
Citation: Lazaridis, L.; Fragulis, G.F.

Creating a Newer and Improved

Procedural Content Generation (PCG)

Algorithm with Minimal Human

Intervention for Computer Gaming

Development. Computers 2024, 13, 304.

https://doi.org/10.3390/

computers13110304

Academic Editors: Carlos Vaz de

Carvalho, Hariklia Tsalapatas and

Ricardo Baptista

Received: 3 September 2024

Revised: 23 October 2024

Accepted: 1 November 2024

Published: 20 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Creating a Newer and Improved Procedural Content Generation
(PCG) Algorithm with Minimal Human Intervention for
Computer Gaming Development †

Lazaros Lazaridis and George F. Fragulis *

Department of Electrical and Computer Engineering, University of Western Macedonia, 501 50 Kozani, Greece;
dece00049@uowm.gr
* Correspondence: gfragulis@uowm.gr
† This paper is an extended version of our paper published in the 4th International Conference, HCI-Games 2022,

Virtual Event, 26 June–1 July 2022.

Abstract: Procedural content generation (PCG) algorithms have become increasingly vital in video
games developed by small studios due to their ability to save time while creating diverse and engag-
ing environments, significantly enhancing replayability by ensuring that each gameplay experience is
distinct. Previous research has demonstrated the effectiveness of PCG in generating various game el-
ements, such as levels and weaponry, with unique attributes across different playthroughs. However,
these studies often face limitations in processing efficiency and adaptability to real-time applications.
The current study introduces an improved spawn algorithm designed for 2D map generation, capable
of creating maps with multiple room sizes and a decorative object. Unlike traditional methods that
rely solely on agent-based evaluations, this constructive algorithm emphasizes reduced processing
power, making it suitable for generating small worlds in real time, particularly during loading
screens. Our findings highlight the algorithm’s potential to streamline game development processes,
especially in resource-constrained environments, while maintaining high-quality content generation.

Keywords: procedural content generation (PCG); game development; replayability; algorithmic map
generation; computer games; resource management; dynamic content creation

1. Introduction

Procedural content generation (PCG) is known for its algorithmic generation of data, a
method used to create random and streamlined content for several purposes such as maps,
loot, item attributes, occasionally lore, etc. [1], in contrast with manual and static creation.
Games are often evaluated in terms of their replayability, how elaborate their content is, play
time, etc. Game content of high quality usually requires manual generation and significant
effort by a large team that includes designers and developers, which considerably increases
expenses and is also very time-consuming. Both wealthy studios and publishers have
the required resources to support and invest in such concepts. On the other hand, this
sumptuousness cannot be afforded to independent (indie) developers [2], so an alternative
path must be found. PCG content has deep history in electronic gaming, and it has been
relied upon by many games, particularly those heavily based on replayability to maintain
the player’s interest. Several popular games that utilize PCG methods are The Binding of
Issac [3], which randomly generates rooms (see Figure 1), and Minecraft [4], in which its
world is procedurally generated, with each component is uniquely arranged every time a
new game is started, ensuring that no two players’ worlds are alike. In APEX Legends [5],
the weapons’ spawn locations are completely randomized, every map is divided into
subareas, and each subarea has a different spawn ratio of special or powerful equipment
and power-ups, making some zones more desirable than others. In the case of generated
maps in a 2D space, the same ones can also be reused in the game itself; for example, in

Computers 2024, 13, 304. https://doi.org/10.3390/computers13110304 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13110304
https://doi.org/10.3390/computers13110304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-9538-4566
https://orcid.org/0000-0002-8961-7423
https://doi.org/10.3390/computers13110304
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13110304?type=check_update&version=1

Computers 2024, 13, 304 2 of 21

a real-time strategy (RTS) game, the generated map can be used both as a real-scale map
and as minimap with fewer details. The same concept can also be used for facial creation
purposes based on players’ preferences. In most RPGs (role-playing games), which allow a
player to create their own unique hero, this process is performed manually, and, in rarer
cases, a player can choose a randomly generated character based on a basic feature, e.g.,
race or clan. Modern games such as Grand Theft Auto Online [6] and Dark Souls 3 [7]
offer very detailed character customization, from face details to body parts, by the user, but
this procedure is considered laborious and time-consuming if the user wants a completely
customized character. Recent works suggest methods for automatic face creation either
by setting some features, e.g., skin color, nationality, class, etc., or by inputting a single
photo [8,9]. Although faces cannot be produced by strict PCG algorithms, as the player
needs their character to remain the same throughout a playthrough, there are situations
where the hero is wounded, so a random scar can be depicted on a random part of the
hero’s face, or the hero may become older after several game years [10]. A positive effect of
PCG methods is the fact that the demanded disk capacity requirements of the final game are
significantly reduced, as the content generated by its game engine is not stored anywhere
on the disk but is created on the fly, leading to improved resource management. However,
content created on the fly demands more processing power, ideally before the game loads,
but it turns out that this concession is worth the effort.

This paper’s contribution is the presentation of an improved algorithm [11] that can
create a top-down outdoor-level map filled with rooms of three basic sizes, which can make
it quite congested, with a fountain in a random arrangement that changes every time the
map is loaded. The three basic rooms can also be slightly changed during loading scenes in
order to create a map with rooms that vary even more in size rooms. The same algorithm
can be used in several other applications such as the inside of a dungeon or a room [12,13].
In other instances, it can be used to randomly generate loot and/or weapons with random
range of properties or to add details such as vegetation, rocks, clouds, waterfalls, and so
on [14]. Nevertheless, such methods are supposed to be used as helper applications rather
than replacing jobs in the illustration field [15].

This paper is organized into five sections as follows: Section 2 provides an overview
of fundamental methods and strategies related to procedural content generation (PCG).
Section 3 addresses issues concerning content quality. Section 4 presents an analysis of the
rules that the algorithm must adhere to, along with a detailed explanation of the algorithm
itself. The results of our study are discussed in Section 5, followed by a discussion of
the algorithm and its characteristics in Section 6. In Section 7, we offer a comprehensive
conclusion on PCG, along with insights into future trends. The Appendix A contains a
detailed presentation of the algorithm.

Figure 1. Binding of Isaac is a game that generates and decorates all of its rooms randomly.

2. Concepts of PCG

Over the years, multiple PCG methods have been developed, each differing majorly in
its approach used to achieve content generation [16]. Some methods generate game content
during the loading phase (Offline) [17], while others, such as Online ones, though less
common, create content dynamically during gameplay based on miscellaneous factors, like
the player’s performance. The main difference between them is whether the implemented
algorithm is classified as constructive or not. Constructive algorithms [18,19] do not require
any evaluation as their outcome is considered unconditionally playable, in contrast to
generate-and-test algorithms [20,21] where an agent must be present to test, for instance, if a

Computers 2024, 13, 304 3 of 21

game level leads to a dead-end. Nevertheless, special attention is needed for softlocks [22]
as they lead to dead-end states even if they are not always undesirable, depending on game
logic [23,24]. Consider a state in a Super Mario [25] game, as shown in Figure 2. If the
player makes a successful jump, they can complete the level by reaching the pole where
a flag is hung, whereas if they fail to avoid the intermediate gap, they will permanently
become stuck between walls, a softlock state (see Figure 2).

