
Citation: Rashid, T.; Illahi, I.; Umer,

Q.; Jaffar, M.A.; Ramay, W.Y.; Hakami,

H. Zero-Shot Learning for Accurate

Project Duration Prediction in

Crowdsourcing Software

Development. Computers 2024, 13, 266.

https://doi.org/10.3390/

computers13100266

Academic Editor: Yan Liu

Received: 5 September 2024

Revised: 27 September 2024

Accepted: 28 September 2024

Published: 12 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Zero-Shot Learning for Accurate Project Duration Prediction in
Crowdsourcing Software Development
Tahir Rashid 1,2, Inam Illahi 3, Qasim Umer 2 , Muhammad Arfan Jaffar 1,4, Waheed Yousuf Ramay 5

and Hanadi Hakami 6,∗

1 Department of Computer Science, The Superior University, Lahore 54000, Pakistan;
tahir@cuivehari.edu.pk (T.R.); arfan.jaffar@superior.edu.pk (M.A.J.)

2 Department of Computer Sciences, COMSATS University Islamabad, Vehari 61000, Pakistan;
qasimumer@cuivehari.edu.pk

3 Department of Computing and Emerging Technologies, Emerson University, Multan 60000, Pakistan;
inam.illahi@eum.edu.pk

4 Intelligent Data Visual Computing Research (IDVCR), Lahore 54600, Pakistan
5 Department of Computer Science, Cholistan University of Veterinary and Animal Sciences,

Bahawalpur 63100, Pakistan; waheedramay@cuvas.edu.pk
6 Department of Software Engineering, College of Engineering, University of Business and Technology,

Jeddah 21361, Saudi Arabia
* Correspondence: h.hakami@ubt.edu.sa

Abstract: Crowdsourcing Software Development (CSD) platforms, i.e., TopCoder, function as inter-
mediaries connecting clients with developers. Despite employing systematic methodologies, these
platforms frequently encounter high task abandonment rates, with approximately 19% of projects
failing to meet satisfactory outcomes. Although existing research has focused on task scheduling,
developer recommendations, and reward mechanisms, there has been insufficient attention to the sup-
port of platform moderators, or copilots, who are essential to project success. A critical responsibility
of copilots is estimating project duration; however, manual predictions often lead to inconsistencies
and delays. This paper introduces an innovative machine learning approach designed to automate
the prediction of project duration on CSD platforms. Utilizing historical data from TopCoder, the
proposed method extracts pertinent project attributes and preprocesses textual data through Natu-
ral Language Processing (NLP). Bidirectional Encoder Representations from Transformers (BERT)
are employed to convert textual information into vectors, which are then analyzed using various
machine learning algorithms. Zero-shot learning algorithms exhibit superior performance, with an
average accuracy of 92.76%, precision of 92.76%, recall of 99.33%, and an f-measure of 95.93%. The
implementation of the proposed automated duration prediction model is crucial for enhancing the
success rate of crowdsourcing projects, optimizing resource allocation, managing budgets effectively,
and improving stakeholder satisfaction.

Keywords: classification; BERT; machine learning; crowdsourcing; crowdsourcing software
development; TopCoder

1. Introduction

Crowdsourcing software development (CSD) platforms serve as a marketplace be-
tween clients (companies) and the crowd (developers). The CSD platform’s basic role is
to address clients’ needs as demands and the crowd as suppliers [1]. From the client’s
perspective, they require maximum assurance that the crowdsourcing project must receive
significant crowd participation. From the crowd’s perspective, they must see tangible or
intangible values in involvement, i.e., winning prize money, gaining popularity, or building
technical skills [2,3].

TopCoder, the world’s largest CSD platform with over 1.2 million registered devel-
opers, is trusted by tech giants, e.g., Adobe, Microsoft, and Zurich. Despite its systematic

Computers 2024, 13, 266. https://doi.org/10.3390/computers13100266 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13100266
https://doi.org/10.3390/computers13100266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-0237-3025
https://orcid.org/0000-0001-5627-6805
https://doi.org/10.3390/computers13100266
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13100266?type=check_update&version=3

Computers 2024, 13, 266 2 of 18

approach from requirement extraction to project delivery, TopCoder faces a high task aban-
donment rate due to its dynamic and competitive environment, resulting in around 19% of
projects failing to achieve satisfactory solutions [4]. Research to improve the success rate of
crowd-sourced projects has focused on task scheduling [1], developer recommendations [5],
and improving the reward system [6]; others have explored motivational factors [2] to
increase the participation of the crowd. However, little attention has been paid to sup-
port platform moderators [7], known as TopCoder copilots, who play a crucial role in
project success by managing project duration, adjusting prices, extracting and articulating
requirements, answering forum questions, and fixing submissions.

Copilots are advised to consider a critical performance evaluation factor, that is, esti-
mating the duration of the project. The project size (small, medium, large, and extra-large)
must align with the CSD platform budget and be consistent with similar projects. To aid in
this, TopCoder provides a set of instructions and reusable specification templates (https://
docs.google.com/document/d/13szQLm1dbl5WAMDe-ddm2EHZ25ThavsI70Us7vo7lAI/
edit?usp=sharing, accessed on 25 July 2024) that help estimate the duration and size of the
project. For example, a small code development challenge typically takes 1 to 6 days, a
medium one takes 7 to 8 days, a large one takes 9 to 10 days, and an extra-large one takes
more than 10 days for final submission.

Despite these guidelines, many projects still fail, particularly small-sized projects.
That is why predicting project duration is vital for preventing failure in crowdsourcing
projects. It helps mitigate delays, efficiently allocate resources, comply with budgets,
manage stakeholder expectations, and reduce rework. By improving predictive accuracy
over time, organizations can enhance their project management practices and increase the
likelihood of successful project outcomes. Investing in robust duration prediction methods
is essential for minimizing project failure risk and ensuring crowdsourcing initiatives’
sustained success. It aids in efficient planning, successful project management, resource
allocation, budget management, risk mitigation, and stakeholder satisfaction. In addition,
it improves the accuracy of future predictions, contributing to the overall reliability of
crowdsourcing as a project development approach.

While copilots currently strive to predict project duration manually, this approach’s
limitations necessitate the adoption of automatic duration prediction models. Manual
adjustments, however, often lead to inconsistent and inaccurate duration estimations, caus-
ing delays and inefficiencies. If a competition fails, copilots must re-run the development
competition, impacting the overall project duration. Therefore, automatic duration pre-
diction ensures consistency, reliability, and efficiency in managing project timelines. Such
models offer greater consistency, accuracy, and efficiency, significantly reducing the risk
of project failure. Investing in developing and implementing these automatic models is
crucial for enhancing the success rate of crowdsourcing projects and ensuring optimal
project management.

For this purpose, this study introduces a novel ML approach to predict the duration
of a given CSD project automatically. The approach is tested using historical data from real
software projects on TopCoder. It begins by extracting relevant attributes, i.e., requirements,
technologies, platforms, project duration, and prize money. Then, it applies thorough
preprocessing on the textual data using natural language processing techniques. Next,
BERT [8] word embeddings are used to convert the textual information of each CSD project
into vectors. These vectors and their corresponding project durations are fed into various
ML algorithms. However, the zero-shot algorithms achieved the best performance.

