
Citation: Al-Azzoni, I.; Iqbal, S.

Access Control Verification in Smart

Contracts Using Colored Petri Nets.

Computers 2024, 13, 274. https://

doi.org/10.3390/computers13110274

Academic Editor: Paolo Bellavista

Received: 6 September 2024

Revised: 11 October 2024

Accepted: 18 October 2024

Published: 22 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Access Control Verification in Smart Contracts Using Colored
Petri Nets
Issam Al-Azzoni * and Saqib Iqbal

College of Engineering, Al Ain University, Al Ain 64141, United Arab Emirates; saqib.iqbal@aau.ac.ae
* Correspondence: issam.alazzoni@aau.ac.ae

Abstract: This paper presents an approach for the verification of access control in smart contracts
written in the Digital Asset Modeling Language (DAML). The approach utilizes Colored Petri Nets
(CPNs) and their analysis tool CPN Tools. It is a model-driven-based approach that employs a new
meta-model for capturing access control requirements in DAML contracts. The approach is supported
by a suite of tools that fully automates all of the steps: parsing DAML code, generating DAML model
instances, transforming the DAML models into CPN models, and model checking the generated CPN
models. The approach is tested using several DAML scripts involving access control extracted from
different domains of blockchain applications.

Keywords: DAML; smart contracts; access control; Colored Petri Nets

1. Introduction

Smart contracts play a major role in distributed ledger and blockchain technologies.
They are self-executing contracts that automate business workflows involving multiple
parties without requiring a central authority to manage them [1]. They are used across
blockchain platforms for applications including commercial and financial transactions, legal
processes, data sharing, supply chain management, and the Internet of Things (IoT) [2–4].

DAML (Digital Asset Modeling Language) is a smart contract language designed to
simplify the development of smart contracts [5]. Developed by Digital Asset [6], DAML
focuses on modeling business processes and workflows. One of the key features of DAML
is its ability to define complex workflows and relationships between participants in a
straightforward manner. DAML is also designed to be blockchain-agnostic, meaning
that it can run on various distributed ledger technologies without being tied to a specific
blockchain [5]. These include Hyperledger Fabric [7], Corda [8], VMware Blockchain [9],
and an enterprise version of Ethereum based on IBFT [10].

An important feature of DAML is its ability to specify authorization and access control
policies using novel primitives that mimic the primitives of today’s legal systems [5].
The authorization and access control policies are specified along with the data and smart
contract code as part of the primitives. In DAML, every piece of ledger data are annotated
with a set of owners and a set of controllers who are authorized to change the data based
on the logic specified by the smart contract code. The aim of supporting such primitives is
to have a secure smart contract language.

Having secure smart contracts is critical for adopting blockchain technologies [11].
These contracts manage access to assets that can be too financially valuable. Any vulner-
abilities in smart contracts can lead to substantial financial losses and an exploitation by
malicious actors. Furthermore, once deployed, smart contracts are immutable, meaning that
fixing bugs or security flaws can be challenging. However, these smart contracts automate
complex business processes that can be hard to verify. In fact, several vulnerabilities in
smart contracts have been exploited resulting in major financial losses recorded in billions
of dollars [12,13].

Computers 2024, 13, 274. https://doi.org/10.3390/computers13110274 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13110274
https://doi.org/10.3390/computers13110274
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-2758-8145
https://orcid.org/0000-0001-8311-6129
https://doi.org/10.3390/computers13110274
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13110274?type=check_update&version=1


Computers 2024, 13, 274 2 of 13

Hence, several researches have proposed methods for the formal verification of smart
contracts (surveys can be found in [14,15]). These include model-checking [16], machine
learning [17], and theorem proving methods [18,19]. Of particular relevance to DAML
smart contracts, we believe that Colored Petri Nets (CPNs) can be effective in modeling the
complex business workflows that DAML was designed to implement. Several methods
based on CPNs exist in the literature for the verification of smart contracts (these are
surveyed in Section 2); however, this paper is unique in proposing a CPN-based approach
designed specifically for verifying DAML contracts. The approach is model-based, in
which all intermediate steps are fully automated. Furthermore, the approach focuses
on authorization and access control verification of DAML contracts based on the actual
semantics of DAML authorization primitives.

The main contributions of this paper are as follows:

1. A new meta-model that defines the main authorization concepts in DAML contracts.
2. A toolkit for automatically parsing DAML contracts and generating the corresponding

DAML models.
3. A toolkit for automatically transforming DAML models into equivalent CPN models,

which can be subsequently verified using CPN Tools.
4. A complete approach for verifying authorization requirements in DAML contracts is

presented and evaluated on several contracts.

The organization of the paper is as follows. Section 2 reviews the related literature.
Section 3 provides the necessary background on smart contracts and CPNs. Example
DAML contracts are presented and discussed in Section 4. Our approach is presented in
Section 5 and an evaluation of the approach is discussed in Section 6. Finally, Section 7
concludes the paper and discusses future work.