The improved spawn algorithm belongs to Offline ones in which the map is being
created just before the game level begins. In many cases, an agent should be present to
examine in detail if the final map is playable. In this case, it is not necessary as it is a
constructive one and it relies on a predefined ruleset that overcomes any undesirable states
leading to dead-ends while the final content is being created in each playthrough literally
from scratch [26]. Furthermore, although it relies heavily on its strict generative rules to
construct diverse level maps every time a game level is loaded, it is not regarded as random
seed [27] entirely as it can be accepted as a minor input from developers for complexity
purposes by defining some parameters depending on how dense or sparse a level is desired
to be.

Figure 2. A manually constructed level example in Super Mario that contains a possible softlock (if a
player falls into the gap between walls, it is impossible to jump out, leading to a dead-end). Since
there is nothing to kill the hero, the player must either manually reset the level or quit from it in
order to abandon this state, abruptly losing any progress, as in this game there no saving points or
autosaves.

2.1. The Role of Algorithms in PCG

PCG methods are capable of building a complete game, taking into consideration
the needs of each asset (real-time difficulty adaption, special class loot rarity, map, room
decoration, equipment etc.) that can be generated randomly in each load based on several
rules by tracking the player’s progress. Specifically, the most well-known methods they
use are the following: (i) Markov models [28], which are considered particularly fast in
PCG generation. (ii) Cellular automata [29,30], that consults a predetermined rule-set on
a grid map area and explores if the adjacent cell can be occupied for a suitable asset or
not. This method is commonly used for cave-like creations. (iii) Generative grammar [31]
is essentially based on a grammatical rule system and then a parser undertakes the role
to decide if an action can be applied or not. It is mostly used in games with complex lore
where their progress is closely related to the user’s actions and, depending on his choices,
either a quest will be terminated or additional actions are required so as to be successfully
accomplished, or a non-playable-character (NPC) team member will decide whether he
will follow or reject the player, etc. (iv) Machine learning algorithms progressively learn and
store all past actions, or they begin from a ready-to-use dataset [32] and extend with new
data accordingly. Although they are very fast, they are characterized by their unreliability,
as they do not guarantee that the final outcome will be playable, especially in narrow
or dense areas such as a room interior, so an agent is necessary. However, a number of
solutions have been proposed that subdue this behavior with specialized methods such as
generative adversarial networks (GANs) [33,34], reinforcement learning (RL) [35–37], and

Computers 2024, 13, 304 4 of 21

deep learning [38]. (v) Evolutionary Algorithms [39]: although they are not yet widely used
with PCG, they are preferred in 3D landscape modeling [40] to optimize game maps in
strategy games that can accommodate massive armies and assist in dungeon modeling [41].
They present some failures to natural representation along with some minor conflicts
between objects. Therefore, in specific operations they thrive with excellent results. Our
algorithm is based on cellular automata (CA) with grid base as its kernel component.

2.2. PCG via Machine Learning

Procedural content generation via machine learning (PCGML) is considered as the
generation of game content by using methods that have previously been trained on existing
content from other instances [32,42]. It can be applied anywhere in a game where random
content must be generated such as maps, items and their attributes, weapons and their
features, character dialogues, cosmetics, etc. Machine learning can be effectively used to
produce visual material that is closer to the user’s preferences [43], for example, cosmetics
for their equipment or building an initial character based on rudimentary questions or
previous experience, but in case of levels, maps, or quests things become severely more
complicated as other factors also take place. Especially on maps, machine learning methods
should evaluate the final result to examine if the map is playable or if a character can jump
on any permitted floor or be able to reach the exit. Such issues can be solved, but not
entirely, by applying data augmentation methods [44], where the variety is increased in a
given dataset, not by collecting more ready-to-use data but by adding modified versions
of the already existing data [45]. In another case, a map can be represented as a set of
puzzle pieces where each piece portrays a single element on a map. The puzzle pieces can
also be shuffled to form another view of the same map or even to create a completely new
one, while all pieces must fit seamlessly so as to avoid discontinuities (see Figure 3). The
Bioshock collection [46] used this method to create myriad hacking puzzles with varying
levels of difficulty.

Figure 3. A mini hacking puzzle game for a number of Bioshock alarm systems. The generated
puzzle games are random, whereas the pieces of the puzzle are more than enough so that the puzzle
can be solved in several ways.

2.3. Generative Adversarial Networks

This architecture is considered a special extension of machine learning. It can be
assumed as an adversarial game between a generator and a discriminator. Initially, it
generates synthetic data from a dataset and then exhibits similar characteristics to the real

Computers 2024, 13, 304 5 of 21

data; at the same time, a discriminator strives to classify if the generated data are considered
fake or not. Generative adversarial networks (GANs), among all domains that have been
applied, work better with image processing such as applications that involve human faces
or handwritten characters. In terms of game levels, and the fact that GANs are based on
machine learning methods [47], they encounter the same problems as they demand an
initial set of known and functional maps in order to produce more of them. Additionally,
due to the fact that such methods demand a lot of processing power, they are not suggested
for real-time content generation [48]. Nevertheless, a study [49] managed to create several
level maps for the well-known DOOM game from an initially created dataset suitable for
training GAN from over than 1000 DOOM [50] levels by using two models—conditional
and unconditional—where the conditional model uses several features as an input that
are extracted from real levels, whereas the unconditional model uses only images from the
given dataset (see Figure 4).

Figure 4. Left image shows maps that were created from an unconditional network while the maps
in the right image were created from a conditional network.

2.4. Scenario Needs

Although there are a number of PCG algorithms to choose from, not all of them are
suitable to implement any scenario. There is a big difference in creating random face
portraits from scratch to produce playable terrains depending on different circumstances.
Contemporary algorithms that use machine learning (ML) of GAN methods seem very
promising but they are not used extensively for creating area maps of room interiors. In
this paper, the proposed algorithm creates 2D area maps filled with varied-size rooms or
caves and a decorative item, particularly a fountain. Each map is created from scratch
without any previous experience and it can be configured so as to create maps with more
or less room density depending on the desired difficulty, while the area around each room
is considered as free roam state, and there are no specific paths. It uses the cellular automata
technique, which fits perfectly for our cause as the whole map is based on a grid area where
all objects are placed upon it, while at the same time the algorithm examines if there is
enough space among them in order to avoid any collisions or blockages. The improved
algorithm can generate a much larger number of varied-size rooms for better quality and
a more diversified content. At this point, further analysis must be conducted for quality
diversity and to determine how this content fits appropriately in a generated environment;
either it is an open-air area with different climate conditions and terrain, or indoor areas
such as caves or chambers.

Computers 2024, 13, 304 6 of 21

3. Content Quality

Although random generated maps and environments are what we expect from a
procedural content generation algorithm, the final outcome is not always as good as we
would like it to be. This is not because of some failed object placements that overlap each
other or an unexpected dead-end [51], but because the final scene does not seem natural or
sensible, as the selected environmental objects do not match to a particular terrain or the
co-existence of some objects does not make sense to the same place or map. Some practices
define complex rules before the execution of an algorithm. Other solutions suggest a mixed
approach where a PCG algorithm creates several templates [52], and at the end the designer
chooses any or all of them that are compatible with their goals.