This approach makes the following main contributions:

• To address the limitations of manual duration estimation by ensuring greater consis-
tency, accuracy, and efficiency in managing project timelines, this paper introduces a
novel ML approach to automatically predict the duration of Crowdsourcing Software
Development (CSD) projects by leveraging BERT word embeddings to process and
convert project-related textual information into vectors.

https://docs.google.com/document/d/13szQLm1dbl5WAMDe-ddm2EHZ25ThavsI70Us7vo7lAI/edit?usp=sharing
https://docs.google.com/document/d/13szQLm1dbl5WAMDe-ddm2EHZ25ThavsI70Us7vo7lAI/edit?usp=sharing
https://docs.google.com/document/d/13szQLm1dbl5WAMDe-ddm2EHZ25ThavsI70Us7vo7lAI/edit?usp=sharing

Computers 2024, 13, 266 3 of 18

• Application of various ML algorithms to BERT vectors, with zero-shot algorithms
demonstrating superior performance that achieves high performance with averages A
of 92.76%, P of 92.76%, R of 99.33%, and FM of 95.93%.

The remaining sections of the paper are structured as follows: Section 2 gives an
overview of the recent Crowdsourced Project (CSP) classification methods. The working of
the proposed model is explained in Section 3. The evaluation process, analysis of results,
and threats to validity are given in Section 4. Finally, conclusions and suggestions for future
research are presented in Section 5.

2. Related Work

CSD has gained popularity as a strategy for organizations to utilize a global talent pool
to complete software projects efficiently. In this perspective, many guidelines are provided.
Despite these guidelines, many projects still fail, particularly small-sized projects. Figure 1
shows that out of 2438 failed projects, 2389 are small-sized. Research in this field has
increased significantly over the past decade. This section reviews current state-of-the-art
(SOTA) studies on CSD, including success prediction, decision recommendations, success
factors, task scheduling, and quality assessment.

Figure 1. Success and failure distribution of CCSD projects.

2.1. Success Prediction

Illahi et al. [4,9] addressed inefficiencies in software development with a machine
learning model for predicting project success. Their model achieved an average P of 82.64%,
an R of 86.16%, and an FM of 84.36% using CNN classifiers, significantly reducing the
time and effort needed to evaluate project viability. Erica Mazzola et al. [10] examined the
influence of network positions, such as central and structural hole positions, on success
in crowdsourcing challenges, identifying an inverted U-shaped pattern among 2479 par-
ticipants. Rashid et al. [11] utilized the BERT model to predict the success of CSP, trained
on historical data from TopCoder. This model showed substantial improvements in P, R,
and FM, with increases of 13.46%, 8.83%, and 11.13%, respectively. Patel et al. [9] studied
the impact of monetary rewards on crowdsourcing dynamics, finding that larger rewards
increase participation but may hinder contribution appropriateness and contest success.
Data from over 93,000 contest interactions on eYeka demonstrated the need to balance
participant skills and experience when adjusting reward sizes.

2.2. Developer Recommendation

Selecting feasible developers for new project tasks or recommending appropriate
jobs for workers is crucial for Competitive Crowdsource Software Development (CCSD)
decision support. X. Yin et al. [12] proposed a task suggestion system for platforms like
TopCoder, MTurk, CrowdFlower, and Taskcn. This system, using a probabilistic matrix
factorization model, aligns tasks with developers, enhancing client satisfaction. However,
gathering comprehensive worker data for quality assurance and bias correction continues
to be difficult.

Computers 2024, 13, 266 4 of 18

Yongjun et al. [13] improved task selection efficiency by using a crowdsourcing deci-
sion support framework that recommends crowds based on project characteristics. Xiaojing
Yin et al. [14] proposed a task allocation strategy for cooperative software development in
diverse crowdsourcing environments using HMM and GANs, achieving promising results
but requiring additional empirical data. Junjie et al. [15] introduced a context-sensitive task
recommendation method for testing of crowd, which significantly enhanced P and R and
reduced exploration effort.

Yuen et al. [16] developed a time-sensitive task recommendation system that considers
temporal changes in worker preferences, outperforming previous methods. Wang et al. [17]
addressed biases in worker recommendations while crowd testing, incorporating context,
and fairness elements, which significantly decreased non-productive sessions and improved
bug detection. He et al. [18] designed a sustainability assessment framework for CCSD,
though it lacked specific environmental metrics.

2.3. CCSD Project Success Factors

Dubey et al. [19] identified factors such as task category and worker rating that
affect task completion in crowdsourcing, finding that well-organized tasks attract skilled
developers. Messinger [20] highlighted the importance of quality communities, incentives,
openness, and trust for successful software crowdsourcing. Yang et al. [21] introduced a
decision-support strategy that achieved a high P and reduced abandonment rates. Borst et
al. [22] emphasized the role of rewards in attracting participants, noting that projects can
succeed without monetary compensation. Yang and Saremi [23] proposed an ideal balance
between the number of contributors and prize values.

Kamar and Horvitz [24] discussed reliability concerns in task results on CCSD plat-
forms. Machado et al. [25] highlighted the positive effects of collaboration on crowdsourcing
success. Sultan et al. [26] suggested automated selection of project managers for effective
crowdsourcing. Mansour et al. [27] found that CCSD benefits postgraduate students, rec-
ommending customized e-learning environments. Xu et al. [28] emphasized the importance
of credibility and monetary incentives for crowdsourcers. Feng et al. [29] linked gamifi-
cation with motivation, proposing self-determination as a framework. Xiaoxiao et al. [30]
presented a model showing how individual thought processes influence contributions.
Denisse et al. [31] found that tasks with 60–80% similarity are most likely to succeed using
k-means clustering. Wang et al. [3] explored how media exposure, project length, partner
count, and cross-sector collaborations affect crowd involvement in crowdsourced social
innovation, identifying pathways to high and low contributions.

2.4. Task Scheduling

The University of Michigan’s CrowdSim model [32] forecasts the failure of crowd-
sourced software projects. Abdullah et al. [33] identified 13 critical factors contributing to
CCSD failures and developed a model for CCSD that addresses minimum task progress
control. Razieh et al. [34] employed neural networks to decrease task failure by 4%, thereby
improving efficiency and success rates in crowdsourced software development (CCSD).
They also worked on task scheduling [35] with a multi-objective genetic framework, which
significantly reduced project duration through NN-based task failure predictions.

2.5. CCSD Quality Assessment

Zhenghui et al. [36] worked a project rating metric for CCSD, with their clustering-
based model on TopCoder. Hyun Joon Jung [37] developed a matrix factorization algorithm
for project routing, predicting developer performance using SVD and PMF models, which
exceeded benchmark results. Wu et al. [38] created an assessment model for software
crowdsourcing, utilizing a weak min–max mechanism to ensure high-quality product
delivery while promoting participation and learning within software ecosystems.

Although the reviewed research in Section 2 provides insights into various aspects of
CSD, Table 1 provides the strengths and weaknesses of the existing studies. The limitations

Computers 2024, 13, 266 5 of 18

presented in Table 1 indicates that there remains a significant gap in accurately predicting
project duration. Existing studies primarily focus on task allocation, quality assessment,
and success prediction but lack comprehensive solutions for duration prediction. The main
goal of this study was to develop a predictive model that accurately estimates the duration
of crowdsourcing software projects, thereby improving efficiency and success rates.

