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Abstract: Deep learning (DL) models have been deployed in various platforms, including resource-
constrained environments such as edge computing, smartphones, and personal devices. Such
deployment requires models to have smaller sizes and memory footprints. To this end, many model
compression techniques proposed in the literature successfully reduce model sizes and maintain
comparable accuracy. However, the robustness of compressed DL models against class imbalance,
a natural phenomenon in real-life datasets, is still under-explored. We present a comprehensive
experimental study of the performance and robustness of compressed DL models when trained on
class-imbalanced datasets. We investigate the robustness of compressed DL models using three popu-
lar compression techniques (pruning, quantization, and knowledge distillation) with class-imbalanced
variants of the CIFAR-10 dataset and show that compressed DL models are not robust against class
imbalance in training datasets. We also show that different compression techniques have varying
degrees of impact on the robustness of compressed DL models.

Keywords: class imbalance; deep learning; model compression; robustness

1. Introduction

The deployment of DL models in a wide range of real-life applications has become
more popular and more successful than ever [1]. The success of DL models is partly due
to their huge size—often consisting of millions or even billions of parameters—which
contributes to their high accuracy [2]. Due to their massive size and memory footprints, DL
models require extended periods of time for training and inference, resulting in increased
demands for computational and memory resources [3]. For efficient deployment of such
models in resource-constrained environments, such as edge computing, smartphones, and
personal devices, it is necessary to shrink the model size and memory footprints without
compromising model accuracy [4,5]. Toward this goal, the DL research community has
focused on compressing the size of DL models while maintaining their original accuracy.
Recent works show that DL models can be compressed by up to 90% [6] with minimal
or no drop in accuracy. Many model compression techniques have been proposed in the
literature, such as pruning [3], quantization [7], and knowledge distillation [8], that greatly
reduce model size and memory footprints and maintain comparable test accuracy.

Compressed DL models, just like their original dense counterparts, should be robust
against different kinds of unusual settings such as adversarial attacks, out-of-distribution
(OOD) instances, and class imbalance in training datasets. Although the adversarial ro-
bustness and OOD robustness of compressed models have been hot research topics in
the literature [9–12], little effort has been made to study the class imbalance robustness of
compressed DL models.

The preserved accuracy of compressed DL models comes after training those models
on balanced datasets, where each class has an equal number of instances in the training
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dataset. In real-life applications, however, not all classes have the same number of instances,
which causes those datasets to be class-imbalanced.

Class imbalance is a well-known problem in real-life DL-based classifiers [13]. The
class imbalance happens when some classes (majority classes) have more samples in the
training dataset, while the other classes (minority classes) have fewer samples. Examples
include, but are not limited to, disease diagnosis [14], defect detection [15], and fraud
detection. Class imbalance is a long-lasting challenge for the DL research community, and
it impacts the convergence of DL models in the training process and the generalization on
the test set [13,16,17]. We refer interested readers to the work [13] as it covers many aspects
of class imbalance.

Many data-level solutions are proposed in the literature to alleviate the class imbal-
ance problem, such as oversampling and undersampling. Those solutions try to artificially
re-balance the datasets without improving the classifier’s algorithm. On the other hand,
algorithm-level techniques, such as thresholding, cost-sensitive learning [13], and reinforce-
ment learning (RL) [18], try to improve the model generalizability.

The majority of research works in the literature aim to preserve the compressed models’
accuracy. The authors in [9,19,20] show that compressing DL models does not harm model
general accuracy. On the other hand, the work in [21] shows that model compression can
actually hurt model accuracy and adversarial robustness.

Other works consider the class imbalance problem [22,23], proposing different ap-
proaches to alleviate the effect of the class imbalance problem in the training set. For
example, instance reweighting [24] and customized loss functions [17].

The work in [25] investigates the impact of class imbalance on the per-class per-
formance and fairness in pruned models. In [10], the authors highlight the impact of
pruning and knowledge distillation on the OOD robustness for pretrained language mod-
els and propose a two-stage regularization method to improve the OOD robustness of
compressed models.

The DL research community has overlooked the class imbalance robustness of com-
pressed DL models, as most works in the literature focus either on the model compression
aspect or the class imbalance aspect. Our work tries to bridge the gap between model
compression and class imbalance robustness by investigating the effect of class imbalance
on the robustness of compressed DL models.

Using popular model compression techniques, we compress DL models with different
compression ratios, train them on many variants of class-imbalanced CIFAR-10, and ana-
lyze their robustness. Our work is a necessary step toward building robust, compressed
DL models.

Our contributions can be summarized as follows:

• We present an in-depth literature review of the relevant work.
• We conduct a systematic study to evaluate and analyze the robustness of DL mod-

els when compressed using three popular techniques: pruning, quantization, and
knowledge distillation. These compressed models are trained on the class-imbalanced
CIFAR-10 dataset with varying degrees of imbalance.

• We provide results and insights from our extensive experiments on selected DL models.
The insights presented in this work are intended to advance future research efforts in
addressing the issue of class imbalance robustness in compressed DL models.

The rest of this paper is organized as follows: Section 2 motivates our work. Section 3
presents works related to the problem of robustness of compressed DL models. Section 4
describes the experimental setup. The results are presented in Section 5. Section 6 provides
a discussion of the main findings of this paper. Section 7 concludes the paper.