However, there are cases where some features are not disastrous; on the contrary, they
enrich the complexity of a game or a level depending on what we would like to achieve. For
example, roads on a strategic map should occasionally overlap each other, so crossroads,
T-roads, or any other junction can be created. This method can convert a simple road
network into quite a complicated one and it is very useful and easy to define the difficulty
level of a game, e.g., if you are in early stages or in later ones. Also, the same technique can
be used for defining the difficulty in real time, for instance, if a player’s score is very high
in one level, the next one will be much harder and vice versa. Another case is if a player is
having a hard time passing a level so after a few failed tries on the same level, the next one
may become easier. A study that uses roads to create new maps was applied to the Kindom
Rush: Frontiers [53], a web-based tower defense game in which new maps were created
with different road networks and random tower places with minimum distances between
them all over the map, as overlap and close proximity in this situation must be avoided (see
Figure 5). The Kullback–Leibler (KL) divergence was applied for the cover distribution:

KL(P||Q) = ∑
x

P(x) log(
P(x)
Q(x)

) (1)

which defines a standard distribution for the whole map, which gives quite a natural
appearance. At this point, for comparison purposes, our algorithm is based thoroughly on
the asset number that is defined from the designer and it chooses if the selected asset can
be placed or not on the map, based on the distance or location constraints giving a natural
environment in a different way.

Other methods suggest a top-down approach where a game level has an entry point
at the top of it and an exit point at the bottom; in other words, the player is always moving
down. A known game that follows this strategy is Spelunky [54], where each map that
represents a level is divided into 4 × 4 rooms and a path is planned throughout these
rooms, as shown in Figure 6. At this point, it is important to mention that it is not necessary
for all rooms to be used, which is something that easily defines how long or short a level
can be. Each box is called a chunk and they are replaced by a random number; finally, the
algorithm defines which number will be at the start and which one will be at the end [55].
The next step includes the room placement for each chunk, selected from quite a large set of
templates, and the set of templates used depends on the area the level is in and whether the
room falls on a path. For instance, according to Figure 6, beginning from the start chunk, a
room with a corridor that has an exit point to the right of it is needed in order to continue
in the room where the corresponding arrow indicates, so the suitable template set is the
one that has exit points on the right side of the rooms, etc. Therefore, the room in Figure 7
fits in the second chunk as both entry points are located on the left of it and the exit point
at the bottom. If we combine all of the above with decoration, obstacles, and monsters,
this process leads to a game that generates unique levels in such a way that each game is
always different and, at the same time, keeps the game fresh and exciting.

Based on the same principle is the game Diablo [56], which is separated into four
stages where each stage includes four levels by using the top-down approach. Here, the
player can access each level by finding an entrance to the lower one. In fact, all of the stages
are dungeons with different names and design, and polished with appropriate themes.

Computers 2024, 13, 304 7 of 21

Figure 5. Three random levels are created in the Kingdom Rush: Frontiers with roads, tower places,
and monster generation in consecutive waves. Also, in each wave, monsters are grouped based on
their kind.

Figure 6. All levels in Spelunky game use this structure, with a preplanned top-down path, while
all levels have the same size of 4 × 4 rooms. The start and end points are randomly generated in
any room.

Figure 7. Example room design in Spelunky in its primary state, without any added decoration. Note
that this room has two entry points, one from the left and another one from the right.

Computers 2024, 13, 304 8 of 21

Everything in a level has a fully randomized arrangement at such a point that even the
exit spots that lead to the lower levels are randomly placed throughout, but in this case
an extra control is applied and the level is recreated from scratch if the exit spot cannot
be placed due to the lack of space. On the other hand, extra attention is given both to the
rooms that are located inside a level, which must be connected through corridors or other
room entrances, and to the room entrances where their directions must not face a wall,
something that we also check on our spawn algorithm. In Figure 8, a map is generated for
the Cathedral level in Diablo, clearly showing the rooms’ placement, corridors, and the exit
point to the lower level.

Figure 8. A randomly generated level of the Cathedral stage in Diablo.

3.1. Quality Diversity

Content quality not only refers to asset placement but also leads to quality diversity in
order to make a game more enjoyable. As is well known, many games lack multifarious
levels or stages so that a player can discover patterns from a point onward. Providing
diverse levels to players adds extra value to entertainment since they need to deploy differ-
ent strategies under specific circumstances [57]. Map diversity can also be combined with
other game elements such as decoration objects, obstacles, statistics over offense/defense
weapons, or rewards based on specific criteria. For example, in Spelunky, after the room
selection, the next step comprises choosing obstacle and trap placement in certain points of
each map; finally, object and monster placements are selected in random locations of each
map, as shown in Figure 9.

Figure 9. After room selection in Spelunky, as a last step, randomized decorations, obstacles, and
monster placement takes place.

Computers 2024, 13, 304 9 of 21

Different parts of an environment need different manipulation from an algorithm. For
example, in the case of decoration, the first thing needed is a very large object dataset; at
the same time, this dataset should be divided into several categories depending on place,
i.e., if it is outdoor, indoor, rooms, corridors, etc. Irrespective of the concept we would like a
map to contain, it is of critical importance for a sequence to be kept. For instance, rooms are
usually placed first on maps, then a road/corridor network to connect all or part of them
or adjacent rooms that are connected with a door, and, finally, decoration comes last. Each
step comprises different strategies and can be implemented by different algorithms, or one
algorithm can also be used by configuring several settings. As long as a step belongs to the
late stages in the chain of action, more restrictions are applied. For instance, it is important
that the placement of decoration objects is predefined on certain spots that will be used as
static objects in order for unnecessary obstacles to be avoided; otherwise, both motion and
visual attributes will probably be hindered, except for cases where someone would like to
hide a valuable object, treasure, contraption, etc. The improved Spawn algorithm keeps
the same functionality as it is designed to be used in several scenarios that include both
outdoor and indoor actions.

To keep the uniqueness of an environment, several techniques are developed, and this
is where artificial intelligence (AI) shines, as special uses of it produce diversity with rich
environments. One of the most reliable and fast techniques from the modern AI field used
to create content on maps is reinforcement learning (RL), where environments are usually
modeled by Markov decision processes (MDPs), a mathematical formulation that is used to
study optimization problems. MDPs are often represented by the type (S, A, P, R, γ), where
S is state space, A is the action space, Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) defines the
transition probability from a state s to s′ by executing an action a at time t, Ra(s, s′) consists
of the immediate reward earned from the current transition, and, finally, γ ∈ [0, 1] is the
discount factor, which computes how many future cumulative rewards are used compared
to the current one [58]. Due to the fact that RL is still adding complex computational
tasks [47], it is somehow difficult to used in real-time implementations, but, on the other
hand, it fits perfectly in turn-based games where the real-time actions exist at a minimum,
mainly in nonbattle events. In addition, as Figure 10 shows, RL algorithms agents are
necessary to use, and, in order to ensure that the quality will be high, a feedback system
is required to monitor the overall process step by step [36] by comparing the previous
state and the current updated state by using a reward calculator for a particular game.
Depending on earned rewards, RL agents can generate random playable maps producing
infinite unique designs, increasing both replayability and winning strategies. A recent
study proposed stage creation in two phases, battle and nonbattle events [59]. Here, an
evolutionary method is proposed, as in machine learning (ML) algorithms, a sufficient
amount of content is required for training, but in this case, everything can be generated from
scratch by learning online behaviors, either from the player or ready-to-use environments
which represent levels or stages. In other words, it applies self-learning by interacting with
the environment, something that can lead to unsupervised learning, which significantly
reduces the overall processing time.

Computers 2024, 13, 304 10 of 21

Figure 10. The first image shows the beginning of an RL agent and how it is interacting with the
stage, while in the second image, the RL agent has finished its iterations. A reward calculator is
present as it is needed to advise the agent if the proposed changes can lead to a dead-end or not, or if
they can be accessed in general.