Table 1. Strengths and limitations of existing studies.

Study Method Used Result Strengths Limitations

Illahi et al. [4] CNN Classifiers
P = 82.64%,
R = 86.16%,
FM = 84.36%

Efficient prediction of
software project success

Limited
generalizability beyond
specific datasets

Mazzola et al. [10] Network Position
Analysis

Inverted U-shaped
relationship identified
among 2479
participants

Focus on network
effects in
crowdsourcing

Only addresses
network position; lacks
broader scope

Rashid et al. [11] BERT Model

P, R, FM
improvements of
13.46%, 8.83%, and
11.13%, respectively

Strong performance in
CSP success prediction

Limited scalability for
other crowdsourcing
tasks

X. Yin et al. [12] Probabilistic Matrix
Factorization

Enhanced task
alignment with
developers on
platforms like
TopCoder

Effective
task-to-developer
matching

Difficulty in gathering
comprehensive worker
data for bias correction

Yongjun et al. [13] Crowdsourcing
Decision Framework

Improved task
selection efficiency

Effective crowd
selection based on
project characteristics

Requires more
empirical data for
validation

Junjie et al. [15] Context-Sensitive Task
Recommendation

Enhanced P and R, and
reduced exploration
effort

Effective at task
recommendation in
testing environments

Lack of testing outside
the testing crowds

Yuen et al. [16] Temporal Task
Recommendation

Improved worker
preferences prediction

Considers time-based
worker preferences

Performance
dependent on accurate
worker history data

Dubey et al. [19]
Analysis of Task
Category and Worker
Ratings

Well-organized tasks
attract skilled
developers

Insights into task
categorization and skill
alignment

Focuses only on small
task pools

Sultan et al. [26] Automated Project
Manager Selection

Effective
crowdsourcing
management using
automation

Strong project success
association with
manager selection

Lacks in-depth metrics
for task progress
monitoring

Razieh et al. [34] Neural Networks Task failure reduced by
4%

Improved efficiency
and task completion
rate

Focuses only on
specific CCSD
platforms

Zhenghui et al. [36] Clustering-Based
Quality Metric

Project rating on
TopCoder based on
clustering

Effective quality
assurance mechanism

Focuses on TopCoder,
limiting generalization

Hyun Joon Jung [37] SVD and PMF Models
Exceeded benchmarks
in developer
performance prediction

Accurate project
routing and developer
selection

Requires significant
computational
resources

3. Methodology
3.1. Overview

The proposed approach takes a CSD project as an input and predicts the size/project
duration of a given project, i.e., small/medium/large/extra-large. Notably, the size/project

Computers 2024, 13, 266 6 of 18

duration of the projects is adopted from TopCoder [39], which has a methodology based
on a number of screens. The co-pilots, who are technically strong and also take care of
the projects, do this classification. The outline of the proposed method is illustrated in
Figure 2. Moreover, the proposed approach is described below:

• First, CSD projects are extracted by implementing a Python script that utilizes the
TopCoder public API (https://tcapi.docs.apiary.io/, accessed on 25 July 2024).

• Second, NLP technologies are employed to preprocess the available data, with a
particular focus on the requirement documents of each project.

• Third, each CSD project is labeled as small, medium, large, or extra-large based on the
duration calculated by subtracting the last submission date from the posting date.
This labeling follows standard project-duration settings as instructed in Section 1.

• Fourth, the extracted attributes are utilized, and the BERT model is applied for embed-
ding calculations to represent each CSD project as a vector.

• Fifth, it trains the ML classifiers for project duration prediction and provides the best
optimal model for the project duration prediction.

The following sections offer a comprehensive explanation of the proposed approach.

zCSD
Dataset

Dataset Preparation

Testing Data

Training Data

 Labeling of CSD Projects

E-LargeLargeMediumSmall

Preprocessing

Training

Calculating Bert Embeddings

Trained Model

Build The Model

Validation

Evaluate & Predict

E-LargeLargeMediumSmall

Figure 2. Proposed model.

3.2. Detailed Example

This section provides a step-by-step guide to the proposed approach and how it
performs project size/duration prediction from a real-time example from the CSD platform.
The software development project (30043295) example is taken from TopCoder, which
was started on (6 June 2014) and finished on (11 June 2014). Following are the details of
the project.

• Project name: “Swift-iOS8-User Notification Actions”.

https://tcapi.docs.apiary.io/

Computers 2024, 13, 266 7 of 18

• Posting date: “6 June 2014” is the date of posting of the open call for the development
competition.

• Last submission date: “11 June 2014” is the last date for submitting the software solution.
• Detailed Description: (a snippet from the detailed description of the project) “Hone

your iOS development skills by implementing a new iOS 8 API in the new programming
language Swift. We are challenging you to implement the new UI User Notification Action
API, referred to as Quick Actions in the WWDC Keynote. You should showcase two types
of actions; foreground actions (ones that take you into the application for further action)
and background actions (ones that perform the action and let the user get back to what they
were currently doing) with an authenticated service of some sort, like Salesforce Chatter. For
this challenge, the following features are required: Native/Universal/iOS 8+, bundle ID is
(deleted for privacy purpose). Implementation of background actions, implementation of an
authenticated service that will be leveraged in the quick actions. UI Login Should be functional
for authenticating with the service you choose to implement. Primary Screen The screen that
will be used for performing your foreground action, e.g., replying to a post. User Notification
Implement using the Minimal or Default Action context, this isn’t very customizable, but it is
where the actual functionality of the challenge happens”.

• Required technologies: “iOS, REST, Swift, R” are the technology constraints that are
specified for developing the project.

• Prize money: “1000, 500” are the first and second winners prize monies.
• Platforms: “iOS” are the platform constraints (potentially multiple) on which the

finished project will operate.
• Status: “Cancelled-Failed Review” is the ultimate status of the project that signifies

whether the project was completed or failed to meet the deadline (the specifics of the
various statuses are detailed in Section).

3.3. Problem Definition

In this section, the example taken into account is used to illustrate how the proposed
approach works. Let us take a project p from a set of projects P and formalize it as in
Equation (9).

p =< r, m, pt, s, rt, d, hr, t > (1)

where r is the detailed description of project p, m is the prize money, pt is the required
platform, and s is the project status. The required technology constraints are denoted as
rt. The number of days needed to complete the project is represented as d, the number of
hours required to develop the project is shown as hr, and t indicates the type of project,
categorized as small, medium, large, or extra-large. We select the variables based on the
related work and baseline approaches. Notably, d is computed by subtracting the starting
date from the closing date of p, and hr is converted to d into hours. However, the date of
the last submission of the project is provided by TopCoder.