2. Motivation

DL model compression is becoming more urgent because DL models have become
prevalent almost everywhere, especially in resource-constrained environments such as
edge devices, microcontrollers, smartphones, etc. On the other hand, real-world data show
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imbalanced distributions of labeled samples among classes [16,26,27], which can harm the
performance of DL models on the less represented classes (minority classes). However,
reducing model size should not be accomplished at the expense of model robustness. We are
motivated by the fact that the problem of compressed DL models’ robustness when trained
on class-imbalanced datasets has been under-explored by the DL research community.

Model compression and class imbalance robustness go hand in hand in many real-life
scenarios. For instance, deploying machine learning on Internet of Things (IoT) devices
requires particularly small models, as IoT devices have extremely small memory and
limited computing capacity [28]. Bridging the gap between such resource-limited IoT
devices and over-parameterized DL models requires compressing those models to fit into
the available resources. Edge computing is another example where model compression is
needed so an edge computing node can perform inference without much need to transfer
data to the cloud [29]. Therefore, to successfully deploy compressed DL models in such
environments, they must be robust against common perturbations, such as class imbalance
in training datasets.

Federated learning is another domain where robust, compressed DL models are
needed. In federated learning, a model is trained collaboratively by being shared by remote
devices where training datasets are stored. Then each device trains its copy of the model
on its own locally stored training dataset, and only updates are sent to the cloud to be
integrated into the original model [30]. Compressing the DL models is of vital importance so
that updates can be shared at scale without incurring bandwidth shortages or latency issues.
Furthermore, in federated learning, there is no guarantee that the training datasets will be
class-balanced because the data are distributed at the edge and cannot be examined for class
imbalance by other parties except the owner of that dataset [31]. Therefore, compressed DL
models should be robust against class imbalance in datasets to ensure that the models can
incorporate updates from remote devices without worrying about the class imbalance of
non-shared datasets.

DL models deployed in safety-critical systems, such as autonomous cars [32,33],
can be vulnerable to class imbalance in training datasets [34–37]. DL models deployed
in such systems should be robust against class imbalance when compressed in order to
classify/detect different objects/agents with equally high accuracy.

3. Related Work

The DL research community has recognized the importance of having robust, com-
pressed DL models. Nonetheless, earlier works have focused mainly on adversarial robust-
ness and out-of-distribution (OOD) robustness. Other works have approached the problem
of class imbalance robustness, but only for dense DL models. We summarize below the
main trends in approaching the robustness problem of DL models in the literature.

The first group of works focuses on improving the adversarial robustness of DL
models. Adversarial robustness means how robust DL models are against adversarial
examples, which are obtained by adding little perturbations onto benign examples designed
purposefully to confuse the classifier [21,38]. Stability training, a form of adversarial
training, suggested in [39], improves adversarial robustness by training DL models on
many distorted versions of the input data. To overcome the limitations of traditional
adversarial training, model transformation is proposed [40], in which the original classifier
is transformed into an isomorphic regression model whose loss function is more sensitive
to small perturbations in the input data. In [41], the authors point out that self-supervised
learning can enhance model robustness against adversarial examples, label corruption,
common input corruptions, and out-of-distribution inputs. This group of works evaluates
their proposed methods on full-size models, so they neither consider model compression
nor class imbalance.

Some works take model compression into account when evaluating adversarial robust-
ness. The authors in [21] propose a framework for simultaneous adversarial training and
weight pruning to improve adversarial robustness. Also in [21], the authors conclude that
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model compression (pruning in their case) is necessary to maintain an adversarially robust
DL model as opposed to training a small-size model from scratch. In [42], the authors
highlight that DL models trained using backpropagation exhibit robustness to various
weight distortions, including quantization.

The authors in [9] demonstrate that model compression, particularly when involving
pruning followed by optional quantization, can improve OOD model robustness. They
find that lottery-ticket-style methods are particularly useful for producing compressed
and OOD robust models. The authors in [10] show that compressed natural language
processing (NLP) models are less robust than their original counterparts for OOD datasets.
The authors in [43] show that severely compressed large models are more robust than
mildly compressed small models.

Some works consider class imbalance when evaluating model robustness. In [26], the
authors find that tuning key training parameters enables DL models to achieve state-of-the-
art accuracy for the minority classes. Nonetheless, these works do not cover compressed
DL models.

Two recent works [25,44] investigate the performance of compressed models with
lightly imbalanced datasets. In [25], the author investigates the effect of pruning on per-
class performance. However, that work is limited to one compression technique (pruning).
Moreover, they do not consider severe imbalance ratios and large numbers of minority
classes, which is the case in real-world applications [45]. Instead, they rely on datasets
that are not perfectly balanced, such as QMNIST. The authors in [44] consider evaluating
compressed models against the GTSBR dataset [46], a randomly imbalanced dataset with
an imbalance ratio of 10. Despite being the closest work to our work, GTSBR is not severely
imbalanced, and the authors do not consider different imbalance settings and types. The
authors also have not included popular compression techniques, such as structured pruning,
quantization-aware training, and knowledge distillation. Additionally, the authors’ use of
a mildly imbalanced dataset and relatively small models made it hard to show the effects
of model compression on the class imbalance robustness of the DL model. We take the
problem to the next level and present more insights and deeper observations.

In summary, state-of-the-art works have not fully explored the impact of class im-
balance on the robustness of compressed deep learning models. Our work aims to study
this problem, analyze the performance of compressed DL models trained on imbalanced
datasets, and provide deep insights to motivate future research to provide real solutions to
improve the class imbalance robustness of compressed DL models. Table 1 shows the main
trends in DL model robustness.

Table 1. No work addresses the problem of class imbalance robustness of compressed DL models.