2. Related Work

Several formal verification methodologies have been proposed to verify smart con-
tracts. One of these methodologies verifies the contracts by translating the contracts’ code
to F* [20]. The methodology translates Solidity and EVM bytecode contracts to F*. The
translated code is tested by F*-type checking, which identifies vulnerable parts of the
code. The weakness in this approach is its inability to translate the entire Solidity syntax
to F* as it only covers a portion of the whole Solidity syntax [16]. Another approach for
formal verification is based on verifying the bytecode of the contracts with the help of the
interactive theorem prover Isabelle/HOL [18]. The contracts are partitioned into blocks,
which are then verified using the Hoare logic in the theorem prover. The approach is still
not mature as it does not cover the entire syntax of Solidity leaving loops and message
calls unsupported [18]. Model-checking approaches have also been proposed to verify
smart contracts. In [21], a model-checking-based method has been proposed to verify the
smart contract using the NuSMV model checker. The model works efficiently for simple to
moderate size contracts but suffers inefficiency in verifying complex contracts due to the
language limitations of NuSMV.

In [22], the authors propose an approach for the formal analysis of Ethereum smart
contracts based on CPNs. The approach can be used to analyze potential security vulnera-
bilities that could exit during the smart contract execution. The input to the approach can
be in the form of a Solidity source code or EVM bytecode. The approach builds a control
flow graph (CFG) and then the corresponding CPN model is generated. The generated
CPN models are then run in CPN Tools to complete the dynamic simulation and model
checking. The approach is highly automated, however, it is based on Solidity contracts and
does not look at authorization-related vulnerabilities in particular.

Rakkay and Boucheneb [23] present a formal technique to model and analyze RBAC
using CPNs. The authors represent a Role-Based Access Control (RBAC) policy using a
CPN and use CPN for validation of the RBAC-based security policy. Several features of
RBAC are incorporated, including role hierarchy, role and user cardinality, and static and
dynamic separation of duties relations. However, the presented technique is not automated.



Computers 2024, 13, 274 3 of 13

Also, it is not model-based and, hence, there is no metamodel that captures RBAC policies
nor the verified business workflows.

The authors in [24] present an approach to model and analyze RBAC security policies
using CPN formalism. In the approach, CPN Tools is used to analyze the generated CPN
models. Several security properties about the RBAC security policy can be proven using
the approach. Similar to the other related work presented earlier, this approach is not fully
automatic and it is not a model-based approach.

In [25], the authors present a formal approach for the verification of Solidity smart
contracts using CPNs. The approach is designed to check the absence of several kinds of
vulnerabilities in Solidity smart contracts, such as integer overflow/underflow, reentrancy,
self-destruction, timestamp dependence, and uninitialized storage variables. The vulner-
abilities are formalized as Linear Temporal Logic (LTL) formulae that are subsequently
verified using the Helena Petri net tool (https://lipn.univ-paris13.fr/helena/ (accessed on
11 October 2024)), which is a high level net analyzer available as a command line tool. The
authors present an algorithm for transforming a Solidity smart contract into a CPN, but do
not provide an implementation for automating the transformation.

The authors in [26] present an approach to design, develop, and verify secure smart
contracts with a modeling tool-set that can be used to generate smart contracts before
deploying them on blockchain. The approach is based on a Petri Net representation of the
workflow that represents the business logic that a smart contract is supposed to implement.
Petri net can be simulated and verified prior to the smart contract code generation.

Armando and Ponta [27] present an approach for formally modeling and analyzing
authorization requirements in business processes. In their approach, model checking
authorization requirements are used to separate the specification of the workflow from the
associated access control policy. The approach is demonstrated using a loan origination
process scenario featuring RBAC extended with conditional permission assignments and
delegation. Petri nets are used to model the workflows.

In [28], the authors use CPNs to verify a crowdfunding Solidity smart contract. They
demonstrate how the CPN model is able to discover logical vulnerabilities in the smart contract.
The model checking capabilities of CPN Tools are utilized to discover attack scenarios.

He [29] presents an approach for modeling and analyzing smart contracts using
predicate transition (PrT) nets. The approach is applied on smart contracts written in
Solidity and that are deployed on the Azure Blockchain Workbench. The experiments
conducted by the author show the applicability and suitability of PrT nets in modeling and
analyzing smart contracts.

The authors in [30] propose a framework that incorporates model-driven engineering
and formal verification into DAML smart contract life-cycle management. The framework
utilizes CPNs for modeling the DAML smart contracts and verifying access control re-
quirements. Our approach can supplement this framework by enabling a second round
verification of the generated DAML smart contracts with a focus on identifying access
control vulnerabilities. Furthermore, multi-party authorization is included in the CPN
models in our approach, which we believe is lacking in their CPN models.

Compared with the aforementioned related work, our approach is distinguished by
being model-based. Utilizing models of DAML smart contracts, all subsequent steps in the
verification of the contracts are fully automated. The focus of our approach is on verifying
access control requirements that are specified using DAML’s native authorization primitives.