For the example taken into account and elaborated in Section 3.2, we have

pe =< re, me, pte, se, rte, de, hre, te > (2)

where

• re = “Hone your iOS development skills by implementing a new iOS 8 API in the new pro-
gramming language Swift. We are challenging you to implement the new UI User Notification
Action API, referred to as Quick Actions in the WWDC Keynote. You should showcase two
types of actions; foreground actions (ones that take you into the application for further action)
and background actions (ones that perform the action and let the user get back to what they
were currently doing) with an authenticated service of some sort, like Salesforce Chatter. For
this challenge, the following features are required: Native/Universal/iOS 8+, bundle ID is
(deleted for privacy purpose). Implementation of background actions, implementation of an
authenticated service that will be leveraged in the quick actions.UI Login Should be functional
for authenticating with the service you choose to implement. Primary Screen The screen that

Computers 2024, 13, 266 8 of 18

will be used for performing your foreground action, e.g., replying to a post. User Notification
Implement using the Minimal or Default Action context, this isn’t very customizable, but it
is where the actual functionality of the challenge happens”. It is a snippet of the detailed
description of the project.

• me = “1000, 500 = 1500” is the sum of prize money of the first and second winners.
• pte = 1 is number of platform’s constrains.
• se = 0 is the project’s status, where 0 indicates the project has failed due to different

reasons, e.g., zero submission, failed review, or failed screening, and 1 indicates the
project is successfully completed.

• rte = 4 is the number of technology constraints required to build the software project.
• de = 5 is a number of days to complete the project (the project duration changes

according to the size of the project).
• hre = 120 are the number of hours calculated from number of days de.
• te = “small” is the size of the project labeled based on the given project duration, i.e.,

between 5 and 7 days.

The suggested method categorizes the given project p into small or medium or large or
extra − large. The classes are indications of the project size of a given project p, where small
project duration lies between 1 and 6 days, medium project duration is 7 to 8 days, large
project duration is between 9 and 10 days, and extra − large can take more than 10 days for
its completion. The prediction of project duration might be depicted as a function f :

t = f (p) (3)

t ϵ{small, medium, large, extra − large}, p ϵ P (4)

where t is the outcome of the classification (e.g., small or medium or large or extra − large)
and f is a classification function.

3.4. Preprocessing

TopCoder’s API provides raw data containing many unwanted structural compo-
nents, words, and symbols. Therefore, to clean the data, NLP technologies are applied to
preprocess extracted data. As a first step, all the htm/xmll tags are removed. Furthermore,
the preprocessing methods of tokenization, elimination of stop words, parts-of-speech
(POS) tagging, handling negations, correcting spelling errors, identifying modifier words,
inflecting words, and lemmatization are implemented. The subsequent preprocessing
stages are applied to each of the extracted projects.

• Tokenization: in this step, the text is split into words and each word is called a
token. Special characters like punctuation marks are also decomposed and converted
into lowercase.

• Spell correction: in this step, the spell correction is performed using textblob module
(https://github.com/sloria/TextBlob, accessed on 25 July 2024).

• Stop-words removal: Stop-words are commonly used words, i.e., the, a, an, in, and
are. NLTK in Python has a list of stopwords, and in this step, all the stopwords
are removed.

• POS tagging: a process of categorizing words to correspond to a particular part
of speech called POS tag. Each tokenized word is assigned a POS tag in this step,
especially from requirement documents.

• Replacing emails, phone numbers, and URL: clean-text (https://pypi.org/project/
clean-text/, accessed on 25 July 2024) library is applied to remove and replace emails,
phone numbers, and URL (if any) to blank spaces.

• Word morphology and lemmatization: word morphology is a method of transforming
words into their singular forms. For instance, problems changes into problem. Addi-
tionally, lemmatization transforms nouns and adjectives into their base forms. For
example, the term glasses changes into glass.

https://github.com/sloria/TextBlob
https://pypi.org/project/clean-text/
https://pypi.org/project/clean-text/

Computers 2024, 13, 266 9 of 18

After preprocessing, a project p can be represented as

p′ =< rs, m, pt, s, rt, d, hr, t > (5)

rs =< r1, r2, r3,, rn > (6)

where rs represents the terms (tokens) extracted from the requirement document of p
post-preprocessing. For the exemplar scenario delineated in Section 3.2, we have

pe = ⟨Hone, your, iOS, ..., taken, project, 1500, 1,

0, 4, 5, 120, small⟩
(7)

where Hone, iOS,, project constitute the processed terms from pe.

3.5. Word Embeddings

In a broader term, ML and almost all DL algorithms cannot process textual data. They
require digits as inputs for classification, regression, etc. Word embedding converts the tex-
tual data to numeric from such that a machine can automatically learn the different patterns
and understand the semantic and syntactic context of the data. Recent investigations [40,41]
propose various word representation methods employed in NLP, such as Word2Vec [41],
GloVe [42], and FastText [43]. Nevertheless, BERT [8], unveiled by Google in 2018, stands
out as a robust NLP model pre-trained on an extensive text corpus. Unlike older methods
like Word2Vec or FastText, BERT captures bidirectional context by pre-training on vast
amounts of text data, leading to richer word representations. Its transformer architec-
ture allows it to understand entire sentence contexts rather than just nearby words. By
predicting missing words during training, BERT learns intricate semantic relationships,
enhanced by its attention mechanism, which assigns importance to words. Overall, BERT
offers superior performance and versatility, making it a preferred choice in project duration
prediction. The embeddings calculation from Figure 2 presents the process for generating
word embeddings from p′ = ⟨rs, m, pt, s, rt, d, hr⟩. Bert-base-uncased “BertTokenizer” from
the Transformers library is utilized for this purpose to generate embeddings for CSP.

3.6. Zero-Shot Learning Classifier

The training and prediction processes for project duration prediction involve zero-shot
models with BERT embeddings leveraging the rich semantic representations captured by
BERT. In many real-life situations, gathering and labeling vast amounts of data for every
potential category or idea a model might face is not practical. Allowing models to deal
with fresh and unfamiliar categories with little or no extra labeled data can boost scalability
and cut down the expenses linked to labeling and annotating data.

The zero-shot learning classifier leverages pre-trained data from the BERT layer to
predict project duration on CSD platforms. The implementation of the zero-shor learning
model is mathematically represented as follows:

yi = fθ(xi) xi ϵX, yi ϵY (8)

where X and Y represent the set of input samples and possible output labels (duration
categories, i.e., small, medium, large, or extra-large). fθ represents the zero-shot learning
model with parameter θ that predicts the label yi for each input sample xi, indicating the
predicted project duration category.

The zero-shot learning classifier is trained to classify instances without direct exposure
to all class instances (small, medium, large, extra-large). Using pre-trained data from the
BERT layer, the algorithm effectively handles unseen project descriptions, making the
model robust for various project types. This capability is crucial for CSD platforms where
project attributes can vary widely and new types of projects continuously emerge.

Computers 2024, 13, 266 10 of 18

The process begins with extracting relevant attributes from the project description,
including requirements, technologies, platforms, project duration, and prize money. These
attributes are denoted as

p = ⟨r, m, pt, s, rt, d, hr, t⟩ (9)

where r is the detailed description of a project p, m is the prize money, pt is the required
platform, s is the project status, rt represents the required technology constraints, d is the
number of days needed to complete the project, hr is the number of hours required, and t
indicates the project type (small, medium, large, extra-large).