Robustness

Work Adversariel OOD Class Imbalance Model Compression

[38–40] ✓ × × ×
[41] ✓ ✓ × ×

[9,10] × ✓ × ✓

[21,43] ✓ × × ✓

[26,42] × × ✓ ×
[25,44] × × mild imbalance only Pruning only
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4. Experimental Setup

In this section, we will describe the experimental setup and the methodology we follow
to expose the negative effects of model compression on the class imbalance robustness of
DL models. We will discuss the models we use, the training datasets, the class imbalance
types and imbalance ratios, the model compression techniques used in our experiments,
and the tuning of their different parameters. All the experiments are conducted on a
CentOS machine with one V100 GPU, using Distiller [47], a Python package for DL model
compression research and analysis.

4.1. DL Models Used

In our experiments, we utilize ResNet-20 and ResNet-56 DL models [48], with ResNet-
56 serving as the larger model. The ResNet architecture is well-regarded for its depth
and use of residual connections, which enable the training of deep networks without the
vanishing gradient problem [49]. By employing ResNet-20 and ResNet-56, we aim to thor-
oughly evaluate the robustness of compressed DL models under different class imbalance
scenarios. Doing so will help us gain insights into how model size and complexity influence
resilience to class imbalance when applying compression techniques.

4.2. Dataset Used

We use the CIFAR-10 dataset in all our experiments. CIFAR-10 is a balanced dataset
with 10 classes, each containing 5000 32 × 32 color images for training and 1000 32 × 32 color
images for testing. The multiclass architecture and moderate size of CIFAR-10 make it an
ideal choice for our research goals, as it allows for various settings of class imbalance. Ad-
ditionally, it makes the training process more time-efficient. To generate class-imbalanced
versions of CIFAR-10, we utilize an implementation provided by [17].

4.3. Imbalance Settings

To produce class-imbalanced versions of CIFAR-10, we follow the imbalance procedure
suggested in [13]. We perform two types of training in terms of class imbalance: balanced
CIFAR-10 and imbalanced CIFAR-10. For balanced CIFAR-10, we train DL models with
the standard balanced CIFAR-10. For imbalanced CIFAR-10, we train the models for step
imbalance and linear imbalance.

For step imbalanced CIFAR-10, we have five different imbalance ratios
ρ = {2, 10, 20, 50, 100}. The imbalance ratio can be defined as follows:

ρ =
Max. number o f samples
Min. number o f samples

. (1)

For each imbalance ratio, we set the fraction of minority classes (µ) to have three values:
µ = {2, 5, 8}. The number of samples per class i for step-class imbalance is calculated
as follows:

Samples = Max. number o f samples × (ρ)−1. (2)

For linearly imbalanced CIFAR-10, we will use the same five different imbalance ratios
as for the step imbalance (µ is not applicable in the case of linear imbalance). The number
of samples per class i for linear class imbalance is calculated as follows:

Samples = Max. number o f samples × (ρ)
class i index

num. classes−1.0 . (3)

In total, we will have 20 different variants of class-imbalanced CIFAR-10. Figure 1 shows
examples of the imbalance distributions of CIFAR-10 used in our experiments.
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Figure 1. Examples of class imbalance settings in CIFAR-10. (a) Linear imbalance, ρ = 2; (b) Linear
imbalance, ρ = 20; (c) Linear imbalance, ρ = 100; (d) Step imbalance, µ = 2, ρ = 2; (e) Step imbalance,
µ = 5, ρ = 20; (f) Step imbalance, µ = 8, ρ = 100.

4.4. Filter Rank Pruning: Baselines and Settings

Pruning involves removing redundant weights (unstructured pruning) or filters (struc-
tured pruning) according to a specific criterion [50,51]. Pruning can significantly reduce
model size, memory footprint, energy consumption, and inference time [52]. A main
drawback of pruning is the reduced accuracy, especially with high degrees of pruning [10].
Pruning is typically performed in three stages: training, pruning, and retraining (fine-
tuning) [3]. Retraining pruned DL models could enable them to escape a previous local
minima, and that could improve performance [53].

We choose Filter Rank Pruning (FRP) [54], a structured pruning technique where entire
filters along with their corresponding feature maps are pruned according to their relative
importance. The relative importance of a filter is determined by calculating ℓ1-norm, which
is the sum of its absolute weights [54]. We refer interested readers to this paper [54] for
more details on filter pruning.

For FRP, our baseline model is unpruned ResNet-20, trained on balanced CIFAR-10,
and the accuracy obtained here is the reference accuracy for the FRP part of the experiments.
For ResNet-20 and ResNet-56, we prune away filters in the 1st convolutional layer of each
residual block (a total of 9 convolutional layers pruned; the first and last layers are excluded).
To achieve different levels of sparsity, we use three pruning ratios: mild, moderate, and
severe. Mild pruning, moderate pruning, and severe pruning yield compressed models
with 15%, 71%, and 97% sparsity, respectively.

The baseline model and the pruned models are trained on CIFAR-10 and on the
imbalanced versions of CIFAR-10 for 180 epochs with the learning rate set to 0.1.

4.5. Quantization-Aware Training: Baselines and Quantization Parameters

In quantization, weights and activations are represented by lower bit-widths (integer
precision) such as 8, 4, or 2 bits instead of 32 bit-widths (floating point precision, or
FP32), and this can speed up training and inference and effectively reduce model size
while retaining the FP32 model’s original structure [55,56]. One of the main drawbacks of
quantization is dropped performance when using ultra-low bit-widths, which may require
more advanced techniques [57].