3.2. Intelligent Diversity

Except for environmental diversity, the replayability of a game also depends on its
playstyle. Content diversity usually refers to static objects such as terrain, trees, roads, or
weapons with stats that are randomly found in a treasure chest or after defeating enemies.
The same static environment can also change the course of a battle by changing the location
in which a fight takes place. For instance, for a boss that is vulnerable in ranged attacks and
is easily defeated in one attempt, in another playthrough, they could be placed in a location
that does not favor ranged attacks, so another approach must be developed by the player
in order to defeat the same adversary. In other cases, bosses could be different. Along with
their properties and stats, adding extra challenges in terms of the unknown of what one can
encounter negates the same strategy being used every time a new game starts. In particular
scenarios, if a difficulty option has been added, and a variety of heroes with completely
different playstyles are present, e.g., characters who specialize in ranged attacks, melee
combat, mages, summoners, etc., in the highest difficulty levels, every winning condition is
totally different, as special combined strategies are required. In Diablo II [60], especially the
Hell difficulty, levels, the playstyle of each player character must be changed as the player’s
resistances to all elements are dramatically dropped, even below zero, and all enemies have
immunity at least to one kind of attack with different bosses. In Figure 11, a mini boss has
two immunities, to physical and magic damage, so a player must use other kinds of attacks,
e.g., poison, to defeat him.

Computers 2024, 13, 304 11 of 21

Figure 11. Hell difficulty in Diablo II adds several random immunities to all foes; as a consequence,
all of a character’s properties must be reassigned in such a way to enhance a combination of two or
three dissimilar attacks that can damage anyone in the battle field.

As a result, any player must redistribute any earned skill points in such a way so that
his character becomes specialized in several attacks that better fit his playstyle, and if he
belongs in a party with a specific role, such as a damage dealer or a defender. Furthermore,
changing the stats only is not enough as it is mandatory for a player to also replace his
weapons and armor as the game in this difficult level spawns even more advanced objects
by piling up properties and giving the opportunity to players to customize their equipment
even more depending on their playstyle. All of them inarguably add more challenge to the
game by entirely changing its perspective, as if a different game is created.

To make a game more entertaining, a mechanism could be used to evaluate the
diversity by measuring a possible satisfaction factor with the help of entropy, which is
used as a base reward received by an agent. It is used to estimate the possible amount
of information that a scenario has, for example, the number of segments that seem to
display possible repetitions. The greater that number of repeated segments is, the lower the
entropy value will be, and vice versa; this is how the diversity of a scenario is evaluated
and measured. In [61]’s study, the entropy is calculated using the formula

H(x) = −
n

∑
i

p(xi)log(p(xi)) (2)

where p(xi) defines the probability occurrence for each event of the variable x, which
in this case is represented by each segment, and the log(p(xi) calculates the amount of
gathered information for each segment. Another study promoted a solution where it used
the KL-divergence in order to quantify the similarity between the segments [62] in an RL
algorithm to be able to generate endless playable levels in the Super Mario [25] game. In
more detail, a level is divided into segments, then multiple RL agents evaluate the degree
of diversity; finally, they are concatenated to form a full level. The KL-divergence was also
used for the same Mario game, but in the study of [63], it was implemented asymmetrically,

Computers 2024, 13, 304 12 of 21

generating complex and rich environments, as shown in the Figure 12 level, but, on the
contrary, a large dataset was required by the algorithm.

Figure 12. This level was generated by asymmetrical KL−Div with the use of a considerable size of a
training sample where any novel pattern that did not exist in that sample is subjected as a candidate
for use in the level generation.

In Table 1 we can see a summarized of the methods used to produce PCG environments.

Table 1. Methods used by applications to produce PCG content.

Training Sample
Required Space Predefined Levels Asset Rotation

Minecraft No 3D No No need

Binding of Isaac No 2D Merely No

Spelunky No 2D Merely No

Diablo No 2D (map overlay) Yes No

Super Mario Yes 2D Merely No need

Doom levels Yes 3D No No

Kingdom Rush:
Frontiers No 2D No No

Our Spawn algorithm No 2D No Merely

4. The Improved Spawn Algorithm

In general, the algorithm produces three room sizes that are placed randomly on a
2D grid-based map. Large and medium rooms have four standard entrance directions,
specifically north, south, east, and west, while the small rooms’ entrances can rotate
everywhere in 360◦. The entrance rotation of each room is also randomly generated and
special attention is given to the fact that all entrances cannot face any wall side, as a
minimum distance from it is estimated. The number of rooms that can be placed also
remains the same, so the maximum number of each type is as follows: one large, two
medium, and three small rooms. The fountain is considered as a decoration item so its
size remains the same. Each item on the map has its own hitbox for collision detection
purposes, where AABB [64] fits perfectly for rooms and a spheroidal for the fountain, as it
is very important to distinguish boundaries to be set for future expansions.

The map uses the cellular automata (CA) technique, a method that is very suitable for
building maps with ready-to-use places upon them. All grids are grouped in 5 × 5 groups
to form larger ones and all rooms are placed into them without the obligation to fit exactly,

Computers 2024, 13, 304 13 of 21

as shown in Figure 13. The final result visually remains the same and comprises a mini-
map that can later be translated to a full-scale one. In terms of improvement, this version
expands the overall number of room sizes in each type. In particular, large rooms in this
version have 11 sizes, medium rooms have 31 sizes, and small rooms have 51 sizes. Each
room size of each type cannot be scaled in a way that overlaps another type, e.g., a large
room cannot be shrunk in a size equal to or less than a medium room. As a consequence,
the end result becomes even more varied, with possible unique combinations based on type

C(n, r) =
(

n
r

)
=

n!
(r!(n − r)!)

(3)

where r represents the maximum number of rooms that are likely to exist on the map, while
n is the possible size of a room. Therefore, the combinations are as follows:

• Large rooms: 11 (r = 1 and n = 11);
• Medium rooms: 465 (r = 2 and n = 31);
• Small rooms: 20,825 (r = 3 and n = 51).

The overall possible combinations exceed the 213 million, a number that cannot actu-
ally be achieved in reality, so the possibility of two maps totally matching is dramatically
diminished. Table 2 summarizes the differences between the initial and improved algorithm.

Figure 13. The grid map is divided into larger grids and each one includes 5 × 5 small grids. The first
room fits exactly in the large grid while the second one is placed in the corner, essentially occupying
four large grids. This placement constitutes the worst-case scenario, something the algorithm takes
into account and acts on accordingly.

Table 2. Key differences between two algorithm versions.

Method Trained Dataset Required Room Sizes (Total) Map Size

Initial algorithm Cellular Automata No 3 10 × 3 cells

Improved algorithm Cellular Automata No 93 10 × 3 cells

4.1. Algorithm Complexity

The algorithm divides the creation procedure into several steps, where each one
executes a small part of the overall process; specifically, the first one is the creation of a
blank grid map with rows and columns that are given before the algorithm’s execution.
For this instance, we decided that fifteen (15) rows and fifty columns (50) are enough for
the algorithm to work, consisting of the smallest grids on the map. While rooms and any
decorations occupy more than one tile, right afterwards, the algorithm divides the grid into
larger areas containing part of the tiles; specifically, each large area contains five (5) rows
and ten (10) columns of small tiles: a total amount of fifty (50). In this space, any object
from small rooms to large ones and any of the decorations can fit from any angle, but it is
decided that only small rooms can use this feature for simplicity reasons. This is a standard
process that also demands a fixed time that takes about 45 × 10−11 seconds.