These project attributes are processed using natural language processing techniques
(mentioned in Section 3.4) and converted into vectors using BERT embeddings (mentioned
in Section 3.5). The vectors and their corresponding project durations are then fed into
various ML algorithms. By leveraging the zero-shot learning classifier, the proposed model
ensures greater consistency, accuracy, and efficiency in predicting project durations, signif-
icantly reducing project failure risk. This automated prediction model enhances overall
project management in crowdsourcing initiatives, ensuring optimal resource allocation,
budget management, and stakeholder satisfaction. The zero-shot learning classifiers’s
ability to handle unseen project descriptions without extensive retraining makes it an
invaluable tool for CSD platforms like TopCoder, supporting dynamic and diverse project
environments.

4. Evaluation
4.1. Research Questions

• RQ1 Does the proposed approach work for the project-duration prediction of CCSD
projects? If yes, to what extent?

• RQ2 Does embedding influence the proposed method of CCSD project-duration
prediction?

• RQ3 Does preprocessing influence the proposed method of CCSD for project-duration
prediction?

• RQ4 Does the proposed method outperform the machine learning classifiers for CCSD
project-duration prediction?

The main research question (RQ1) assesses the accuracy of the proposed method. We
compare this method with two baseline prediction algorithms: the “random prediction
algorithm” and the “zero rule algorithm”. These baseline algorithms are typically used
when there is no established standard for comparison, especially in addressing rare or
unconventional problems. The random prediction algorithm requires different actual
outcome values from the training data and generates random predictions for the test data.
In contrast, the zero rule algorithm predicts the most frequently occurring classification
within the dataset.

To address the second research question (RQ2), we examine the influence of em-
bedding. To achieve this, we evaluate the effectiveness of the proposed method with
embedding against TF/IDF. In response to the third research question (RQ3), we explore
the influence of preprocessing on the provided inputs. We contrast the performance of
the proposed method with and without preprocessed text from requirement documents.
The fourth research question (RQ4) assesses the effectiveness of various machine learning
algorithms. This examination may indicate whether SVM surpasses other machine learning
algorithms in predicting the project duration of CCSD projects.

4.2. Dataset

The data about software development projects are sourced from TopCoder, employing
the TopCoder Rest API (https://tcapi.docs.apiary.io, accessed on 25 July 2024) to gather
essential attributes. These attributes encompass project commencement and conclusion
dates, requisite technologies and platforms, project specifications, and the project’s scale,
which could be classified as small, medium, large, or extra-large. This information is

https://tcapi.docs.apiary.io

Computers 2024, 13, 266 11 of 18

collected from publicly available projects up to July 2018 and stored locally. In total, there
are 16,190 projects, segmented according to their sizes into small, medium, large, or extra-
large categories. Out of 16,190, 5667 (35%), 4695 (29%), 3400 (21%), and 2428 (15%) are
small, medium, large, and extra-large, respectively.

4.3. Process

The assessment of the proposed method proceeds as follows. Initially, we retrieve the
projects P from TopCoder, employing NLP technologies for initial processing and executing
word embedding as detailed in Section 3.4. Subsequently, we employ the 10-fold cross-
validation technique on P, dividing P into ten subsets. Each iteration involves training on
a randomly selected 90% portion of the total training set Ktrain, with the remaining 10%
used as the testing set Ktest. This process is repeated ten times to ensure a comprehensive
evaluation. Notably, other evaluation techniques (i.e., 80%:20%) create dataset bias for
the training and testing of the proposed approach. Consequently, we consider ten-fold
cross-validation to avoid biases. Algorithm 1 trains and tests classifiers in each iteration of
ten-fold cross-validation.

Algorithm 1 Training and Evaluation of Classifiers

1: for each mi do
2: Select the training set Ktrain.
3: Train a Linear Regression classifier (LR) on Ktrain.
4: Train a Random Forest classifier (RF) on Ktrain.
5: Train a Support Vector Machine (SVM) classifier on Ktrain.
6: Train a Zero-Shot classifier (SZC) on Ktrain.
7: for each ith permutation of the testing set Ktest do
8: Use the trained classifiers (LR, RF, SVM, SZC) to predict the duration of each

project from Kitest .
9: end for

10: Compute Precision (P), Recall (R), and F-Measure (FM) for each classifier to com-
pare their performances.

11: end for

4.4. Metrics

To assess the methodology, we employ the most commonly utilized metrics for classi-
fication, namely P, R, and FM, defined as follows:

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

FM =
2 ∗ P ∗ R

P + R
(12)

Here, P, R, and FM represent the P, R, and FM of the methodology concerning the
prediction of project durations in P. TP stands for the count of projects accurately predicted
with respect to a specified project duration, while TN represents the count of projects
correctly predicted as being out of range. FP signifies the count of incorrectly predicted
projects, and FN denotes the count of projects incorrectly predicted as being out of range.

4.5. Results
Effectiveness of the Proposed Approach

To address research question RQ1, we contrast the suggested methodology with two
foundational algorithms (random forecasting and zero rule). These algorithms are employed
interchangeably as benchmarks to assess the efficacy of the suggested methodology. Since
there are no established methods for comparison with the proposed approach, it stands

Computers 2024, 13, 266 12 of 18

as the inaugural method for predicting project duration, to the best of our understanding.
Hence, we opt for these algorithms to evaluate the performance of the suggested approach.

The average evaluation outcomes of the suggested methodology, random forecasting, and
zero rule are displayed in Table 2, which is evaluated across P, R, and FM. The Proposed
Approach has the highest scores across all metrics, showcasing its robustness and balanced
performance. Random Prediction comes in second, performing consistently well but slightly
below the Proposed Approach in each metric. Figure 3 shows that the zero Rule shows
the lowest performance among the three, indicating areas needing improvement. This
visual comparison underscores the effectiveness of the proposed approach, with random
prediction being a strong alternative and zero rule requiring enhancements to compete
with the other methods.

Table 2. Comparison against Alternative Approaches.

Approach P R FM
Proposed Approach 92.76% 99.33% 95.93%
Random prediction 65.23% 65.64% 65.43%
Zero Rule 82.58% 100.00% 90.46%

Figure 3. Spider Graph: Performance comparison against alternative approaches.

From Table 2, we draw the following conclusions:

• The mean P, R, and FM of the proposed methodology, random forecasting, and zero rule
are (92.76%, 99.33%, 95.93%), (65.23%, 65.64%, 65.43%), and (82.58%, 100.00%, 90.46%),
respectively.

• The suggested methodology surpasses the random forecasting and zero rule classifiers.

Computers 2024, 13, 266 13 of 18

• Concerning P, the enhancement in performance of the suggested methodology over
random forecasting and zero rule is 42.20% = (92.76% − 65.23%)/65.23% and 12.33% =
(92.76% − 82.58%)/82.58%, respectively.

• In terms of R, the performance enhancement of the suggested methodology over random
forecasting and zero rule is 51.33% = (99.33% − 65.64%)/65.64% and (0.67)% = (99.33%
− 100.00%)/100.00%, respectively. The reason for the decline in performance of the
suggested methodology in R compared to zero rule is that zero rule consistently predicts
the majority class.

• Regarding FM, the performance enhancement of the suggested methodology over random
forecasting and zero rule is 46.61% = (95.93% − 65.43%)/65.43% and 6.05% = (95.93% −
90.46%)/90.46%, respectively.