3. Background
3.1. Smart Contracts

Smart contracts were proposed in 1996 for agreements, protocols, and agreed-upon
policies between the two trading parties in a digital environment [31]. Their use in the
blockchain technology has proven to be the driving force behind blockchain technology’s
success. The difference between a real-world contract and smart contract lies on the fact that
the smart contract does not require a mediator for the agreement like a real-world contract.

https://lipn.univ-paris13.fr/helena/


Computers 2024, 13, 274 4 of 13

The onus of fulfillment of the smart contract is on the execution of protocols by the network
nodes on a decentralized blockchain. The code of a smart contract is usually in a high-level
programming language, such as Solidity and Vyper, which is compiled into bytes and run
by the Ethereum Virtual Machines (EVM) on the Ethereum based blockchain technology.
The most significant use of the smart contracts is in cryptocurrency where the trading of
the cryptocurrency is executed and recorded through the execution of these contracts. The
autonomous nature of smart contracts reduces the overhead costs of mediatory services
and commissions [32]. It also reduces the risk of breach or interference of the third party.

Due to transactions of large sums and the absence of a third party, smart contracts are
vulnerable to attacks. There are a wide array of attacks and vulnerabilities that exist in the
current smart contracts, which can hamper the adoptability of smart contracts on a wider
level [33]. In recent years, these vulnerabilities have been exploited to plunder billions of
dollars out of cryptocurrency [34]; hence, the security of smart contracts is imperative for
its wider adoptability.

3.2. Colored Petri Nets

CPNs are a mathematical modeling language used for representing and analyzing
systems where concurrency, communication, and synchronization are key aspects. CPNs
extend classical Petri nets by introducing colors (data values) to tokens, which allow mod-
eling systems in a more compact way. This capability makes CPNs suitable for applications
in various domains, such as communication protocols and distributed systems.

A CPN is formally defined as a tuple (P, T, A, Σ, V, C, G, E, I) [35], where:

• P is a finite set of places,
• T is a finite set of transitions, with P ∩ T = ∅,
• A is a finite set of arcs, where A ⊆ (P × T) ∪ (T × P),
• Σ is a set of color sets,
• V is a set of typed variables that can appear in expressions in the CPN,
• C is a color set function that assigns a color set to each place,
• G is a guard function that assigns a guard to each transition, expressed as a bool-

ean function,
• E is an arc expression function that maps each arc to an expression, and
• I is an initialization function defining the initial marking.

Tools such as CPN Tools provide simulation and validation functionalities, enabling
a detailed analysis of systems modeled using CPNs. This makes CPNs a powerful and
versatile tool for system design and analysis, promoting a comprehensive understanding
of the system dynamics in complex environments.

4. Example DAML Contracts

Consider the following DAML contract (taken from A Simple Cash Model, https://
docs.daml.com/daml/intro/4_Transformations.html#a-simple-cash-model (accessed on
11 October 2024)):

module IOU_EXAMPLE where

data Cash = Cash with
currency : Text
amount : Decimal

deriving (Eq, Show)

template SimpleIou
with

issuer : Party
owner : Party
cash : Cash

where
signatory issuer
observer owner

https://docs.daml.com/daml/intro/4_Transformations.html#a-simple-cash-model
https://docs.daml.com/daml/intro/4_Transformations.html#a-simple-cash-model


Computers 2024, 13, 274 5 of 13

choice Transfer
: ContractId SimpleIou
with

newOwner : Party
controller owner
do
create this with

owner = newOwner

In DAML, a template defines a type of contract that can be created. It also defines who
has the right to create it. Contracts are instances of templates. For example, the template
SimpleIou defines a type of contract named SimpleIou. A contract contains data. A SimpleIou
contract contains three fields: issuer and owner (both are of type Party) and a cash record.
The template definition specifies that the signatory is issuer and that owner is an observer.

Signatories of a contract in DAML are the parties whose authority is required to create
the contract or archive it. Every contract must have at least one signatory. Observers on a
contract are parties who can see that instance in the abstract ledger and all the information
about it. For a SimpleIou contract, the owner is listed as an observer on the contract.

There is one problem with the SimpleIou contract. The contract is only signed by the
issuer. The signatories of a contract are the parties who can create and archive contracts.
Hence, if Alice, for example, gave Bob a SimpleIou for 100$ in exchange for some goods, she
could just archive it after receiving the goods. There will be a record of such a transaction
on the ledger, however Bob would need to resort to off-ledger means to get his money back.
To make the SimpleIou contract safe for Bob, he needs to be added as a signatory.

