
the case where the least significant three bits are equal to 111 and using precomputations of
3m, 5m, and 6m to speed up the radix-8 modular inversion calculations.

Another important future work is to minimize the latency of the ECC implementation
by using longer pipelines. The pipeline stages could be split, so that a modular addition or
subtraction can be completed within a single pipeline stage.
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Appendix A. EEA-Based Modular Inversion Algorithms in Python

In the previous sections, we described Algorithms 4–10 (modinv1 to modinv7) and
the radix-8 modular inversion algorithm in pseudocode. This appendix provides their
implementation codes in Python. We simply summarize the codes as below: modinv1 is the
fundamental EEA code; modinv2 removes the division; modinv3 reduces the number of
iterations; modinv4 repeatedly divides u and v by two; modinv5 divides u − v or v − u by
two; modinv6 assigns tu and tv, so that tu − tv is even; modinv7 uses negative assignments
to v and y; and modinv_radix8 gives the code of the proposed algorithm.

from random import SystemRandom # random number generator
rand = SystemRandom () # strong random number generator
def modinv1 (b, a, m): # return (b * a^{-1}) mod m --------------- fundamental EEA

u, v = a, m
x, y = b, 0
while v != 0:

q = u // v
u, v = v, u - q * v
x, y = y, x - q * y

return x % m
def modinv2 (b, a, m): # return (b * a^{-1}) mod m -------------- removed division

u, v = a, m
x, y = b, 0
while v != 0:

q = 0 if u < v else 1
u, v = v, u - q * v
x, y = y, x - q * y

return x % m
def modinv3 (b, a, m): # return (b * a^{-1}) mod m ------------ reduced iterations

u, v = a, m
x, y = b, 0
while u != 1 and v != 1:

if u < v: v, y = v - u, y - x
else: u, x = u - v, x - y

if u == 1: return x % m
else: return y % m

def modinv4 (b, a, m): # return (b * a^{-1}) mod m ------ u/2, v/2, Algorithm 2.22
u, v = a, m
x, y = b, 0
while u != 1 and v != 1:

while u & 1 == 0:
u = u // 2
if x & 1 == 0: x = x // 2
else: x = (x + m) // 2

while v & 1 == 0:
v = v // 2
if y & 1 == 0: y = y // 2
else: y = (y + m) // 2

if u < v: v, y = v - u, y - x
else: u, x = u - v, x - y

if u == 1: return x % m
else: return y % m

def modinv5 (b, a, m): # return (b * a^{-1}) mod m -------------- (u-v)/2, (v-u)/2
u, v = a, m
x, y = b, 0
while u != 1 and v != 1:

while u & 1 == 0:
u = u // 2
if x & 1 == 0: x = x // 2
else: x = (x + m) // 2

while v & 1 == 0:
v = v // 2
if y & 1 == 0: y = y // 2
else: y = (y + m) // 2

if u < v:
v, y = (v - u) // 2, y - x
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if y & 1 == 0: y = y // 2
else: y = (y + m) // 2

else:
u, x = (u - v) // 2, x - y
if x & 1 == 0: x = x // 2
else: x = (x + m) // 2

if u == 1: return x % m
else: return y % m

def modinv6 (b, a, m): # return (b * a^{-1}) mod m --- no u/2, no v/2, multiplexer
u, v = a, m
x, y = b, 0
while u != 1 and v != 1:

if u & 1 == 1: tv, ty = v, y
else: tv, ty = 0, 0
if v & 1 == 1: tu, tx = u, x
else: tu, tx = 0, 0
tuv, txy = tu - tv, tx - ty
uv = tuv // 2
if txy & 1 == 0: xy = txy // 2
else: xy = (txy + m) // 2
if uv < 0: v, y = -uv, -xy
else: u, x = uv, xy

if u == 1: return x % m
else: return y % m

def modinv7 (b, a, m): # return (b * a^{-1}) mod m ----------- negative assignment
u, v = a, -m
x, y = b, -0
while u != 1:

if u & 1 == 1: tv, ty = v, y
else: tv, ty = 0, 0
if v & 1 == 1: tu, tx = u, x
else: tu, tx = 0, 0
tuv, txy = tu + tv, tx + ty
uv = tuv // 2
if txy & 1 == 0: xy = txy // 2
else:

if txy < 0: xy = (txy + m) // 2
else: xy = (txy - m) // 2

if uv < 0: v, y = uv, xy
else: u, x = uv, xy

if x < 0: x = x + m
return x

def modinv_radix8 (b, a, m): # return (b * a^{-1}) mod m # proposed radix-8 modinv
u, v = a, -m
x, y = b, -0
while u != 1:

if u & 1 == 1: tv, ty = v, y
else: tv, ty = 0, 0
if v & 1 == 1: tu, tx = u, x
else: tu, tx = 0, 0
tuv, txy = tu + tv, tx + ty # tuv is even
if tuv & 6 == 0: # radix 8:

uv = tuv // 8
if txy & 1 == 0:

if txy & 2 == 0:
if txy & 4 == 0: xy = txy // 8
else: xy = (txy + 4 * m) // 8

else:
if txy & 4 == (m*2 & 4): xy = (txy - 2 * m) // 8
else: xy = (txy + 2 * m) // 8

else:
if txy & 6 == m & 6: xy = (txy - m) // 8
else:

if txy & 2 == m & 2: xy = (txy + 3 * m) // 8
else:

if txy & 4 != m & 4: xy = (txy + m) // 8
else: xy = (txy - 3 * m) // 8
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else:
if tuv & 2 == 0: # radix 4:

uv = tuv // 4
if txy & 1 == 0:

if txy & 2 == 0: xy = txy // 4
else: xy = (txy + 2 * m) // 4

else:
if txy & 3 == m & 3: xy = (txy - m) // 4
else: xy = (txy + m) // 4

else: # radix 2:
uv = tuv // 2
if txy & 1 == 0: xy = txy // 2
else:

if txy < 0: xy = (txy + m) // 2
else: xy = (txy - m) // 2

if uv < 0: v, y = uv, xy
else: u, x = uv, xy

if x < 0: x = x + m
return x

m = int (0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f)
b = rand.getrandbits (256) % m
a = rand.getrandbits (256) % m
c1 = modinv1 (b, a, m)
c2 = modinv2 (b, a, m)
c3 = modinv3 (b, a, m)
c4 = modinv4 (b, a, m)
c5 = modinv5 (b, a, m)
c6 = modinv6 (b, a, m)
c7 = modinv7 (b, a, m)
c = modinv_radix8 (b, a, m)
print ('b = 0x{:064x}'.format(b))
print ('a = 0x{:064x}'.format(a))
print ('m = 0x{:064x}'.format(m))
print ('c1 = 0x{:064x}'.format(c1))
print ('c2 = 0x{:064x}'.format(c2))
print ('c3 = 0x{:064x}'.format(c3))
print ('c4 = 0x{:064x}'.format(c4))
print ('c5 = 0x{:064x}'.format(c5))
print ('c6 = 0x{:064x}'.format(c6))
print ('c7 = 0x{:064x}'.format(c7))
print ('c = 0x{:064x}'.format(c))
assert c1 == c2 == c3 == c4 == c5 == c6 == c7 == c
assert (c * a) % m == b # verify correctness

The last assert statement verifies the correctness of the calculated modular inversion
result c. Below is an example of the output when the code is executed. We can see that for
the same inputs b, a, m, the eight functions have the same output. These outputs of the
Python code are used to check the correctness of the circuit’s outputs. For example, the
value of the signal c in Figure 2 is the same as the output c of the Python code.

$ python3 modinv12345678.py
b = 0x9cfa1c993911914be0f15bd74a878abe0079c6254b961b82e1abda76387d1d85
a = 0xd5076ae274e874c2eb0f7778717c39460236549ddd9fc651e68a0c0e787b4ce8
m = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
c1 = 0xe8e5ac2e1d3358894ce1b3342737b38c39b89059dd55d3c4741626de8270228e
c2 = 0xe8e5ac2e1d3358894ce1b3342737b38c39b89059dd55d3c4741626de8270228e
c3 = 0xe8e5ac2e1d3358894ce1b3342737b38c39b89059dd55d3c4741626de8270228e
c4 = 0xe8e5ac2e1d3358894ce1b3342737b38c39b89059dd55d3c4741626de8270228e
c5 = 0xe8e5ac2e1d3358894ce1b3342737b38c39b89059dd55d3c4741626de8270228e
c6 = 0xe8e5ac2e1d3358894ce1b3342737b38c39b89059dd55d3c4741626de8270228e
c7 = 0xe8e5ac2e1d3358894ce1b3342737b38c39b89059dd55d3c4741626de8270228e
c = 0xe8e5ac2e1d3358894ce1b3342737b38c39b89059dd55d3c4741626de8270228e