4.6. Importance of Embedding

Word embedding transforms tokens into feature vectors. To explore its influence, we
contrast the effectiveness of the proposed methodology with two distinct input methodolo-
gies: embedding and TF-IDF.

The evaluation outcomes of the proposed methodology against both input methodolo-
gies are detailed in Table 3. The initial column showcases the input configurations. Columns
2–4 display the performance metrics of P, R, and FM under different input conditions,
respectively. Each row illustrates the mean performance across each input setup.

The mean P, R, and FM of the proposed methodology with embedding and TF-IDF are
(92.76%, 99.33%, and 95.93%) and (90.45%, 95.32%, and 92.82%), respectively. Table 3 indi-
cates that employing the embedding technique as input enhances the overall performance
(P, R, and FM) of the proposed methodology by 2.56%, 4.21%, and 3.35%, respectively.

The performance improvement of the proposed methodology when using word em-
beddings over TF-IDF can be attributed to several key factors. Word embeddings capture
semantic relationships between words by encoding them as dense vectors in a continuous
vector space, allowing the model to understand contextual similarities and improve gen-
eralization. This results in a more efficient input data representation, reducing noise and
irrelevant features. Additionally, embeddings handle synonyms and polysemy effectively
by mapping semantically similar words closer together, whereas TF-IDF treats words inde-
pendently. The continuous nature of embeddings enhances the model’s ability to generalize
in prediction tasks, leading to significant gains in performance metrics such as Precision
(P), Recall (R), and F-Measure (FM), as evidenced by the observed improvements of 2.56%,
4.21%, and 3.35%, respectively.

Table 3. Importance of embeddings.

Input P R FM
Embedding 92.76% 99.33% 95.93%

TF-IDF 90.45% 95.32% 92.82%

4.7. Importance of Preprocessing

The textual content within projects often contains unwanted elements such as URLs,
hexadecimal codes, stop-words, and punctuation. This noise is devoid of meaning and can
directly impede the learning process of any M/D learning model. Hence, preprocessing
textual information becomes a crucial step in machine learning, enhancing performance
and reducing computational overhead.

To address research question RQ3, we conduct a comparison between the performance
outcomes of the proposed methodology with and without the preprocessing step. The
evaluation results of the proposed methodology under both preprocessing scenarios are
presented in Table 4. From the data provided in Table 4, the following observations can
be made:

Computers 2024, 13, 266 14 of 18

• Enabling preprocessing leads to enhanced performance. It boosts the average P, R,
and FM of the proposed methodology by 0.34% = (92.76% − 92.45%)/92.45%, 0.38% =
(99.33% − 98.95%)/98.95%, and 0.36% = (95.93% − 95.59%)/95.59%, respectively.

• The likely rationale behind this enhancement is the presence of extraneous and irrele-
vant content within the textual data of projects, such as stop-words and punctuation.
Consequently, feeding such data into the proposed methodology poses an additional
burden. Hence, implementing preprocessing may enhance performance and reduce
computational expenses.

Based on the preceding analysis, we deduce that the preprocessing step is critical for
project-duration prediction. Disabling preprocessing would consequently diminish the
proposed methodology’s performance.

Table 4. Importance of preprocessing.

Preprocessing P R FM
Enable 92.76% 99.33% 95.93%
Disable 92.45% 98.95% 95.59%

4.8. Proposed Classifier Verses Other Machine Learning Classifiers

To address RQ4, we compare the performance of the proposed methodology with that
of other ML classifiers. The evaluation outcomes of SVM, LR, RF, and MNB are displayed
in Table 5.

The ridge graph (Figure 4) also presents a comparison of four machine learning
algorithms (ZSC, SVM, LR, and RF) across P, R, and FM. Each ridge plot represents the
distribution of one metric’s performance for each algorithm, where the x-axis indicates
the percentage values of the metric and the y-axis illustrates the density of these values.
By examining the ridges, we can discern notable patterns and variations in algorithm
performance. Algorithms with taller and narrower ridges signify higher P and R values,
suggesting superior overall performance. Conversely, wider ridges with lower peaks may
indicate comparatively lower P and R, highlighting potential areas for enhancement. The
positioning and spread of the ridges provide valuable insights into algorithm performance
across different metrics, aiding in the identification of algorithms best suited for specific
tasks, ZSC in our case.

Figure 4. Ridge Graph: Comparison against different machine learning algorithms.

Computers 2024, 13, 266 15 of 18

Table 5. Comparison against Different Machine Learning Algorithms.

P R FM
ZSC 92.76% 99.33% 95.93%
SVM 91.93% 98.72% 95.21%
LR 91.68% 97.94% 94.71%
RF 89.57% 83.64% 86.51%

From Table 5 and Figure 4, the following observations can be made:

• The mean P, R, and FM of ZSC, SVM, LR, and RF are (92.76%, 99.33%, and 95.93%),
(99.93%, 98.72%, and 95.21%), (91.68%, 97.94%, and 94.71%), and (89.57%, 83.64%, and
86.51%), respectively. The application of these classifiers indicates that ZSC provides
the most accurate results on the given dataset.

• The ZSC algorithm outperformed SVM, LR, and RF in terms of P, R, and FM. Impor-
tantly, we did not use boosting algorithms to correct classification errors due to their
additional computational cost. ZSC excels for several reasons. Firstly, it has superior
generalization capabilities, allowing it to perform well across domains and datasets
without extensive tuning. Secondly, ZSC requires less labeled data for training than
SVM, LR, and RF, making it ideal for scenarios where annotated data is limited or
expensive. Thirdly, ZSC is more adaptable to new or unseen classes, which is beneficial
for tasks involving rapidly changing data environments.

• SVM surpasses LR and RF because it constructs a hyperplane in the feature space that
maximizes the margin for most projects, except for outliers. This characteristic helps
SVM generalize better on test data compared to distance-based and similarity-based
algorithms like RF. Furthermore, linear SVM efficiently explores different feature
combinations and performs classification with lower computational complexity than
other SVM kernels. SVM also excels in long text classification scenarios, outperforming
classifiers like LR, RF, and MNB.

• LR also shows better performance than RF, primarily due to its rapid training capa-
bility and effectiveness with sparse features. Although the performance difference
between LR and RF is small, LR’s ability to handle high-dimensional data can sig-
nificantly enhance its performance on larger datasets. In contrast, RF’s complexity
makes it less suitable for high-dimensional features, particularly in project-duration
prediction tasks.

Based on the above analysis, we conclude that the results obtained from the proposed
approach are significant when compared to other machine learning classifiers.

4.9. Threats to Validity

The evaluation of the proposed approach introduces potential threats to construct,
internal, and external validity. While P, R, and FM are widely accepted metrics for
assessing performance, their usage alone may overlook nuances in model effectiveness.
For instance, our reliance on default parameter settings instead of exploring optimal
configurations introduces uncertainty in results, as different settings could yield varied
outcomes. To address internal validity concerns regarding implementation, rigorous cross-
checking of results was conducted; however, there remains a possibility of undetected errors.
External validity threats arise from the approach’s reliance on English-language projects,
potentially limiting its applicability to projects written in other languages. Moreover,
the small number of projects analyzed may restrict the generalizability of findings. To
mitigate these limitations, future research could explore the utilization of deep learning
algorithms, which offer greater parameter flexibility and may better accommodate larger
training datasets.