To fix this authorization problem, the following updated SimpleIou contract adds owner
as a signatory:

template SimpleIou
with

issuer : Party
owner : Party
cash : Cash

where
signatory issuer, owner
observer owner

Now, to create a SimpleIou, authorizations by both the issuer and owner are needed.
To collect the necessary authorizations, the Propose–Accept Workflow pattern [36] can be
applied. This requires defining a proposal contract template as follows:

template IouProposal
with

iou : Iou
where

signatory iou.issuer
observer iou.owner

choice IouProposal_Accept
: ContractId Iou
controller iou.owner
do

create iou

The following DAML script demonstrates an example scenario to create a SimpleIou
contract by collecting the necessary authorizations from Alice and Bob. First, Alice provides
her authorization by creating and signing an IouProposal contract. Then, Bob adds his
authorization by exercising the IouProposal_Accept choice. This would create a SimpleIou
contract in the ledger, where Alice is the issuer and Bob is the owner.

iouProposal <- submit alice do
createCmd IouProposal with

iou = Iou with
issuer = alice



Computers 2024, 13, 274 6 of 13

owner = bob
cash = Cash with

amount = 100.0
currency = "USD"

iou <- submit bob do
exerciseCmd iouProposal IouProposal_Accept

In addition, a choice can have more than one controller. In this case, executing the
choice requires the authorizations by all the controllers. For example, consider the following
updated Transfer choice:

choice Transfer
: ContractId Iou
with

newOwner : Party
controller issuer,owner
do

create this with
owner = newOwner

Now, the Propose–Accept Workflow pattern can be applied to collect the required au-
thorizations before executing the Transfer choice. The full DAML code and test scripts can be
found in the paper’s GitHub repository at https://github.com/ialazzon/cpn_daml_paper
(accessed on 11 October 2024). In addition, this repository contains all the source code and
the test contracts presented in the paper.

5. Approach

The main problem this paper tackles is how to model the authorization workflow
of a DAML smart contract in order to analyze such models and discover authorization
problems. We propose a model-based approach that starts with a DAML smart contract
and automatically produces a CPN that can be model checked and hence the authorization
properties can be verified.

Our approach is composed of the following main steps:

1. Transform the DAML contract into a corresponding DAML model instance.
2. Transform the DAML model instance into a corresponding CPN model instance.
3. Transform the CPN model instance into a CPN.
4. Verify authorization properties on the CPN using simulation and model checking

capabilities of CPN Tools.

All steps are fully automated in our approach. This section presents the DAML and
CPN metamodels and discusses the application of our approach on the smart contracts
presented in Section 4.

Figure 1 shows the DAML metamodel. The root element is an SContract representing a
DAML contract. An SContract has a name and is composed of several Templates. A Template
is associated with several observers and signatories (these are of type Party).

A Template is composed of several Choices. Each Choice can be associated with one or
more controllers where a controller is a Party. A Template can reference another template
(a single direction reference named referenced_template). Furthermore, a Choice can exer-
cise another Choice (here, the referenced Choice is named exercised_choice). The reference
created_template enables accessing the template containing a Choice.

https://github.com/ialazzon/cpn_daml_paper


Computers 2024, 13, 274 7 of 13

Figure 1. DAML metamodel.

Figure 2 shows an instance of the DAML metamodel, which corresponds to the DAML
contract presented at the beginning of Section 4. This instance is generated automatically
in our approach using the Eclipse Modeling Framework (EMF) [37]. The smart contract
defines a single template (named SimpleIou) with a single choice (named Transfer). The
template’s signatory is the party named issuer and its observer is the party named owner.
The choice’s controller is the party owner. Note that this model instance is persisted in the
XMI (XML Metadata Interchange) format.

Figure 2. An instance of the DAML metamodel.

For the CPN metamodel, we utilize the metamodel from the CPN Tools toolkit [38].
The toolkit includes a plug-in to create CPN Tools files from EMF. In addition, the toolkit



Computers 2024, 13, 274 8 of 13

provides capabilities to layout and serialize EMF-compatible CPN models into a CPN Tools
XML format. Also, the toolkit defines a metamodel for CPNs which we utilize for creating
CPN model instances from DAML models. The CPN metamodel can be found in the CPN
Metamodel. https://github.com/abelgomez/cpntools.toolkit/blob/master/plugins/io.
github.abelgomez.cpntools/model/cpntools.ecore (accessed on 11 October 2024).

Figure 3 shows the CPN generated by our approach for the first contract presented
in Section 4. For the updated contract that has two signatories, Figure 4 shows the
generated CPN.

Figure 3. The CPN corresponding to the first IOU_EXAMPLE DAML smart contract in Section 4.

P1

Fusion 1
Party

1`alice ++ 1`bob

Fusion 1

P2

Party

P3

Party

1`alice

P4

1

P5

Party

P6

Fusion 1
Party

1`alice ++ 1`bob

Fusion 1

P7

Party

P8

1

P9

Party

P10

Party

P11

Fusion 1
Party

1`alice ++ 1`bob

Fusion 1

P12

Fusion 1
Party

1`alice ++ 1`bob

Fusion 1

P13

Party

P14

1

P15

Party

P16

Party

P17

Fusion 1
Party

1`alice ++ 1`bob

Fusion 1

Iou

IouProposal

[signatory = iou_issuer]T3

T4

IouProposal_Accept

[controller= iou_owner]

T6
Transfer

[controller= owner]

pp

p

iou_issuer

signatory
iou_issuer

p p

p

controller

iou_owner

iou_owner

iou_owner iou_owner
iou_owner

signatory2

signatory1

p p

p controller

owner

owner

owner owner

owner

Figure 4. The CPN corresponding to the second IOU_EXAMPLE DAML smart contract in Section 4.