Computers 2024, 13, 304 14 of 21

All other steps include loops, as their basic goal is to decide if and where a room will
be placed as long as there is a free place. As is shown in Appendix A, large rooms are
placed first as they are considered the most difficult because of their size. In general, bigger
rooms are placed first, if selected, and then smaller ones, in order to minimize the exclusion
possibility of bigger rooms not being placed at all due to lack of space. There are four
loop stages in total, where each is used for creating a room type and the fourth is used for
decoration placing. Each stage includes two nested loops; the outer one examines the large
columns while the inner loops scrutinize each row of the selected column to determine
if the chosen room can fit. All four loops are executed at least one time, and an extra
compromise is taken into account where, if a large room is present in a large column, no
other rooms in that specific column can be placed except for decoration. This compromise
prevents the probability for a small part of the map to become populous and the rest of it
being underpopulated, as, for vision purposes, it is optimal for all objects to be placed all
over the map as much as possible.

In terms of computational load, all four loops execute almost the same calculations
and they are executed only if a special condition is true. First of all, each loop chooses a
random number that corresponds to an asset, e.g., if the chosen value is zero (0), that means
a large room is selected. If the chosen value is within the correct loop, then the process of
finding a random suitable place on the map begins by scanning all the large rows within
the corresponding large column. Also, minor actions take place, such as if the maximum
number of an asset is reached or determining which direction the entrance of a room faces;
at this point, the loop ends. The maximum computation cost can be estimated as follows:
ten loops are used for scanning the large columns, multiplied by three loops for each asset
along with their simple computational costs; in other words, there are thirty loops. This
means a total time based on log(n) calculations, specifically 9 × 10−11 seconds, translated
in a few milliseconds.

4.2. Worst-Case Complexity

The maximum possible loop number cannot exceed thirty in this instance; in fact, it
is impossible to reach this value because of the fact that the maximum number of assets
that can be placed on a map is seven, as shown in Figure 14. A loop is only executed for a
valid asset if it is chosen by a random generator, so the maximum loop number becomes
seven, where in this case the algorithm searches for a free place to set it on. The worst-case
scenario in this instance is the selection of all seven rooms and the fountain with their
placement to take place at the end of the map, meaning the right part of the map, which
adds a tiny fraction of time to the overall process. As a result, the total time becomes log(n)
calculations, specifically 3 × 10−11 seconds, plus the time for the grid map creation.

Figure 14. A random example with full rooms in the new improved algorithm.

5. Results

The overall modifications achieved a better result while the differences, in terms of
size among rooms, are easily detected visually. As shown in Figure 14, all rooms, even
those that belong to the same category, have obviously dissimilar sizes. The two medium
rooms have few differences, while the small ones have more obvious varied sizes. The

Computers 2024, 13, 304 15 of 21

large room is an exception as the algorithm produces only one, so there is no comparison
measure, but in the end, if we compare it with Figure 15, in this instance it is a little smaller.
The newer algorithm was tested thoroughly by executing it multiple times, where each
time a completely new map was created.

Figure 15. Another instance focusing on the large room which is a bit smaller.

Nevertheless, according to algorithm rules, there are situations where the fountain is
not placed at all, producing an environment that lacks any decoration. Although this is
not considered as a bug, a plain or barren map is not attractive at all except if it is used for
special occasions like a small secret treasure room or a trap that leads into a room that the
player must escape. On the other hand, despite the modifications, the spawn algorithm
was executed seamlessly without showing any crushes or critical errors, and in terms of
performance, the extra additions almost did not affect it at all. In the end, the final product
was accomplished by producing a considerably more varied map without increasing the
utilization of computing resources. These updates help an application to remain both
replayable and lightweight.

6. Discussion

The algorithm was tested several times; specifically, 500 maps were created in a row,
and all output results were within limits that were defined during the software development.
Before the improvement, there was a rare situation in which two medium rooms collided
by overlapping each other, but in this version, everything is corrected. The graphics engine
remained the same, in particular Unity, and C# was used as the programming language as
it is embedded with a very friendly development environment and is also very versatile,
offering complete integration and full compatibility with any previous versions. The
generated maps are quite different from each other, but because the room sizes can vary
by a vast number, only half of them can be visually distinguished by the human eye. The
algorithm generates a map in milliseconds, even for fully loaded ones, but it could become
even faster if some conditions are removed, as in some cases they are not necessary. A
case was observed in which a large room was placed at the top of a column, and while no
other object can be placed underneath, the algorithm continues to check if something can
be placed in the same column. This behavior was detected recently, and while it does add
a negligible working load, in larger-scale maps this could become a bigger problem. But
on the other hand, why should there be extra effort when it can be avoided? Because of
the fact that the Spawn algorithm is rather lightweight, it can easily be used for web-based
applications as it does not demand significant computational resources and its output is
small in size so it can be downloaded without much effort, even over slow connections.

Its uniqueness relies on the fact that in each load a new map is generated from scratch,
building a basic layout, but in the future this feature is going to change a bit as a road
network will be added, at least among rooms. There are many games that use PCG methods
for generating levels and maps but they use several tricks to display different outputs, and
two of the best games in this matter are Binding of Issac [3] and Spelunky [54]. Especially
in Spelunky, there is a large level dataset in which several of them are selected and then
obstacles are placed in a random manner to change the overall view while all levels are

Computers 2024, 13, 304 16 of 21

generated from the beginning. On the other hand, Kingdom Rush: Frontiers [65] was used
by a revolutionary RL algorithm to generate maps with several characteristics which were
defined for use in such a way to add extra value in difficulty modes. Most of the 2D
maps, despite the technique they use, have a common place as they are strictly grid-based,
because this kind of arrangement offers a very convenient way to place everything in a
determined fashion and it is also proven to be very fast if the video game relies on levels,
especially if even the secret ones are considered distinct rooms. Grid-based methods are
also capable of creating not only small-scale maps but huge worlds which represent a full
game playthrough, but there are various methods that use other algorithms to achieve
unique generated worlds, such as the Terraria [66], which generates uniquely random places
by adding noise per pixel and then applies multiple scans each time the algorithm adds
something, such as dirt, cavities, water, flora, etc.

7. Conclusions

In this study, we explored the development of an algorithm designed to enhance the
procedural generation of game environments, particularly for role-playing games (RPGs).
The aim was to create more dynamic and immersive game worlds by varying environmen-
tal structures and conditions, reducing the need for human intervention in the early stages
of large-scale game projects. Our findings demonstrate that while many games, including
dungeon crawlers, maintain a basic pattern across playthroughs, our algorithm can intro-
duce significant variability by altering the placement of structures within environments,
such as replacing a fountain with a market in a village. Additionally, the algorithm has the
potential to create expansive open worlds with distinct regions characterized by unique
environmental conditions. This ability to generate diverse and complex environments
automatically enhances the depth and replayability of RPGs, pushing the boundaries of
procedural content generation [54]. The core program is very lightweight as it does not
demand a lot of resources, about 60 MB on disk and 70 MB on RAM as a final build in
Unity, since all levels/maps are created on the fly during the loading stage and, based on
worst-case complexity, the loading time is negligible.