There are two approaches to applying quantization to DL models: post-training
quantization (PTQ) and quantization-aware training (QAT). PTQ uses calibration data
(a small portion of the training dataset) to learn the clipping ranges and the scale factors,
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then quantizes a pre-trained model based on the calibration outcome. In QAT, a pre-trained
model is quantized and then re-trained (fine-tuned) on the entire training dataset [7,58].
Quantization is done by mapping the continuous values of weights and activations (float32)
to discrete values [0, 2b − 1] for activations and [−2b−1, 2b−1 − 1] for weights, where b is
the desired lower bit-width. The quantizer function Qb(.) that quantizes the continuous
float32 values of weights and activations v to quantized values of b bit-width vq can be
expressed as [59,60]:

vq = Qb(v; s) = round(clip( f racvs, minb, maxb))× s, (4)

QAT is a preferred way to implement quantization because it aims to avoid accuracy
loss originating from lower precision, such as INT4, by replacing weights and activations
with the quantized ones during the training process [60,61].

The baseline model for QAT (Baseline FP32) is FP32 ResNet-20 and ResNet-56 trained
on CIFAR-10. To obtain the quantized versions of DL models, we use DoReFa quantizer [62].
We quantize the models with activations bit-widths of 8 and weights bit-widths of 4 (Quan-
tized (A8, W4)). We create another quantized DL model with activations bit-widths of
3 and weights bit-widths of 3 (Quantized (A3, W3)). Our choice to use these bit-widths
follows [63]. The first and last layer are not quantized as they are sensitive to weight
quantization [64]. We use a weight decay value of 0.0002. For the rest of this paper, we will
refer to the first quantized model as QAT (A8, W4) and to the second quantized model as
QAT (A3, W3).

The QAT baseline model and the quantized models are trained on CIFAR-10 and the
imbalanced versions of CIFAR-10 for 200 epochs with the learning rate set to 0.1.

4.6. Knowledge Distillation: Baselines and Distillation Parameters

Knowledge distillation (KD) aims to transfer knowledge from a larger model (a.k.a. the
teacher model) to a smaller model (a.k.a. the student model) such that the student model
can mimic the performance of the teacher model [65–67]. The knowledge transfer process
involves dividing the logits by a parameter called temperature before feeding them to the
softmax layer. A higher temperature value boosts the activations of the incorrect classes,
promoting more information to flow to the student model during backpropagation [8].
KD offers the flexibility of choosing a student model from a different family/size than
the teacher model [8]. However, KD has some shortcomings, such as how to choose the
right teacher model for the given task and how to decide the shallowness of the student
model [68].

There are two approaches for performing KD to produce student models. The first
approach is to choose a student model with a smaller architecture than the teacher model’s
architecture. For example, the teacher model could be a pre-trained ResNet-56, and the
student model could be a ResNet-18. In the second approach, the student model is a
compressed version, hence smaller, of the teacher model. For example, an FP32 ResNet-56
is the teacher model, while a quantized ResNet-56 is the student model. We opt to follow
the latter approach since it aligns better with our research goals of evaluating compressed
model robustness [66].

For our KD experiments, we use FP32 ResNet-20 or ResNet-56 as the teacher model
(Teacher FP32). For the student models, we use quantized versions of the teacher models.
Specifically, the first student model is obtained by quantizing the teacher model with
activations and weights with bitwidths of 8 and 4, respectively. The second student model
is obtained by quantizing the teacher model with activations and weights bitwidths of
3 and 3, respectively. We use QAT with DoReFa quantizer for obtaining the student models.
For the rest of this paper, we refer to the first student model as Student (A8, W4), and the
second student model as Student (A3, W3).

We follow the approach outlined in [47] to set the distillation parameters: the weight
for the distillation loss is set to 0.7, the weight for the student versus label loss is set to 0.3,
and the softmax temperature is set to 1. Both the teacher model and the student models are
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trained on CIFAR-10 and its imbalanced versions for 200 epochs, with the learning rate set
to 0.1.

4.7. Evaluation Metrics

We use a similar metric as in [10] for model robustness evaluation. We calculate the
performance gap as the percent ratio between the macro F-1 score of the model trained
on balanced CIFAR-10 and the macro F-1 score of the model trained on class-imbalanced
CIFAR-10 as

per f ormance gap =
F-1 scorebal − F-1 scoreimbal

F-1 scorebal
. (5)

For the uncompressed model, the performance gap is denoted as ∆uncompressed, and for the

compressed model, the performance gap is denoted as ∆compressed. If
∆compressed

∆uncompressed
is < 1, then

the model is not robust. Otherwise, it is robust.
F1 scores can be calculated as follows:

F1 score =
Recall + Precision
Recall ∗ Precision

, (6)

where
Recall =

Truepositive
True positive + False negative

(7)

and
Precision =

True positive
True positive + False positive

. (8)

F1 scores are more suitable for imbalanced datasets than accuracy because F1 scores
show per-class performance. Aggregating per-class F1 scores by taking the unweighted
mean produces macro F1 score. Macro F1 score gives the same importance to all classes
(majority and minority classes), which makes it a more realistic metric for imbalanced
datasets as it gives under-represented (i.e., minority) classes the same importance given to
majority classes.

5. Results

We conduct various experiments to evaluate the robustness of compressed DL models
against class imbalance. To ensure more stable results, each model is trained three times [69],
and we compute the average of the macro F1 scores obtained across these three runs.