The first CPN, shown in Figure 3, has two main transactions: SimpleIou and Transfer.
Firing the transaction SimpleIou represents a creation of the SimpleIou contract, while firing

https://github.com/abelgomez/cpntools.toolkit/blob/master/plugins/io.github.abelgomez.cpntools/model/cpntools.ecore
https://github.com/abelgomez/cpntools.toolkit/blob/master/plugins/io.github.abelgomez.cpntools/model/cpntools.ecore


Computers 2024, 13, 274 9 of 13

the transaction Transfer represents a successful invocation of the Transfer choice. The CPN
indicates that any party can instantiate the contract as a signatory while specifying an
owner. Later, the owner party can invoke the Transfer choice at any any time. In the
second CPN shown in Figure 4, the authorizations of two signatories (labeled signatory1
and signatory2) are required for the creation of an Iou contract. To collect the necessary
authorizations, the Propose–Accept Workflow pattern can be applied as captured in the
CPN model. Thereafter, once an Iou contract is created, the owner party can invoke the
Transfer choice.

6. Evaluation

In this section, we present the results of using the Calculate state space tool in CPN
Tools to generate and analyze the state spaces of the two CPNs presented in Section 5.

Table 1 shows the state space information statistics reported by the Calculate state
space tool for the CPNs in Figures 3 and 4 (named IOU_EXAMPLE 1 and IOU_EXAMPLE 2,
respectively). In both cases, the number of seconds reported by the tool is zero indicating
very short state space generation time. Also, the full state space was generated in both cases.

Table 1. State Space Information Statistics.

IOU_EXAMPLE 1 CPN IOU_EXAMPLE 2 CPN

Number of Nodes: 17 59

Number of Arcs: 24 124

Consider the first DAML contract whose CPN is shown in Figure 3. We are interested
in answering the following question: assuming that the party Alice signed the SimpleIou
contract, which parties can invoke the Transfer choice?

To answer this question, we initialize the marking of place P3 to a single token 1′ alice.
In addition, we initialize the marking of the fusion set Fusion1 to two tokens: 1′ alice and
1′ bob. Here, Bob represents a party distinct from Alice. Then, the full state space can be
generated using the Calculate state space tool in CPN Tools.

The next step involves analyzing the generated state space. We are interested in
determining all paths starting from the initial marking that end at a marking of the CPN
(i.e., a node in the state space), such that the transaction Transfer is enabled and hence can
fire. To do so, we define the following function in CPN ML language:

fun FindMarkingsCanFire () : Arc list
= PredAllArcs(
fn a => st_TI(ArcToTI(a)) = "Page’Transfer 1")

This function returns a list of all arcs in the state space that represent the firing of the
transition Trans f er. Then, by extracting the source node of each returned arc using the
CPN ML function SourceNode, we can obtain the markings in which transaction Transfer
is enabled.

Figure 5 shows a partial state space generated for the IOU_EXAMPLE 1 CPN. The node
corresponding to the initial marking is labeled 1. The nodes labeled 12 and 15 represent
the target markings. These are the markings in which transaction Transfer is enabled. They
were obtained using the CPN ML queries described above. Using the Calculate state space
tool, we can trace back all predecessor nodes to find the paths from the initial marking.

To answer our stated question and by examining the state space, there are two target
markings labeled 12 and 15. The target marking 12 represents a state of the contract where
the owner is defined to be Alice, while the target marking 15 represents the state where
the owner is defined to be Bob. Hence, the owner defined in the contract may invoke the
Transfer choice as dictated by the DAML rules.



Computers 2024, 13, 274 10 of 13

Figure 5. A partial state space generated for the CPN in Figure 3.

Furthermore, the state space graph generated by CPN Tools can be exported to
Graphviz [39]. Graphviz is an open source graph visualization software. This can be done
by using the OGtoGraphviz functions in CPN Tools (https://cpntools.org/2018/01/15/draw-
state-spaces-with-graphviz/ (accessed on 11 October 2024)). To aid the users, we developed
a Python 3 script that accepts the Graphviz file exported by CPN Tools as the as the input
and produces a summary description of all simple paths starting from the initial node
(marking) and ending at a final marking provided as an argument as the output. For
each simple path, the Python script prints the information of the binding elements for the
transitions corresponding to the contract creation and the choice execution. For example,
the output when using the final marking 17, which is the next marking after firing the
Transfer transaction at marking 15 (see Figure 5) is:

N1 -> N4 -> N9 -> N15 -> N17
Iou {owner=bob,signatory=alice,issuer=alice}
Transfer {controller=bob,owner=bob}

N1 -> N2 -> N9 -> N15 -> N17
Iou {owner=bob,signatory=alice,issuer=alice}
Transfer {controller=bob,owner=bob}

N1 -> N2 -> N7 -> N15 -> N17
Iou {owner=bob,signatory=alice,issuer=alice}
Transfer {controller=bob,owner=bob}

These are the possible execution scenarios that correspond to having Alice as a signa-
tory and Bob as the owner. Similarly, the output corresponding to marking 16 represents
execution scenarios when Alice servers as both a signatory and an owner of the created Iou
contract. The Graphviz full state space graph is shown in Figure 6.