Computers 2024, 13, 265 27 of 30

Appendix B. Elliptic Curve Diffie–Hellman (ECDH) Key Exchange Algorithm in Python

The ECDH algorithm is used to reach key agreement between two parties over an
insecure network, as shown in Table 1. The following Python code demonstrates that two
parties, Alice and Bob for example, obtain the same secure key by calling scalar point
multiplications. We skip the communication process and focus on how to implement scalar
point multiplication by calling point addition and point doubling.

from random import SystemRandom # random number generator
rand = SystemRandom () # strong random number generator
def modadd (a, b, m): # return (a + b) mod m; a, b < m

s = a + b
if s > m:

s = s - m
return s

def modsub (a, b, m): # return (a - b) mod m; a, b < m
s = a - b
if s < 0:

s = s + m
return s

def modmul (a, b, m): # return (a * b) mod m; a, b < m # shift-sub (SSMM)
u, v, s = a, b, 0
while v != 0:

if v & 1 == 1:
s = s + u
if s > m:

s = s - m
v = v >> 1
u = u << 1
if u > m:

u = u - m
return s

def modinv (b, a, m): # return (b * a^{-1}) mod m # proposed radix-8 modinv
u, v = a, -m
x, y = b, -0
while u != 1:

if u & 1 == 1: tv, ty = v, y
else: tv, ty = 0, 0
if v & 1 == 1: tu, tx = u, x
else: tu, tx = 0, 0
tuv, txy = tu + tv, tx + ty # tuv is even
if tuv & 6 == 0: # radix 8:

uv = tuv // 8
if txy & 1 == 0:

if txy & 2 == 0:
if txy & 4 == 0: xy = txy // 8
else: xy = (txy + 4 * m) // 8

else:
if txy & 4 == (m*2 & 4): xy = (txy + 6 * m) // 8 # -2m
else: xy = (txy + 2 * m) // 8

else:
if txy & 6 == m & 6: xy = (txy - m) // 8
else:

if txy & 2 == m & 2: xy = (txy + 3 * m) // 8
else:

if txy & 4 != m & 4: xy = (txy + m) // 8
else: xy = (txy + 5 * m) // 8 # -3m

else:
if tuv & 2 == 0: # radix 4:

uv = tuv // 4
if txy & 1 == 0:

if txy & 2 == 0: xy = txy // 4
else: xy = (txy + 2 * m) // 4

else:
if txy & 3 == m & 3: xy = (txy - m) // 4
else: xy = (txy + m) // 4
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else: # radix 2:
uv = tuv // 2
if txy & 1 == 0: xy = txy // 2
else:

if txy < 0: xy = (txy + m) // 2
else: xy = (txy - m) // 2

if uv < 0: v, y = uv, xy
else: u, x = uv, xy

if x < 0: x = x + m
return x

def point_addition (P, Q, m, a): # point addition R = P + Q
x1, y1 = P
x2, y2 = Q
if x1 == -1 and y1 == -1: return Q # O + Q
if x2 == -1 and y2 == -1: return P # P + O
if x1 == x2:

if modadd (y1, y2, m) == 0: return [-1, -1] # Point O
else: return point_doubling (P, m, a) # 2P

# s = ((y1 - y2) / (x1 - x2)) mod m
s = modinv (modsub (y1, y2, m), modsub (x1, x2, m), m)
# rx = (s * s - x1 - x2) mod m
rx = modsub (modmul (s, s, m), modadd (x1, x2, m), m)
# ry = (s * (x1 - rx) - y1) mod m
ry = modsub (modmul (s, modsub (x1, rx, m), m), y1, m)
return [int (rx), int (ry)]

def point_doubling (P, m, a): # point doubling R = 2P
x, y = P
if y == 0: return [-1, -1] # Point O
# s = ((3 * x * x + a) / (2 * y)) mod m
s = modinv (modadd(a, modmul(modmul(x, x, m), 3, m), m), modadd(y, y, m), m)
# rx = (s * s - 2 * x) mod m
rx = modsub (modmul (s, s, m), modmul (x, 2, m), m)
# ry = (s * (x - rx) - y) mod m
ry = modsub (modmul (s, modsub (x, rx, m), m), y, m)
return [int (rx), int (ry)]