5. Conclusions

Automation has become a necessity in software project development as it can sig-
nificantly reduce human errors. Scientists have developed various automated solutions

Computers 2024, 13, 266 16 of 18

for every stage of traditional software development. However, the Collaborative Crowd-
sourced Software Development (CCSD) paradigm is still in its early stages and lacks
automated solutions for its different stages compared to traditional software development.
For example, the paradigm struggles to attract a sufficient number of developers for many
CCSD projects. Moreover, many projects fail to attract proper registrants, leading to wasted
time, money, and effort, ultimately threatening the success rate of CCSD projects.

TopCoder, one of the world’s most famous CCSD platforms, provides a systematic
approach from requirement extraction to the final deliverable project. However, project-
duration estimation remains a manual task performed by the copilots of CCSD projects.
Copilots on TopCoder are primarily responsible for managing the project duration, adjust-
ing its price, responding to forum questions, and evaluating submitted solutions to ensure
they meet the requirements. Copilots typically follow a traditional rule-based template
to determine the size of the CCSD project (small, medium, large, or extra-large) and then
assign a duration accordingly. This task consumes a significant amount of time and effort
for copilots.

To address this issue, this study provided a novel machine learning-based approach
that automatically predicts the duration of a given CCSD project. The proposed approach
is evaluated using historical data from real software projects. The results of 10-fold cross-
validation suggest that the average precision, recall, and F-measure are up to 92.76%,
99.33%, and 95.93%, respectively.

Author Contributions: Conceptualization, Q.U. and M.A.J.; Methodology, Q.U. and T.R.; Software,
I.I. and H.H., Formal Analysis, I.I. and W.Y.R., Data Curation, T.R. and W.Y.R.; Visualization, Q.U.
and I.I.; Supervision, Q.U. and H.H.; Writing—original draft, T.R. and Q.U. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available on request from the authors.

Acknowledgments: The authors acknowledge that this project was funded by the Deanship of
Scientific Research (DSR), University of Business and Technology, Jeddah 21361, Saudi Arabia. The
authors, therefore, gratefully acknowledge the DSR technical and financial support.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Urbaczek, J.; Saremi, R.; Saremi, M.; Togelius, J. Greedy Scheduling: A Neural Network Method to Reduce Task Failure in

Software Crowdsourcing. In Proceedings of the 23rd International Conference on Enterprise Information Systems—Volume 1:
ICEIS,. INSTICC, Virtual, 26–28 April 2021; SciTePress: Setúbal, Portugal, 2021; pp. 410–419. [CrossRef]

2. Illahi, I.; Liu, H.; Umer, Q.; Zaidi, S.A.H. An Empirical Study on Competitive Crowdsource Software Development: Motivating
and Inhibiting Factors. IEEE Access 2019, 7, 62042–62057. [CrossRef]

3. Wang, R.; Chen, B. A Configurational Approach to Attracting Participation in Crowdsourcing Social Innovation: The Case of
Openideo. Manag. Commun. Q. 2023, 37, 340–367. [CrossRef]

4. Illahi, I.; Liu, H.; Umer, Q.; Niu, N. Machine learning based success prediction for crowdsourcing software projects. J. Syst. Softw.
2021, 178, 110965. [CrossRef]

5. Zhang, Z.; Sun, H.; Zhang, H. Developer recommendation for Topcoder through a meta-learning based policy model. Empir.
Softw. Eng. 2020, 25, 859–889. [CrossRef]

6. Afridi, H.G. Empirical investigation of correlation between rewards and crowdsource-based software developers. In Proceedings
of the 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C), Buenos Aires, Argentina,
20–28 May 2017; pp. 80–81. [CrossRef]

7. de Souza, C.R.B.; Machado, L.S.; Melo, R.R.M. On Moderating Software Crowdsourcing Challenges. Proc. ACM Hum.-Comput.
Interact. 2020, 4, 1–22. [CrossRef]

8. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

9. Patel, C.; Husairi, M.A.; Haon, C.; Oberoi, P. Monetary rewards and self-selection in design crowdsourcing contests: Managing
participation, contribution appropriateness, and winning trade-offs. Technol. Forecast. Soc. Chang. 2023, 191, 122447. [CrossRef]

10. Mazzola, E.; Piazza, M.; Perrone, G. How do different network positions affect crowd members’ success in crowdsourcing
challenges? J. Prod. Innov. Manag. 2023, 40, 276–296. [CrossRef]

http://doi.org/10.5220/0010407604100419
http://dx.doi.org/10.1109/ACCESS.2019.2915604
http://dx.doi.org/10.1177/08933189221108360
http://dx.doi.org/10.1016/j.jss.2021.110965
http://dx.doi.org/10.1007/s10664-019-09755-0
http://dx.doi.org/10.1109/ICSE-C.2017.149
http://dx.doi.org/10.1145/3375194
http://dx.doi.org/10.1016/j.techfore.2023.122447
http://dx.doi.org/10.1111/jpim.12666

Computers 2024, 13, 266 17 of 18

11. Rashid, T.; Anwar, S.; Jaffar, M.A.; Hakami, H.; Baashirah, R.; Umer, Q. Success Prediction of Crowdsourced Projects for
Competitive Crowdsourced Software Development. Appl. Sci. 2024, 14, 489. [CrossRef]

12. Yin, X.; Wang, H.; Wang, W.; Zhu, K. Task recommendation in crowdsourcing systems: A bibliometric analysis. Technol. Soc. 2020,
63, 101337. [CrossRef]

13. Huang, Y.; Nazir, S.; Wu, J.; Hussain Khoso, F.; Ali, F.; Khan, H.U. An efficient decision support system for the selection of
appropriate crowd in crowdsourcing. Complexity 2021, 2021, 5518878. [CrossRef]

14. Yin, X.; Huang, J.; He, W.; Guo, W.; Yu, H.; Cui, L. Group task allocation approach for heterogeneous software crowdsourcing
tasks. Peer-Peer Netw. Appl. 2021, 14, 1736–1747. [CrossRef]

15. Wang, J.; Yang, Y.; Wang, S.; Chen, C.; Wang, D.; Wang, Q. Context-aware personalized crowdtesting task recommendation. IEEE
Trans. Softw. Eng. 2021, 48, 3131–3144. [CrossRef]

16. Yuen, M.C.; King, I.; Leung, K.S. Temporal context-aware task recommendation in crowdsourcing systems. Knowl.-Based Syst.
2021, 219, 106770. [CrossRef]

17. Wang, J.; Yang, Y.; Wang, S.; Hu, J.; Wang, Q. Context-and Fairness-Aware In-Process Crowdworker Recommendation. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 2022, 31, 1–31. [CrossRef]

18. He, H.R.; Liu, Y.; Gao, J.; Jing, D. Investigating Business Sustainability of Crowdsourcing Platforms. IEEE Access 2022,
10, 74291–74303. [CrossRef]

19. Dubey, A.; Abhinav, K.; Taneja, S.; Virdi, G.; Dwarakanath, A.; Kass, A.; Kuriakose, M.S. Dynamics of software development
crowdsourcing. In Proceedings of the 2016 IEEE 11th International Conference on Global Software Engineering (ICGSE), Orange
County, CA, USA, 2–5 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 49–58.