Now, we consider the second CPN, IOU_EXAMPLE 2, shown in Figure 4. In this case,
the template Iou has two signatories: issuer and owner. Hence, the Iou contracts cannot be
created by a single authorization from the issuer or the owner. The input DAML contract, in
this case, applies the Propose–Accept Workflow pattern as discussed in Section 5.

https://cpntools.org/2018/01/15/draw-state-spaces-with-graphviz/
https://cpntools.org/2018/01/15/draw-state-spaces-with-graphviz/


Computers 2024, 13, 274 11 of 13

Figure 6. The full Graphviz state space graph generated for the CPN in Figure 3.

Here, we are interested in determining all possible ways to instantiate an Iou template.
We assume that the parties involved are Alice and Bob, and hence the fusion set is initialized
to the marking 1′ alice ++1′ bob. This multi-set has two tokens that correspond to Alice and
Bob. We also assume that Alice is the signatory for the template IouProposal. We adapt the
FindMarkingsCanFire function to return only the markings in which the Iou transaction is
enabled. This is achieved by changing the name of the transaction Page’Transfer to Page’Iou.
This returns a list of arcs, and by executing the SourceNode function on the returned arc
numbers, the following nodes are returned: 40, 45, 50, 51, 52, and 53. By examining the
markings of places P5 and P10 at these state space nodes, we determine that the Iou contract
can be signed by Alice and Bob as the two signatories, or by Alice alone serving both as
signatory1 and signatory2.

All of the artifacts corresponding to the two scenarios presented above are available
in the paper’s GitHub repository. In addition, there are six more test contracts (with the
corresponding generated DAML models and CPNs) included in the repository.

7. Conclusions

This paper has presented a model-based approach for the verification of authorization
and access control requirements in DAML smart contracts using CPNs. Starting from a DAML
contract’s code, all intermediate models can be automatically generated, including the DAML
and CPN models and the CPN itself. Subsequently, using CPN Tools, the CPN can be used to
create and analyze the state space and identify specific authorization scenarios.

There are three main items for future work and extensions to this paper. First, the
evaluation can be extended by analyzing DAML contracts deployed in real-life use cases.
Second, a plug-in can be implemented in Eclipse to incorporate all the tools presented in
the paper in one place for use by users. Third, currently the DAML meta-model does not
incorporate DAML choice assertions. These are conditions that can be specified for a choice
and act as preconditions that dictate whether the choice can be executed based on the state
of the contract or the inputs provided to the choice. We believe that CPNs are able to model
such assertions using transaction guards. Hence, our approach can be extended to support
contracts that include choice assertions.

Author Contributions: Conceptualization, I.A.-A. and S.I.; methodology, I.A.-A.; software, I.A.-A.;
validation, I.A.-A. and S.I.; formal analysis, I.A.-A. and S.I.; investigation, I.A.-A. and S.I.; re-
sources, I.A.-A. and S.I.; data curation, I.A.-A.; writing—original draft preparation, I.A.-A. and
S.I.; writing—review and editing, I.A.-A. and S.I.; visualization, I.A.-A.; All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.



Computers 2024, 13, 274 12 of 13

Data Availability Statement: The original data and code presented in the study are openly available
in GitHub at https://github.com/ialazzon/cpn_daml_paper (accessed on 11 October 2024).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mohanta, B.K.; Panda, S.S.; Jena, D. An overview of smart contract and use cases in blockchain technology. In Proceedings of

the International Conference on Computing, Communication and Networking Technologies, Bengaluru, India, 10–12 July 2018;
pp. 1–4. [CrossRef]

2. Lone, A.H.; Naaz, R. Applicability of blockchain smart contracts in securing Internet and IoT: A systematic literature review.
Comput. Sci. Rev. 2021, 39, 100360. [CrossRef]

3. Hewa, T.; Ylianttila, M.; Liyanage, M. Survey on blockchain based smart contracts: Applications, opportunities and challenges.
J. Netw. Comput. Appl. 2021, 177, 102857. [CrossRef]

4. Wang, S.; Yuan, Y.; Wang, X.; Li, J.; Qin, R.; Wang, F.Y. An Overview of Smart Contract: Architecture, Applications, and Future
Trends. In Proceedings of the IEEE Intelligent Vehicles Symposium, Suzhou, China, 26–30 June 2018. [CrossRef]

5. Bernauer, A.; Faro, S.; Hämmerle, R.; Huschenbett, M.; Kiefer, M.; Lochbihler, A.; Mäki, J.; Mazzoli, F.; Meier, S.; Mitchell,
N.; et al. Daml: A smart contract language for securely automating real-world multi-party business workflows. arXiv 2023,
arXiv:2303.03749.