The algorithm’s capacity to modify game environments on a larger scale presents
significant implications for game design, particularly in the context of RPGs. By automating
the placement and variation of game structures, developers can focus on higher-level design
elements while ensuring that each playthrough offers a unique experience. This approach
not only increases replayability but also opens up new possibilities for creating more
intricate and interactive game worlds. The potential to apply the algorithm to both outdoor
and indoor settings, as well as to multilevel maps, further emphasizes its versatility and
relevance in modern game development. Special attention was given to softlock state
avoidance where a dead-end is revealed without implying that is a bug. This problem was
not present in any cases of our tests, as we predicted, first of all, enough space between
rooms so that a road (in future version) can be added. This behavior prevents a player
from becoming trapped in adjacent rooms as the character is also placed randomly. All
this effort is additionally enhanced by meticulous collision detection methods, especially
those applied in small rooms that are rotated in 360 degrees, where a rotated corner can
dangerously narrow an already tight space. In conclusion, the algorithm represents a
significant step forward in the procedural generation of game environments, particularly
for RPGs and dungeon crawlers. By minimizing human intervention and automating
the creation of diverse and interactive game worlds, this approach has the potential to
revolutionize game development.

Future Trends

Despite the advancements presented, the algorithm still lacks certain features neces-
sary for practical application in real-world software. For example, while the algorithm
effectively varies the placement and size of rooms, it currently does not address the inte-
gration of cosmetic assets or points of interest, such as hidden treasures. Future research

Computers 2024, 13, 304 17 of 21

should focus on these areas, particularly on connecting room entrances with paths that
avoid overlapping with other map elements, and on decorating room interiors with a
broader range of assets. Additionally, enhancing the algorithm to support the creation of
multilevel maps with entrances and exits would further extend its capabilities. The final
intention is for the same algorithm to also be used for decorating room interiors, as the asset
arrangement between outdoor and indoor settings could be similar with similar restrictions,
but in the case of the interior, the number and the variety of elements that will be chosen
to input will be rather larger than outdoor ones. For replayability purposes, in order for
the maximum result to be achieved, outdoor maps will vary in terms of environmental
conditions while decorating them with proper assets. At the same time, the room interior
will vary depending on randomly chosen themes that will be created on the fly by using
suitable rules attached to the current one. Finally, a special addition will be the placement of
an entrance or exit, or both, in each map in the form of a ladder, upwards or downwards, in
order for multilevel maps to be created by moving back and forth, a feature that adds extra
playable time and difficulty. The ultimate goal, though, is for the same algorithm, with
minor adjustments for each case, to be able to create a playable game level from scratch
without any human intervention.

Author Contributions: Conceptualization, L.L. and G.F.F.; methodology, L.L.; validation, L.L. and
G.F.F.; writing—original draft preparation, L.L.; writing—review and editing, L.L. and G.F.F.; super-
vision, G.F.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No research data available.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Input: 15 rows × 50 columns grid area, where maximum number of large, medium, and
small rooms is set to 1, 2, and 3, respectively.

2 dimension vectors: map[x, y] Variables: i, j as counters.
Random values: 0 → large room, 1 → medium room, 2 → small room, 3
→ no room
Maximum elements number: large rooms → 1, medium rooms → 2,
small rooms → 3, decorations (fountain) → 1

–Grid Map creation–
1. for i = 1 to maxColumns(50) do
2. for j = 1 to maxRows(15) do
3. map[i, j] = new Vector2(x, y)
4. y = y + 1 (+1 tile in the row)
5. end for (j)
6. y = 0 (initiate the row tile)
7. x = x + 1 (+1 tile in the column)
8. end for (i)

–Large column loop–
9. for i = 1 to largeColumns(10) do

–The nested "for j" loops chooses in which large row the rooms and decorations will
be placed–

–Large room loop–
10. for j = 1 to largeRows(3) do
11. randomGenerator = randomValue 0 to 3

Computers 2024, 13, 304 18 of 21

12. if randomGenerator == 0 and maxNumberLargeRoom != 0 and noPresenceOfAn-
otherLargeRoom
13. choose a direction other than no face wall
14. create a large room as Vector3(map[i,j].x, map[i,j].y, direction)
15. choose a random scale
16. reduce the maxNumberLargeRoom by 1
17. end if
18. end for (j)

–Medium room loop–
19. for j = 1 to largeRows do
20. randomGenerator = randomValue 0 to 3
21. if randomGenerator == 0 and maxNumberMediumRoom != 0 and noPresenceO-
fAnotherLargeRoom
22. choose a random direction
23. create a medium room as Vector3(map[i,j].x, map[i,j].y, direction)
24. choose a random scale
25. reduce the maxNumberMediumRoom by 1
26. end if
27. end for (j)

–Small room loop–
28. for j = 1 to largeRows do
29. randomGenerator = randomValue 0 to 3
30. if randomGenerator == 2 and maxNumberSmallRoom != 0 and noPresenceOfAn-
otherLargeRoom
31. choose a freely random direction
32. create a small room as Vector3(map[i,j].x, map[i,j].y, direction)
33. choose a random scale
34. reduce the maxNumberSmallRoom by 1
35. end if
36. end for (j)

–Decoration (fountain) loop–
37. for j = 1 to largeRows do
38. randomFountainGenerator = randomValue 0 to 1
39. if randomFountainGenerator == 1 and maxNumberFountain != 0
40. create a fountain as Vector3(map[i,j].x, map[i,j].y, direction)
41. reduce the maxNumberFountain by 1
42. end if
43. end for (j)

–Move to next map large column–
44. nextPointerLargeGridX = 0
45. nextPointerLargeGridY = nextPointerLargeGridY + stepY (10)
46. end for (i)

References
1. Viana, B.M.; dos Santos, S.R. Procedural Dungeon Generation: A Survey. J. Interact. Syst. 2021, 12, 83–101. [CrossRef]
2. Barriga, N.A. A short introduction to procedural content generation algorithms for videogames. Int. J. Artif. Intell. Tools 2019,

28, 1930001. [CrossRef]
3. Edmund M, F.H. The Binding of Isaac. Available online: https://bindingofisaac.fandom.com (accessed on 16 August 2024).
4. Persson, M. Minecraft. Available online: https://www.minecraft.net/en-us (accessed on 16 August 2024).
5. Electronic-Arts. APEX Legends. Available online: https://www.ea.com/games/apex-legends (accessed on 16 August 2024).

http://doi.org/10.5753/jis.2021.999
http://dx.doi.org/10.1142/S0218213019300011
https://bindingofisaac.fandom.com
https://www.minecraft.net/en-us
https://www.ea.com/games/apex-legends

Computers 2024, 13, 304 19 of 21

6. Games, R. Grand Theft Auto Online. Available online: https://www.rockstargames.com/gta-online (accessed on 16 August
2024).

7. Namco, B. Dark Souls III. Available online: https://en.bandainamcoent.eu/dark-souls/dark-souls-iii (accessed on 16 August
2024).

8. Shi, T.; Zou, Z.; Shi, Z.; Yuan, Y. Neural rendering for game character auto-creation. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
44, 1489–1502. [CrossRef] [PubMed]

9. Shi, T.; Zuo, Z.; Yuan, Y.; Fan, C. Fast and robust face-to-parameter translation for game character auto-creation. In Proceedings
of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 1733–1740.

10. Zhao, J.; Cheng, Y.; Cheng, Y.; Yang, Y.; Zhao, F.; Li, J.; Liu, H.; Yan, S.; Feng, J. Look across elapse: Disentangled representation
learning and photorealistic cross-age face synthesis for age-invariant face recognition. In Proceedings of the AAAI Conference on
Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 9251–9258.

11. Lazaridis, L.; Kollias, K.F.; Maraslidis, G.; Michailidis, H.; Papatsimouli, M.; Fragulis, G.F. Auto Generating Maps in a 2D
Environment. In Proceedings of the International Conference on Human-Computer Interaction, Virtual Event, 26 June 26–1 July
2022; pp. 40–50.