20. Messinger, D. Elements of Good Crowdsourcing. In Proceedings of the 3rd International Workshop in Austin, Austin, TX, USA,
17 May 2016.

21. Yang, Y.; Karim, M.R.; Saremi, R.; Ruhe, G. Who should take this task? Dynamic decision support for crowd workers. In
Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Ciudad
Real, Spain, 8–9 September 2016; pp. 1–10.

22. Borst, I. Understanding Crowdsourcing: Effects of Motivation and Rewards on Participation and Performance in Voluntary
Online Activities. Number EPS-2010-221-LIS; 2010. Available online: https://repub.eur.nl/pub/21914/EPS2010221LIS978905892
2625.pdf (accessed on 27 September 2024).

23. Yang, Y.; Saremi, R. Award vs. worker behaviors in competitive crowdsourcing tasks. In Proceedings of the 2015 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM), Beijing, China, 22–23 October 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 1–10.

24. Kamar, E.; Horvitz, E. Incentives for truthful reporting in crowdsourcing. In Proceedings of the AAMAS. Citeseer, Valencia
Spain, 4–8 June 2012; Volume 12, pp. 1329–1330.

25. Machado, L.; Melo, R.; Souza, C.; Prikladnicki, R. Collaborative Behavior and Winning Challenges in Competitive Software
Crowdsourcing. Proc. Acm -Hum.-Comput. Interact. 2021, 5, 1–25. [CrossRef]

26. Al Haqbani, O.; Alyahya, S. Supporting Coordination among Participants in Crowdsourcing Software Design. In Proceedings of
the 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA),
Las Vegas, NV, USA, 25–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 132–139.

27. Alabdulaziz, M.S.; Hassan, H.F.; Soliman, M.W. The effect of the interaction between crowdsourced style and cognitive style on
developing research and scientific thinking skills. Eurasia J. Math. Sci. Technol. Educ. 2022, 18, em2162. [CrossRef]

28. Xu, H.; Wu, Y.; Hamari, J. What determines the successfulness of a crowdsourcing campaign: A study on the relationships
between indicators of trustworthiness, popularity, and success. J. Bus. Res. 2022, 139, 484–495. [CrossRef]

29. Feng, Y.; Yi, Z.; Yang, C.; Chen, R.; Feng, Y. How do gamification mechanics drive solvers’ Knowledge contribution? A study of
collaborative knowledge crowdsourcing. Technol. Forecast. Soc. Chang. 2022, 177, 121520. [CrossRef]

30. Shi, X.; Evans, R.D.; Shan, W. What Motivates Solvers’ Participation in Crowdsourcing Platforms in China? A Motivational–
Cognitive Model. IEEE Trans. Eng. Manag. 2022, 71, 12068–12080. [CrossRef]

31. Mejorado, D.M.; Saremi, R.; Yang, Y.; Ramirez-Marquez, J.E. Study on patterns and effect of task diversity in software
crowdsourcing. In Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), Bari, Italy, 5–7 October 2020; pp. 1–10.

32. Saremi, R.; Yang, Y.; Vesonder, G.; Ruhe, G.; Zhang, H. Crowdsim: A hybrid simulation model for failure prediction in
crowdsourced software development. arXiv 2021, arXiv:2103.09856.

33. Khanfor, A.; Yang, Y.; Vesonder, G.; Ruhe, G.; Messinger, D. Failure prediction in crowdsourced software development. In
Proceedings of the 2017 24th Asia-Pacific Software Engineering Conference (APSEC), Nanjing, China, 4–8 December 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 495–504.

34. Urbaczek, J.; Saremi, R.; Saremi, M.L.; Togelius, J. Scheduling tasks for software crowdsourcing platforms to reduce task failure.
arXiv 2020, arXiv:2006.01048.

35. Saremi, R.; Yagnik, H.; Togelius, J.; Yang, Y.; Ruhe, G. An evolutionary algorithm for task scheduling in crowdsourced software
development. arXiv 2021, arXiv:2107.02202.

36. Hu, Z.; Wu, W.; Luo, J.; Wang, X.; Li, B. Quality assessment in competition-based software crowdsourcing. Front. Comput. Sci.
2020, 14, 146207. [CrossRef]

http://dx.doi.org/10.3390/app14020489
http://dx.doi.org/10.1016/j.techsoc.2020.101337
http://dx.doi.org/10.1155/2021/5518878
http://dx.doi.org/10.1007/s12083-020-01000-6
http://dx.doi.org/10.1109/TSE.2021.3081171
http://dx.doi.org/10.1016/j.knosys.2021.106770
http://dx.doi.org/10.1145/3487571
http://dx.doi.org/10.1109/ACCESS.2022.3190970
https://repub.eur.nl/pub/21914/EPS2010221LIS9789058922625.pdf
https://repub.eur.nl/pub/21914/EPS2010221LIS9789058922625.pdf
http://dx.doi.org/10.1145/3463932
http://dx.doi.org/10.29333/ejmste/12428
http://dx.doi.org/10.1016/j.jbusres.2021.09.032
http://dx.doi.org/10.1016/j.techfore.2022.121520
http://dx.doi.org/10.1109/TEM.2022.3140358
http://dx.doi.org/10.1007/s11704-019-8418-4

Computers 2024, 13, 266 18 of 18

37. Jung, H.J. Quality assurance in crowdsourcing via matrix factorization based task routing. In Proceedings of the 23rd International
Conference on World Wide Web, Seoul, Republic of Korea, 7–11 April 2014; pp. 3–8.

38. Wu, W.; Tsai, W.T.; Li, W. An evaluation framework for software crowdsourcing. Front. Comput. Sci. 2013, 7, 694–709. [CrossRef]
39. Blohm, I.; Zogaj, S.; Bretschneider, U.; Leimeister, J.M. How to Manage Crowdsourcing Platforms Effectively? Calif. Manag. Rev.

2018, 60, 122–149. [CrossRef]
40. Sarzynska-Wawer, J.; Wawer, A.; Pawlak, A.; Szymanowska, J.; Stefaniak, I.; Jarkiewicz, M.; Okruszek, L. Detecting formal

thought disorder by deep contextualized word representations. Psychiatry Res. 2021, 304, 114135. [CrossRef]
41. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,

arXiv:1301.3781.
42. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
43. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of tricks for efficient text classification. arXiv 2016, arXiv:1607.01759.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11704-013-2320-2
http://dx.doi.org/10.1177/0008125617738255
http://dx.doi.org/10.1016/j.psychres.2021.114135

	Introduction
	Related Work
	Success Prediction
	Developer Recommendation
	CCSD Project Success Factors
	Task Scheduling
	CCSD Quality Assessment

	Methodology
	Overview
	Detailed Example
	Problem Definition
	Preprocessing
	Word Embeddings
	Zero-Shot Learning Classifier

	Evaluation
	Research Questions
	Dataset
	Process
	Metrics
	Results
	Importance of Embedding
	Importance of Preprocessing
	Proposed Classifier Verses Other Machine Learning Classifiers
	Threats to Validity

	Conclusions
	References