6. Digital Asset. Available online: https://www.digitalasset.com/ (accessed on 11 October 2024 ).
7. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,

Y.; et al. Hyperledger Fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15.

8. Corda. Available online: https://corda.net/ (accessed on 11 October 2024).
9. VMware Blockchain. Available online: https://www.vmware.com/products/blockchain.html (accessed on 11 October 2024).
10. Saltini, R.; Hyland-Wood, D. IBFT 2.0: A safe and live variation of the IBFT blockchain consensus protocol for eventually

synchronous networks. arXiv 2019, arXiv:1909.10194.
11. Mense, A.; Flatscher, M. Security vulnerabilities in Ethereum smart contracts. In Proceedings of the International Conference on

Information Integration and Web-Based Applications & Services, Yogyakarta, Indonesia, 19–21 November 2018; pp. 375–380.
12. Atzei, N.; Bartoletti, M.; Cimoli, T. A Survey of Attacks on Ethereum Smart Contracts (SoK). In Principles of Security and Trust,

Proceedings of the 6th International Conference, POST 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, 22–29 April 2017 ; Proceedings 6; Maffei, M.; Ryan, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 164–186. [CrossRef]

13. Tang, X.; Zhou, K.; Cheng, J.; Li, H.; Yuan, Y. The Vulnerabilities in Smart Contracts: A Survey. In Advances in Artificial Intelligence
and Security, Proceedings of the 7th International Conference, ICAIS 2021, Dublin, Ireland, 19–23 July 2021; Proceedings, Part III 7; Sun,
X., Zhang, X., Xia, Z., Bertino, E., Eds.; Springer: Cham, Switzerland, 2021; pp. 177–190. [CrossRef]

14. Krichen, M.; Lahami, M.; Al-Haija, Q.A. Formal methods for the verification of smart contracts: A review. In Proceedings of the
International Conference on Security of Information and Networks, Sousse, Tunisia, 11–13 November 2022; pp. 1–8.

15. Murray, Y.; Anisi, D.A. Survey of formal verification methods for smart contracts on blockchain. In Proceedings of the
International Conference on New Technologies, Mobility and Security, Canary Islands, Spain, 24–26 June 2019; pp. 1–6.

16. Bai, X.; Cheng, Z.; Duan, Z.; Hu, K. Formal modeling and verification of smart contracts. In Proceedings of the International
Conference on Software and Computer Applications, Kuantan, Malaysia, 8–10 February 2018; pp. 322–326.

17. Jiang, F.; Chao, K.; Xiao, J.; Liu, Q.; Gu, K.; Wu, J.; Cao, Y. Enhancing smart-contract security through machine learning: A survey
of approaches and yechniques. Electronics 2023, 12, 2046. [CrossRef]

18. Ribeiro, M.; Adão, P.; Mateus, P. Formal Verification of Ethereum Smart Contracts Using Isabelle/HOL. In Logic, Language, and
Security: Essays Dedicated to Andre Scedrov on the Occasion of His 65th Birthday; Nigam, V., Ban Kirigin, T., Talcott, C., Guttman, J.,
Kuznetsov, S., Thau Loo, B., Okada, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 71–97. [CrossRef]

19. Yang, Z.; Lei, H. Formal process virtual machine for smart contracts verification. arXiv 2018, arXiv:1805.00808. [CrossRef]
20. Bhargavan, K.; Delignat-Lavaud, A.; Fournet, C.; Gollamudi, A.; Gonthier, G.; Kobeissi, N.; Kulatova, N.; Rastogi, A.; Sibut-Pinote,

T.; Swamy, N.; et al. Formal verification of smart contracts: Short paper. In Proceedings of the ACM Workshop on Programming
Languages and Analysis for Security, Vienna, Austria, 24 October 2016; pp. 91–96. [CrossRef]

21. Nehai, Z.; Piriou, P.Y.; Daumas, F. Model-checking of smart contracts. In Proceedings of the IEEE International Conference on
Blockchain, Halifax, NS, Canada, 30 July–3 August 2018; pp. 980–987. [CrossRef]

22. Duo, W.; Xin, H.; Xiaofeng, M. Formal Analysis of Smart Contract Based on Colored Petri Nets. IEEE Intell. Syst. 2020, 35, 19–30.
[CrossRef]