def scalar_point_multiplication (P, d, m, a): # scalar point multiplication
if d == 0: return [-1, -1] # Point O
k = d
Q = [-1, -1] # Point O
R = P
while k != 0:

if k & 1:
Q = point_addition (Q, R, m, a) # Q = Q + R

R = point_doubling (R, m, a) # R = 2R
k >>= 1

return Q
a = int (0x0000000000000000000000000000000000000000000000000000000000000000)
b = int (0x0000000000000000000000000000000000000000000000000000000000000007)
m = int (0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f)
x = int (0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798)
y = int (0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)
P = [x, y] # Elliptic curve Diffie-Hellman (ECDH) key agreement:
da = rand.getrandbits (256) % m # Alice's private key
db = rand.getrandbits (256) % m # Bob's private key
Qa = scalar_point_multiplication ( P, da, m, a) # Alice's public key
Qb = scalar_point_multiplication ( P, db, m, a) # Bob's public key
Qab = scalar_point_multiplication (Qb, da, m, a) # Alice calculates shared key
Qba = scalar_point_multiplication (Qa, db, m, a) # Bob calculates shared key
print ('da = 0x{:064x}'.format(da), end=' ')
print ('db = 0x{:064x}'.format(db))
print ('Qax = 0x{:064x}'.format(Qa[0]), end=' ')
print ('Qay = 0x{:064x}'.format(Qa[1]))
print ('Qbx = 0x{:064x}'.format(Qb[0]), end=' ')
print ('Qby = 0x{:064x}'.format(Qb[1]))
print ('Qabx = 0x{:064x}'.format(Qab[0]), end=' ')
print ('Qaby = 0x{:064x}'.format(Qab[1]))
print ('Qbax = 0x{:064x}'.format(Qba[0]), end=' ')
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print ('Qbay = 0x{:064x}'.format(Qba[1]))
assert (Qa [1] * Qa [1]) % m == (Qa [0] * Qa [0] * Qa [0] + a * Qa [0] + b) % m
assert (Qb [1] * Qb [1]) % m == (Qb [0] * Qb [0] * Qb [0] + a * Qb [0] + b) % m
assert (Qab[1] * Qab[1]) % m == (Qab[0] * Qab[0] * Qab[0] + a * Qab[0] + b) % m
assert (Qba[1] * Qba[1]) % m == (Qba[0] * Qba[0] * Qba[0] + a * Qba[0] + b) % m
assert Qab == Qba # verify correctness

Python functions for modular addition (modadd), modular subtraction (modsub), modu-
lar multiplication (modmul), and modular inversion (modinv) are provided. These functions
are used by point addition (point_addition) and point doubling (point_doubling). All
the codes are hardware-oriented for circuit design.

The last assert statement is used to check whether the two parties obtained the
same shared secure key. Below is an example of the output when the code is executed.
We can see that Qbax is equal to Qabx (shared secure key). These outputs of the Python
code are used to check the correctness of the circuit’s outputs. For example, the values of
signals qx and qy in Figure 5 are the same as the outputs Qax and Qay, respectively, of the
Python code.

$ python3 ecdh.py
da = 0x650aa7095daeaa37ab9051541f0ce304f8969a6d88bb3bebb4fe680fca9a2595
db = 0xedc68f194c4e30d6ef90467df822b00e5ef122dea48c9d1c54817080d1a341f4
Qax = 0x167d2537aa6bbd8d978b58be0f9466520b7b184e205ff96a9ff567b35b32c7b7
Qay = 0xde3961553d36551f92726fee0e332133960edddccd2784b98b2af730d2fc6e14
Qbx = 0x839da64a414c2243a5526230603109be9c615613a9e98c3d650bb0488580bbda
Qby = 0x96e88e99304a5afcdd77c4f3b3327a28162627ebe08194baa0c78dfb67a11042
Qabx = 0x1f254c7da15899275cdcab9d992f58251a4ab630fe9864d20cf317ab57749947
Qaby = 0xd6cb400b3c49d33d3df28f9d34fa09f8b6c8edf117a378c5a45d0a51e6c0debc
Qbax = 0x1f254c7da15899275cdcab9d992f58251a4ab630fe9864d20cf317ab57749947
Qbay = 0xd6cb400b3c49d33d3df28f9d34fa09f8b6c8edf117a378c5a45d0a51e6c0debc
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