12. Freitas, V.M.R.d. Procedural Generation of Cave-Like Maps for 2D Top-Down Games. Bachelor’s Thesis, Universidade Federal
Do Rio Grande Do Sul Instituto De InformáTica Curso De Engenharia De ComputaçãO, Porto Alegre, Brazil, 2021.

13. Viana, B.M.; dos Santos, S.R. A survey of procedural dungeon generation. In Proceedings of the 2019 18th Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames), Rio de Janeiro, Brazil, 28–31 October 2019; pp. 29–38.

14. Minini, P.; Assuncao, J. Combining Constructive Procedural Dungeon Generation Methods with WaveFunctionCollapse in
Top-Down 2D Games. In Proceedings of the SBGames, Recife, Brazil, 7–10 November 2020.

15. Lai, G.; Latham, W.; Leymarie, F.F. Towards friendly mixed initiative procedural content generation: Three pillars of industry. In
Proceedings of the International Conference on the Foundations of Digital Games, Bugibba, Malta, 15–18 September 2020; pp. 1–4.

16. Gellel, A.; Sweetser, P. A hybrid approach to procedural generation of roguelike video game levels. In Proceedings of the
International Conference on the Foundations of Digital Games, Bugibba Malta, 15–18 September 2020; pp. 1–10.

17. De Kegel, B.; Haahr, M. Procedural puzzle generation: A survey. IEEE Trans. Games 2019, 12, 21–40. [CrossRef]
18. Green, M.C.; Khalifa, A.; Alsoughayer, A.; Surana, D.; Liapis, A.; Togelius, J. Two-step constructive approaches for dungeon

generation. In Proceedings of the 14th International Conference on the Foundations of Digital Games, San Luis Obispo, CA, USA,
26–30 August 2019; pp. 1–7.

19. Liapis, A. 10 Years of the PCG workshop: Past and Future Trends. In Proceedings of the International Conference on the
Foundations of Digital Games, Bugibba, Malta, 15–18 September 2020; pp. 1–10.

20. Gisslén, L.; Eakins, A.; Gordillo, C.; Bergdahl, J.; Tollmar, K. Adversarial reinforcement learning for procedural content generation.
In Proceedings of the 2021 IEEE Conference on Games (CoG), Copenhagen, Denmark, 17–20 August 2021; pp. 1–8.

21. Song, A.; Whitehead, J. TownSim: Agent-based city evolution for naturalistic road network generation. In Proceedings of the
14th International Conference on the Foundations of Digital Games, San Luis Obispo, CA, USA, 26–30 August 2019; pp. 1–9.

22. Mawhorter, R.; Smith, A. Softlock Detection for Super Metroid with Computation Tree Logic. In Proceedings of the 16th
International Conference on the Foundations of Digital Games, Montreal, QC, Canada, 3–6 August 2021; pp. 1–10.

23. Cook, M.; Raad, A. Hyperstate space graphs for automated game analysis. In Proceedings of the 2019 IEEE Conference on Games
(CoG), London, UK, 20–23 August 2019; pp. 1–8.

24. Chang, K.; Aytemiz, B.; Smith, A.M. Reveal-more: Amplifying human effort in quality assurance testing using automated
exploration. In Proceedings of the 2019 IEEE Conference on Games (CoG), London, UK, 20–23 August 2019; pp. 1–8.

25. Nintendo Ltd. Super Mario Bros. Available online: https://www.nintendo.com/en-gb/Games/NES/Super-Mario-Bros-803853
.html (accessed on 17 August 2024).

26. Bontrager, P.; Togelius, J. Learning to Generate Levels From Nothing. In Proceedings of the 2021 IEEE Conference on Games
(CoG), Copenhagen, Denmark, 17–20 August 2021; pp. 1–8.

27. Summerville, A. Expanding expressive range: Evaluation methodologies for procedural content generation. In Proceedings
of the Fourteenth Artificial Intelligence and Interactive Digital Entertainment Conference, Edmonton, AB, Canada, 13–17
November 2018.

28. Snodgrass, S.; Ontanón, S. Learning to generate video game maps using markov models. IEEE Trans. Comput. Intell. AI Games
2016, 9, 410–422. [CrossRef]

29. Adams, C.; Louis, S. Procedural maze level generation with evolutionary cellular automata. In Proceedings of the 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–8.

30. Flores-Aquino, G.O.; Ortega, J.D.D.; Arvizu, R.Y.A.; Muñoz, R.L.; Gutierrez-Frias, O.O.; Vasquez-Gomez, J.I. 2D Grid Map
Generation for Deep-Learning-based Navigation Approaches. arXiv 2021, arXiv:2110.13242.

31. Thompson, T.; Lavender, B. A generative grammar approach for action-adventure map generation in the legend of zelda. 2017.
In Proceedings of the 7th International Symposium for AI & Games, Artificial Intelligence and Simulation of Behaviour, Bath, UK,
18–21 April 2017.

32. Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.; Hoover, A.K.; Isaksen, A.; Nealen, A.; Togelius, J. Procedural content
generation via machine learning (PCGML). IEEE Trans. Games 2018, 10, 257–270. [CrossRef]

https://www.rockstargames.com/gta-online
https://en.bandainamcoent.eu/dark-souls/dark-souls-iii
http://dx.doi.org/10.1109/TPAMI.2020.3024009
http://www.ncbi.nlm.nih.gov/pubmed/32931428
http://dx.doi.org/10.1109/TG.2019.2917792
https://www.nintendo.com/en-gb/Games/NES/Super-Mario-Bros-803853.html
https://www.nintendo.com/en-gb/Games/NES/Super-Mario-Bros-803853.html
http://dx.doi.org/10.1109/TCIAIG.2016.2623560
http://dx.doi.org/10.1109/TG.2018.2846639

Computers 2024, 13, 304 20 of 21

33. Gutierrez, J.; Schrum, J. Generative adversarial network rooms in generative graph grammar dungeons for the legend of zelda.
In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8.

34. Torrado, R.R.; Khalifa, A.; Green, M.C.; Justesen, N.; Risi, S.; Togelius, J. Bootstrapping conditional gans for video game level
generation. In Proceedings of the 2020 IEEE Conference on Games (CoG), Osaka, Japan, 24–27 August 2020; pp. 41–48.

35. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
36. Khalifa, A.; Bontrager, P.; Earle, S.; Togelius, J. Pcgrl: Procedural content generation via reinforcement learning. In Proceedings of the

AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, Online, 19–23 October 2020; Volume 16, pp. 95–101.
37. Delarosa, O.; Dong, H.; Ruan, M.; Khalifa, A.; Togelius, J. Mixed-initiative level design with rl brush. In Proceedings of the

International Conference on Computational Intelligence in Music, Sound, Art and Design (Part of EvoStar), Virtual Event, 7–9
April 2021; Springer: Cham, Switzerland, 2021; pp. 412–426.

38. Liu, J.; Snodgrass, S.; Khalifa, A.; Risi, S.; Yannakakis, G.N.; Togelius, J. Deep learning for procedural content generation. Neural
Comput. Appl. 2021, 33, 19–37. [CrossRef]

39. Alvarez, A.; Dahlskog, S.; Font, J.; Togelius, J. Empowering quality diversity in dungeon design with interactive constrained
map-elites. In Proceedings of the 2019 IEEE Conference on Games (CoG), London, UK, 20–23 August 2019; pp. 1–8.