23. Rakkay, H.; Boucheneb, H. Security Analysis of Role Based Access Control Models Using Colored Petri Nets and CPNtools. In
Transactions on Computational Science IV: Special Issue on Security in Computing; Gavrilova, M.L., Tan, C.J.K., Moreno, E.D., Eds.;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 149–176. [CrossRef]

https://github.com/ialazzon/cpn_daml_paper
http://doi.org/10.1109/ICCCNT.2018.8494045
http://dx.doi.org/10.1016/j.cosrev.2020.100360
http://dx.doi.org/10.1016/j.jnca.2020.102857
http://dx.doi.org/10.1109/IVS.2018.8500488
https://www.digitalasset.com/
https://corda.net/
https://www.vmware.com/products/blockchain.html
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-030-78621-2_14
http://dx.doi.org/10.3390/electronics12092046
http://dx.doi.org/10.1007/978-3-030-62077-6_7
http://dx.doi.org/10.23940/ijpe.18.08.p9.17261734
http://dx.doi.org/10.1145/2993600.2993611
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00185
http://dx.doi.org/10.1109/MIS.2020.2977594
http://dx.doi.org/10.1007/978-3-642-01004-0_9


Computers 2024, 13, 274 13 of 13

24. Kahloul, L.; Djouani, K.; Tfaili, W.; Chaoui, A.; Amirat, Y. Modeling and Verification of RBAC Security Policies Using Colored
Petri Nets and CPN-Tool. In Networked Digital Technologies; Zavoral, F., Yaghob, J., Pichappan, P., El-Qawasmeh, E., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 604–618. [CrossRef]

25. Garfatta, I.; Klai, K.; Graïet, M.; Gaaloul, W. Model checking of vulnerabilities in smart contracts: A Solidity-to-CPN approach. In
Proceedings of the ACM/SIGAPP Symposium on Applied Computing, Brno, Czech Republic, 25–29 April 2022; pp. 316–325.
[CrossRef]

26. Zupan, N.; Kasinathan, P.; Cuellar, J.; Sauer, M. Secure Smart Contract Generation based on Petri Nets. In Blockchain Technology for
Industry 4.0: Secure, Decentralized, Distributed and Trusted Industry Environment; Rosa Righi, R.D., Alberti, A.M., Singh, M., Eds.;
Springer: Singapore, 2020; pp. 73–98. [CrossRef]

27. Armando, A.; Ponta, S.E. Model checking authorization requirements in business processes. Comput. Secur. 2014, 40, 1–22.
[CrossRef]

28. Liu, Z.; Liu, J. Formal Verification of Blockchain Smart Contract Based on Colored Petri Net Models. In Proceedings of the
Computer Software and Applications Conference, Milwaukee, WI, USA, 15-19 July 2019; pp. 555–560. [CrossRef]

29. He, X. Modeling and Analyzing Smart Contracts using Predicate Transition Nets. In Proceedings of the International Conference
on Software Quality, Reliability and Security Companion, Macau, China, 11–14 December 2020; pp. 108–115. [CrossRef]

30. Mustafa, I.; McGibney, A.; Rea, S. Smart contract life-cycle management: An engineering framework for the generation of robust
and verifiable smart contracts. Frontiers in Blockchain 2024, 6, 1276233. [CrossRef]

31. Szabo, N. Smart contracts: Building blocks for digital markets. EXTROPY J. Transhumanist Thought 1996, 18, 28.
32. Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media: Sebastopol, CA, USA, 2015.
33. Yi, X.; Yang, X.; Kelarev, A.; Lam, K.Y.; Tari, Z. Blockchain Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 2022.
34. Parisi, C.; Budorin, D. DAO Security. In Web3 Applications Security and New Security Landscape: Theories and Practices; Springer:

Berlin/Heidelberg, Germany, 2024; pp. 35–54.
35. Jensen, K.; Kristensen, L.M. Coloured Petri Nets: Modelling and Validation of Concurrent Systems; Springer: Berlin/Heidelberg,

Germany, 2009.
36. The Propose and Accept Pattern. Available online: https://docs.daml.com/daml/patterns/propose-accept.html (accessed on

11 October 2024).
37. Eclipse Modeling Framework. Available online: https://eclipse.dev/modeling/emf/ (accessed on 11 October 2024).
38. CPN Tools Toolkit. Available online: https://github.com/abelgomez/cpntools.toolkit (accessed on 11 October 2024).
39. Graphviz. Available online: https://graphviz.org/ (accessed on 11 October 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-642-14306-9_60
http://dx.doi.org/10.1145/3477314.3507309
http://dx.doi.org/10.1007/978-981-15-1137-0_4
http://dx.doi.org/10.1016/j.cose.2013.10.002
http://dx.doi.org/10.1109/COMPSAC.2019.10265
http://dx.doi.org/10.1109/QRS-C51114.2020.00029
http://dx.doi.org/10.3389/fbloc.2023.1276233
https://docs.daml.com/daml/patterns/propose-accept.html
https://eclipse.dev/modeling/emf/
https://github.com/abelgomez/cpntools.toolkit
https://graphviz.org/

	Introduction
	Related Work
	Background
	Smart Contracts
	Colored Petri Nets

	Example DAML Contracts
	Approach
	Evaluation
	Conclusions
	References