To explore whether our findings with ResNet-20 apply to larger DL models, we
selected ResNet-56 for further experimentation. Using the same experimental setup, we
conducted a series of tests to determine whether the patterns observed with ResNet-20
would hold for a more complex model.

5.1. Filter Rank Pruning Results

ResNet-20. Figure 2 shows the performance gaps (in percentage) between unpruned
ResNet-20 and pruned ResNet-20 across different class imbalance settings.

The results show that the severely pruned ResNet-20 is not robust against class imbal-
ance across all the class imbalance settings. The performance gap widens as the imbalance
ratio (ρ) increases. For step imbalance with high ρ, the performance gaps range from 85%
to 98%, indicating that the pruned model is extremely vulnerable to high degrees of class
imbalance. A similar observation, though to a lesser extent, applies to linear imbalance,
with a performance gap of 56% for ρ = 100.

For moderate pruning, the model also exhibits a lack of robustness. The drop in
robustness becomes more pronounced starting at ρ = 10 and above. However, for ρ = 2
and small numbers of minority classes such as µ = 2 and 5, it appears that the moderately
pruned model can handle slight class imbalance.
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Figure 2. Performance gaps of Resnet-20 and its pruned versions trained on the imbalanced CIFAR-10.
(a) Step imbalance µ = 2; (b) Step imbalance µ = 5; (c) Step imbalance µ = 8; (d) Linear imbalance.

For mild pruning, ResNet-20 experiences fluctuations as
∆compressed

∆uncompressed
is not always < 1.

We believe the reason for the model showing robustness is that mild pruning can help the
model generalize better. This phenomenon has been observed by other researchers [9,52,70].
Tables A1 and A2 in Appendix A show the results in numbers for step imbalance and class
imbalance, respectively.

ResNet-56. Table 2 summarizes the model pruning results, showing the performance gaps be-
tween the pruned ResNet-56 and its unpruned counterparts with different imbalance settings.

Table 2. Performance gaps in F1 scores of the pruned ResNet-56 compared with its unpruned
counterparts trained on imbalanced datasets. For each value of ρ, we show three F1 drop percentages
corresponding to the three µ values (2, 5, and 8, respectively).

ρ Unpruned Mildly Pruned Moderately Pruned Severely Pruned

2 3.31%, 3.99%, 2.74%, 2.74%, 1.5%, 3.16%, 5.3%, 9.18%,
and 6.19% and 5.33% and 4.97% and 14.52%

10 4.01%, 11.94%, 3.23%, 11.14%, 3.89%, 11.80%, 8.58%, 52.33%,
and 31.62% and 27.53% and 29.12% and 43.01%

20 5.91%, 21.76%, 5.52%, 20.71%, 5.01%, 19.36%, 21.15%, 52.33%,
ans 55.13% and 41.03% and 44.04% and 67.90%

50 13.69%, 47.99%, 11.31%, 43.36%, 12.82%, 44.23%, 29.13%, 65.75%,
and 83.56% and 82.29% and 81.22% and 85.19%

100 16.90%, 49.24%, 14.89%, 45.17%, 15.82%, 48.38%, 30.46%, 64.08%,
and 83.56% and 79.48% and 84.74% and 85.85%
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For severe pruning (97% sparsity), the pruned ResNet-56 exhibits significant perfor-
mance drops compared with the unpruned ResNet-56, indicating that the severely pruned
ResNet-56 is not robust against class imbalance.

As for mild and moderate pruning, our experiments show no drop in robustness for
ResNet-56. When pruned at these pruning levels, ResNet-56 appears to be robust against
class imbalance. This finding aligns with studies showing that pruned DL models, when
applied to over-parameterized DL models, can maintain or even surpass the accuracy
of their unpruned counterparts [52,70]. The authors in [9] also found that pruning can
sometimes improve OOD robustness, indicating improved model generalization, including
handling class imbalance, after pruning. Table A7 in Appendix B shows a comparison of
the model size for unpruned and pruned models.

5.2. Quantization-Aware Training Results

ResNet-20. Figure 3 compares between FP32 ResNet-20 and its QAT versions across
different class imbalance settings.
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Figure 3. Performance gaps between Resnet-20 and its QAT versions trained on imbalanced CIFAR-10.
(a) Step imbalance µ = 2; (b) Step imbalance µ = 5; (c) Step imbalance µ = 8; (d) Linear imbalance.

For step imbalance with µ = 2, as illustrated in Figure 3a, the performance gap be-
tween ResNet-20 and the quantized ResNet-20 models increases as the imbalance ratio (ρ)
increases, with the largest gap observed at ρ = 100.

Figure 3b shows the performance gap between ResNet-20 and the quantized ResNet-20
models for step imbalance µ = 5. Although the performance gap is not significant until
ρ > 20, it indicates that the robustness worsens as ρ increases.

For µ = 8, Figure 3c shows that the performance gap between ResNet-20 and the
quantized ResNet-20 models worsens (becomes larger) as early as ρ = 2, and it continues
to worsen as (ρ) increases. This is likely due to the fact that 8 of the classes are minority
classes, which the quantized ResNet-20 struggles to handle effectively.
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Figure 3d shows the performance gap between ResNet-20 and the quantized ResNet-20
models when trained on linear class imbalance. The performance gap grows as ρ increases.
Because linear class imbalance is different from step class imbalance, as it involves all the
classes (see Equation (3)), the performance gaps for linear imbalance are slightly smaller
compared with those for step imbalance, especially for ρ = 2. However, they clearly indicate
that quantized ResNet-20 models are not robust against linear class imbalance.