40. Silva, R.C.; Fachada, N.; De Andrade, D.; Códices, N. Procedural generation of 3D maps with snappable meshes. IEEE Access
2022, 10, 43093–43111. [CrossRef]

41. Gravina, D.; Khalifa, A.; Liapis, A.; Togelius, J.; Yannakakis, G.N. Procedural content generation through quality diversity. In
Proceedings of the 2019 IEEE Conference on Games (CoG), London, UK, 20–23 August 2019; pp. 1–8.

42. Yannakakis, G.N.; Togelius, J. Artificial Intelligence and Games; Springer: New York, NY, USA, 2018; Volume 2.
43. Juliani, A.; Berges, V.P.; Teng, E.; Cohen, A.; Harper, J.; Elion, C.; Goy, C.; Gao, Y.; Henry, H.; Mattar, M.; et al. Unity: A general

platform for intelligent agents, 2018. arXiv 1809, arXiv:1809.02627.
44. Risi, S.; Togelius, J. Increasing generality in machine learning through procedural content generation. Nat. Mach. Intell. 2020,

2, 428–436. [CrossRef]
45. Werneck, M.; Clua, E.W. Generating procedural dungeons using machine learning methods. In Proceedings of the 2020 19th

Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), Recife, Brazil, 7–10 November 2020; pp. 90–96.
46. Levine, K. Bioshock. Available online: https://2k.com/en-US/game/bioshock-the-collection/ (accessed on 23 August 2024).
47. Park, K.; Mott, B.W.; Min, W.; Boyer, K.E.; Wiebe, E.N.; Lester, J.C. Generating educational game levels with multistep deep

convolutional generative adversarial networks. In Proceedings of the 2019 IEEE Conference on Games (CoG), London, UK, 20–23
August 2019; pp. 1–8.

48. Volz, V.; Schrum, J.; Liu, J.; Lucas, S.M.; Smith, A.; Risi, S. Evolving mario levels in the latent space of a deep convolutional
generative adversarial network. In Proceedings of the Genetic and Evolutionary Computation Conference, Kyoto, Japan, 15–19
July 2018; pp. 221–228.

49. Giacomello, E.; Lanzi, P.L.; Loiacono, D. Doom level generation using generative adversarial networks. In Proceedings of the
2018 IEEE Games, Entertainment, Media Conference (GEM), Galway, Ireland, 15–17 August 2018; pp. 316–323.

50. id Software. Doom. Available online: https://www.idsoftware.com/en (accessed on 25 August 2024).
51. Alvarez, A.; Dahlskog, S.; Font, J.; Holmberg, J.; Johansson, S. Assessing aesthetic criteria in the evolutionary dungeon designer. In

Proceedings of the 13th International Conference on the Foundations of Digital Games, Malmö, Sweden, 7–10 August 2018; pp. 1–4.
52. Alvarez, A.; Dahlskog, S.; Font, J.; Holmberg, J.; Nolasco, C.; Österman, A. Fostering creativity in the mixed-initiative evolutionary

dungeon designer. In Proceedings of the 13th International Conference on the Foundations of Digital Games, Malmö, Sweden,
7–10 August 2018; pp. 1–8.

53. Liu, S.; Chaoran, L.; Yue, L.; Heng, M.; Xiao, H.; Yiming, S.; Licong, W.; Ze, C.; Xianghao, G.; Hengtong, L.; et al. Automatic
generation of tower defense levels using PCG. In Proceedings of the 14th International Conference on the Foundations of Digital
Games, San Luis Obispo, CA, USA, 26–30 August 2019; pp. 1–9.

54. Yu, D. Spelunky. Available online: https://spelunkyworld.com/original.html (accessed on 24 August 2024).
55. Lee, N.; Morris, J. A Procedural generation platform to create randomized gaming maps using 2D model and machine learning.

In Proceedings of the CS & IT Conference Proceedings, Jakarta, Indonesia, 16 February 2023; Volume 13.
56. Entertainment, B. Diablo. Available online: https://us.shop.battle.net/en-us/product/diablo (accessed on 29 August 2024).
57. Pereira, L.T.; de Souza Prado, P.V.; Lopes, R.M.; Toledo, C.F.M. Procedural generation of dungeons’ maps and locked-door

missions through an evolutionary algorithm validated with players. Expert Syst. Appl. 2021, 180, 115009. [CrossRef]
58. Nam, S.; Ikeda, K. Generation of diverse stages in turn-based role-playing game using reinforcement learning. In Proceedings of

the 2019 IEEE Conference on Games (CoG), London, UK, 20–23 August 2019; pp. 1–8.
59. Nam, S.G.; Hsueh, C.H.; Ikeda, K. Generation of game stages with quality and diversity by reinforcement learning in turn-based

RPG. IEEE Trans. Games 2021, 14, 488–501. [CrossRef]
60. Entertainment, B. Diablo II. Available online: https://diablo2.blizzard.com/en-us/ (accessed on 27 August 2024).
61. Dutra, P.V.M.; Villela, S.M.; Neto, R.F. Procedural content generation using reinforcement learning and entropy measure as

feedback. In Proceedings of the 2022 21st Brazilian Symposium on Computer Games and Digital Entertainment (SBGames),
Natal, Brazil, 24–27 October 2022; pp. 1–6.

62. Shu, T.; Liu, J.; Yannakakis, G.N. Experience-driven PCG via reinforcement learning: A Super Mario Bros study. In Proceedings
of the 2021 IEEE Conference on Games (CoG), Copenhagen, Denmark, 17–20 August 2021; pp. 1–9.

http://dx.doi.org/10.1007/s00521-020-05383-8
http://dx.doi.org/10.1109/ACCESS.2022.3168832
http://dx.doi.org/10.1038/s42256-020-0208-z
https://2k.com/en-US/game/bioshock-the-collection/
https://www.idsoftware.com/en
https://spelunkyworld.com/original.html
https://us.shop.battle.net/en-us/product/diablo
http://dx.doi.org/10.1016/j.eswa.2021.115009
http://dx.doi.org/10.1109/TG.2021.3113313
https://diablo2.blizzard.com/en-us/

Computers 2024, 13, 304 21 of 21

63. Lucas, S.M.; Volz, V. Tile pattern KL-divergence for analysing and evolving game levels. In Proceedings of the Genetic and
Evolutionary Computation Conference, Prague, Czech Republic, 13–17 July 2019; pp. 170–178.

64. Lazaridis, L.; Papatsimouli, M.; Kollias, K.F.; Sarigiannidis, P.; Fragulis, G.F. Hitboxes: A survey about collision detection in video
games. In Proceedings of the International Conference on Human-Computer Interaction, Virtual Event, 24–29 July 2021; Springer:
Cham, Switzerland, 2021; pp. 314–326.

65. Ironhide. Kingdom Rush: Frontiers. Available online: https://www.kingdomrush.com/kingdom-rush-frontiers (accessed on 29
August 2024).

66. Re-Logic. Terraria. Available online: https://terraria.org/ (accessed on 29 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.kingdomrush.com/kingdom-rush-frontiers
https://terraria.org/

	Introduction
	Concepts of PCG
	The Role of Algorithms in PCG
	PCG via Machine Learning
	Generative Adversarial Networks
	Scenario Needs

	Content Quality
	Quality Diversity
	Intelligent Diversity

	The Improved Spawn Algorithm
	Algorithm Complexity
	Worst-Case Complexity

	Results
	Discussion
	Conclusions
	Appendix A
	References