The performance gaps indicate that the more severe quantization (i.e., QAT (A3, W3))
has a greater negative impact on robustness than conservative quantization (i.e., QAT (A8,
W4)). In conclusion, our results show that the quantized ResNet-20 models, whether QAT
(A8, W4) or QAT (A3, W3), are not robust against class imbalance. Tables A3 and A4 in
Appendix A show the results in numbers for step imbalance and class imbalance, respectively.

ResNet-56. Table 3 shows the performance gaps between FP32 ResNet-56 and its QAT
(A8, A4) counterpart when trained on class-imbalanced CIFAR-10. The results show that
QAT ResNet-56 is not robust against class imbalance, as it experiences larger performance
gaps than the FP32 ResNet-56 when both are trained on the same class-imbalanced dataset.
Specifically, as the class imbalance ratio (ρ) increases, the performance of the QAT ResNet-56
degrades significantly compared with the FP32 ResNet-56. This trend is consistent across
various imbalance settings, indicating that the quantization process adversely impacts the
model’s ability to handle class imbalance. For instance, under severe imbalance conditions,
the performance gap widens considerably, demonstrating the vulnerability of QAT models
to class imbalance. Table A4 in Appendix A shows a comparison of the model size for FP32
and QAT models.

Table 3. Performance gap percentages of the quantized model compared with the FP32 model
trained on step-imbalanced datasets. For each value of ρ, we show three accuracy drop percentages,
corresponding to the three µ values (2, 5, and 8, respectively).

ρ FP32 ResNet-56 Quantized (A8, W4) ResNet-56

2 1.14%, 1.68%, 3.1 1.24%, 1.87%, 3.56%

10 6.85%, 10.54%, 14.57% 6.98%, 11.37%, 16.97%

20 12.98%, 18.67%, 22.29% 14.19%, 20.29%, 26.05%

50 22.01%, 36.07%, 36.44% 25.46%, 37.4%, 41.51%

100 37.69%, 53.37%, 44.4% 40.6%, 55.47%, 54.05%

5.3. Knowledge Distillation Results

ResNet-20. Figure 4 illustrates the knowledge distillation experiment results. It shows the
performance gaps between the teacher and the student models across different imbalance
settings.

Figure 4a shows the performance gaps when µ = 2. The performance gap between
the teacher and the student models becomes larger as ρ increases. The performance
gaps are more noticeable when ρ > 20 than for lower ρ values because we have only
2 minority classes.

For µ = 5, Figure 4b shows that the performance gaps between the teacher and the
student models become more significant when ρ ≥ 10. This behavior is attributed to the fact
that half of the classes are now minority classes, making it harder for the student models to
overcome this imbalance.

For µ = 8, the performance gaps between the teacher and the student models shown
in Figure 4c demonstrate that even for ρ = 2, the gaps are significant. This behavior is
attributed to the fact that 8 of the classes are minority classes.

For the linear class imbalance, the performance gaps are apparent even for values of ρ
just above 2. The performance gap grows as ρ increases. Notably, the performance gaps
here are more significant than those for step class imbalance at the same values of ρ.
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Figure 4. Performance gaps between the teacher model and the student models, trained on imbal-
anced variants of CIFAR-10. (a) Step imbalance µ = 2; (b) Step imbalance µ = 5; (c) Step imbalance µ = 8;
(d) Linear imbalance.

From the performance gap comparisons presented above, it is clear that the stu-
dent models are not robust against class imbalance. Furthermore, our results show
that the smaller the student model, the less robust it becomes against class imbalance.
Tables A5 and A6 in Appendix A show the results in numbers for step imbalance and class
imbalance, respectively.

ResNet-56. Table 4 presents the performance gaps between the teacher model (FP32
ResNet-56) and the student model (QAT ResNet-56 (A8, W4)) with different imbalance
settings. The results reveal that the student model struggles with class imbalance, as
evidenced by its larger performance gaps compared with the teacher model when both are
trained on the imbalanced CIFAR-10 dataset. As the class imbalance ratio (ρ) increases, the
student model’s performance declines more than that of the teacher model. This trend is
consistent across various imbalance settings, suggesting that the knowledge distillation
process diminishes the student model’s robustness to class imbalance. In scenarios with
high imbalance, the student model’s performance gap becomes particularly significant,
underscoring its greater vulnerability to class imbalance compared with the teacher model.
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Table 4. Performance gap percentages of the student model compared with the teacher model
trained on step-imbalanced datasets. For each value of ρ, we show three accuracy drop percentages,
corresponding to the three µ values (2, 5, and 8, respectively).

ρ Teacher Model Student QAT (A8, W4) Model

2 0.2%, 1.53%, 3.02 3.25%, 1.77%, 3.67%

10 2.25%, 8.85%, 14.23% 2.61%, 10.39%, 15.93%

20 4.51%, 16.07%, 23.70% 4.85%, 16.15%, 24.4%

50 7.51%, 25.47%, 35.75% 7.76%, 27.22%, 39.18%

100 11.07%, 33.59%, 44.76% 12.79%, 34.74%, 49.54%

6. Discussion

This paper investigates the robustness of compressed DL models in the presence of
class imbalances in training datasets. We informally define the empirical class imbalance
robustness as the compressed model’s ability to preserve the original accuracy when the
training dataset is class-imbalanced. Most works in the literature have overlooked the issue
of class imbalance robustness in compressed DL models. Our study aims to fill this gap,
shedding light on this critical and often neglected aspect of model performance.

Our results indicate that compressed DL models are not robust against class-imbalanced
datasets, whether the compression method involves pruning, quantization, or knowledge
distillation. This finding has significant implications for the deployment of compressed
models in real-world applications, where class imbalance is common. It suggests that
practitioners should be cautious when applying compression techniques in such scenarios.

Furthermore, our experiments reveal that large-scale DL models, when subjected to
severe pruning, exhibit reduced robustness against class imbalance. Additionally, quantized
models struggle to handle class imbalance as effectively as their full-precision counterparts.
Moreover, student models resulting from knowledge distillation do not achieve the same
level of robustness as their teacher models. This finding suggests that the popularity of
compressed DL models might be limited by their inability to maintain robustness in the
face of class imbalance. Tables 2–4 show that for a heavy-weight model such as ResNet-56
in our case, different compression techniques yield different robustness levels. For example,
mild and moderate pruning, Table 2, do not incur a robustness drop. QAT, Table 3, seems
to cause less robustness drop than KD; see Table 4. This hints that one can carefully decide
which compression technique to use to trade-off between model size and model robustness.

We observe that various compression techniques result in differing levels of class
imbalance robustness. Notably, KD produces nearly the same level of robustness as QAT.
These conclusions are based on the specific experimental settings of our study. Future work
will explore whether these findings hold across different model compression configura-
tions and class imbalance scenarios. Additionally, we plan to study existing techniques
and develop new methods to enhance the robustness of compressed DL models against
class imbalance.

We note that the number of minority classes (µ) significantly affects a DL model’s
performance on the given dataset. In our experiments, when µ = 8, the performance gaps
are larger compared with when µ = 2. This trend is also observed for linear imbalance,
where the class distribution is long-tailed. Additionally, increasing imbalance ratios further
deteriorate robustness. High levels of class imbalance and numerous minority classes result
in critically low robustness levels.

Data rarity [71], an inherent attribute in class-imbalanced datasets, especially in severe
class imbalances, incurs a performance drop even in uncompressed DL models. However,
model compression also worsens the performance drop due to the removal of model
overparametrization. As highlighted in the law of robustness [72], large DL models are
more robust than small ones. In the context of model compression, pruning (trimming
connections and removing entire filters), quantization (using lower precision to represent
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weights and activations), and knowledge distillation (using a smaller model), the DL
models transform from large (i.e., uncompressed) models to small (i.e., compressed) models,
hence making them less robust. These reasons together may explain the drop in the class
imbalance robustness of compressed DL models.

In our work, we use three methods for model compression: structured filter rank
pruning, quantization-aware training, and knowledge distillation. We believe these popular
methods are sufficient for the goals of our study and have chosen not to include other
compression techniques such as unstructured pruning, post-training quantization, and
regularization. We use CIFAR-10 as our dataset. CIFAR-10 is a midsize multiclass dataset,
making it a suitable choice for time-efficient training and inference. Additionally, it allows
for more configurations of class imbalance. For future work, we will consider other DL
models and datasets that cover other domains in DL, such as NLP, where class imbalance is
also a significant concern.

Comparative analysis with existing studies shows that our findings align with some
reported phenomena, such as pruned DL models maintaining or even outperforming un-
pruned models in terms of accuracy. However, the impact of class imbalance on robustness
remains under-explored and presents a valuable area for further research. Our work sets
the stage for more comprehensive studies that could lead to the development of more
resilient model compression techniques.

7. Conclusions

Model compression techniques should reduce model size without compromising
robustness; however, class imbalance, a well-known issue in real-life training datasets,
complicates this goal. We have investigated the challenges that class imbalance poses to
the robustness of compressed DL models. Our empirical results demonstrate that model
compression techniques leave compressed models vulnerable to the detrimental effects
of class imbalance. We conclude that when compressed DL models are trained on class-
imbalanced datasets, their robustness suffers significantly, regardless of the compression
method used. Therefore, effective solutions are needed to address this problem. This work
aims to inspire future research to develop better solutions for enhancing the class imbalance
robustness of compressed DL models.
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Appendix A. Results Tables

We provide below the results we presented in Section 5 as numbers for readers
interested in reproducing our results. The results show that compressed DL models are not
robust to class imbalance in training datasets, especially severe step class imbalance and
long-tailed class imbalance.

Appendix A.1. Filter Rank Pruning

Tables A1 and A2 show the drop in robustness for pruned ResNet-20 trained on
imbalanced CIFAR-10. Again, we notice that the robustness drop increases as the pruning
ratio increases for a given imbalance setting. This is more noticeable for moderate and
severe pruning with bigger imbalance ratio (ρ).
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Table A1. Performance gaps in F1 scores of the pruned ResNet-20 compared with its unpruned
counterparts trained on imbalanced datasets. For each value of ρ, we show three F1 drop percentages
corresponding to the three µ values (2, 5, and 8, respectively).

ρ Unpruned Mildly Pruned Moderately Pruned Severely Pruned

2 0%, 0%, 0%, 0.43%, 0%, 0%, 0%, 3.53%,
and 4.85% and 4.5% and 6.19% and 14.87%

10 3.08%, 12.23% 3.73%, 10.64%, 4.4%, 11.19%, 86%, 69.36%,
and 16.86% and 16.57% and 19.16% and 41.67%

20 10.36%, 19.07%, 12.29%, 17.89%, 15.35%, 26.07%, 94.99%, 98.82%,
and 27.56% and 25.13% and 32.02% and 46.9%

50 28.33%, 41.56%, 31.39%, 40.61%, 67.61%, 76.42%, 100%, 98.82%,
and 42.99% and 39.29% and 41.78% and 81.29%

100 54.24%, 62.07%, 50.71%, 59.05%, 93.21%, 97.38%, 100%, 100%,
and 56.78% and 52.25% and 60% and 85.56%

Table A2. Performance gaps in F1 scores of the pruned ResNet-20 compared with its unpruned
counterparts trained on linear imbalanced datasets.

ρ Unpruned Mildly Pruned Moderately Pruned Severely Pruned

2 0.77% 1.53% 2.26% 7.51%

10 7.38% 7.13% 9.88% 22.53%

20 10.58% 11.96% 14.04% 38.43%

50 19.4% 18.77% 20.71% 47.27%

100 27.01% 26.34% 33.92% 56.25%

Appendix A.2. Quantization-Aware Training

Tables A3 and A4 show the robustness drop for the quantized ResNet-20. One can
see that for all imbalance settings, quantized ResNet-20 has suffered robustness drop, and
the robustness drop becomes larger as the quantization becomes more aggressive and the
imbalance ratios ρ get higher.

Table A3. Performance gaps in F1 scores of the quantized ResNet-20 compared with its FP32
counterparts trained on step imbalanced datasets. For each value of ρ, we show three F1 drop
percentages corresponding to the three µ values (2, 5, and 8, respectively).

ρ Baseline FP32 Quantized (A8, W4) Quantized (A3, W3)

2 3.7%, 2.03%, 0.74%, 2.93%, 2%, 4.32%,
and 3.7% and 4.17% and 7.39%

10 14.54%, 11%, 7.12%, 12.7%, 7.99%, 13.41%,
and 14.54% and 16.13% and 19.13%

20 21.89%, 19.85%, 13.95%, 21.99%, 15.68%, 22.99%,
and 21.89% and 24% and 25.58%

50 36.49%, 36.67%, 28.04%, 38.48%, 30.19%, 40.78%,
and 36.49% and 38.89% and 40.59%

100 49.12%, 50.46%, 53.43%, 54.27%, 55.92%, 59.49%,
and 49.12% and 52% and 53.99%
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Table A4. Performance gaps in F1 scores of the quantized ResNet-20 compared with its FP32
counterparts trained on linear imbalanced datasets.

ρ Baseline FP32 Quantized (A8, W4) Quantized (A3, W3)

2 2.38% 2.74% 2.85%

10 7.25% 7.41% 8.17%

20 11.29% 11.45% 12.34%

50 17.96% 19.08% 19.99%

100 26.14% 28.02% 29.04%

Appendix A.3. Knowledge Distillation

Tables A5 and A6 show the robustness drop in the student model (QAT ResNet-20).
We observe that the student model is not robust against class imbalance. This observation
is in line with the observations for filter rank pruning and quantization-aware training.

Table A5. Performance gaps in F1 scores of the student ResNet-20 compared with its teacher model
trained on step imbalanced datasets. For each value of ρ, we show three F1 drop percentages
corresponding to the three µ values (2, 5, and 8, respectively).

ρ Teacher FP32 Student QAT (A8, W4) Student QAT (A3, W3)

2 0%, 2.03%, 0.73%, 3.26%, 1.37%, 3.69%,
and 3.7% and 5.9% and 6.17%

10 5.65%, 11%, 6.63%, 14.01%, 7.27%, 15.13%,
and 15.14% and 19.59% and 19.88%

20 11.14%, 19.85%, 12.85%, 22.44%, 13.88%, 23.98%,
and 21.89% and 25.92% and 28.05%

50 24.33%, 36.67%, 29.61%, 41.3%, 32.7%, 43.5%,
and 36.49% and 42.46% and 44.9%

100 45.67%, 50.46%, 53.36%, 59.74%, 63.71%, 62.79%,
and 49.12% and 55.89% and 62.37%

Table A6. Performance gaps in F1 scores of the student ResNet-20 compared with its teacher
counterparts trained on linear imbalanced datasets.

ρ Teacher FP32 Student QAT (A8, W4) Student QAT (A3, W3)

2 2.38% 2.63% 3.48%

10 7.25% 8.95% 9.65%

20 11.29% 14.01% 14.92%

50 17.96% 20.54% 23.78%

100 26.14% 30.03% 33.95%

Appendix B. Model Size

The primary goal of model compression is to reduce model size. We present in
Table A7 the model size of the pruned Resnet-20 and Resnet-56. Table A8 shows the model
size of quantized Resnet-56 (QAT A8, W4) and Resnet-20. For pruning, we report the
number of non-zero (NNZ) parameters of the pruned model as well as the number of
non-zero parameters of the original model for comparison. NNZ parameters indicate the
effect of pruning in removing redundant weights and activations. For quantization, we
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calculate the model size by multiplying the NNZ parameters by the bit-width, which gives
the model size in Mbs.

Table A7. Model size of pruned ResNet-20. Numbers represent non-zero (NNZ) parameters.

Model Size Unpruned Mildly Pruned Moderately Pruned Severely Pruned

ResNet-20 268,336 227,296 77,248 6688

ResNet-56 851,504 722,336 245,696 21,344

Table A8. Model size of QAT ResNet-20. Numbers represent non-zero parameters (NNZ). The
same table can be used for KD since the teacher model is a FP32 ResNet and the student model is a
QAT ResNet.

Model Size (Mb) FP32 QAT (A8, W4) QAT (A3, W3)

ResNet-20 8.18 1.53 0.76

ResNet-56 25.98 4.87 N/A
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