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Abstract: In this paper, we propose a novel method for producing image captions through the
utilization of Generative Adversarial Networks (GANs) and Vision Transformers (ViTs) using our
proposed Image Captioning Utilizing Transformer and GAN (ICTGAN) model. Here we use the
efficient representation learning of the ViTs to improve the realistic image production of the GAN.
Using textual features from the LSTM-based language model, our proposed model combines salient
information extracted from images using ViTs. This merging of features is made possible using
a self-attention mechanism, which enables the model to efficiently take in and process data from
both textual and visual sources using the self-attention properties of the self-attention mechanism.
We perform various tests on the MS COCO dataset as well as the Flickr30k dataset, which are
popular benchmark datasets for image-captioning tasks, to verify the effectiveness of our proposed
model. The outcomes represent that, on this dataset, our algorithm outperforms other approaches in
terms of relevance, diversity, and caption quality. With this, our model is robust to changes in the
content and style of the images, demonstrating its excellent generalization skills. We also explain the
benefits of our method, which include better visual–textual alignment, better caption coherence, and
better handling of complicated scenarios. All things considered, our work represents a significant
step forward in the field of picture caption creation, offering a complete solution that leverages
the complementary advantages of GANs and ViT-based self-attention models. This work pushes
the limits of what is currently possible in image caption generation, creating a new standard in
the industry.

Keywords: image caption generation; vision transformer; generative adversarial networks; multi-head
self-attention model; MS COCO

1. Introduction

The intersection of computer vision and natural language processing is the complex
task of producing descriptive text from visual inputs, or picture captioning. Significant
advancements in this field have come from the combination of image processing and
natural language comprehension algorithms. A crucial component of visual comprehen-
sion is image captioning, which entails comprehending images and providing a natural
language description of them. Recent developments in deep learning have led to notable
advancements in this field, as well as many others related to machine learning. These
advancements include larger, more intricate datasets, quicker hardware, particularly in
the form of graphic processing units, and enhanced algorithms. The study of artificial
intelligence is presented with a plethora of opportunities and challenges when computer
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vision and natural language processing are combined. There are several reasons why image
captioning is challenging. It entails converting one’s comprehension of the connections
between the elements in a picture to convey it into natural language. This method increases
the level of difficulty by necessitating the understanding of complex processes and the
semantic information extracted from images. Furthermore, captioning objects in a picture
requires knowledge of their relationships just as much as simple object recognition. Because
of this, captioning pictures with artificial intelligence presents some difficulties. Today,
encoder–decoder systems are commonly found in modern architectures, even though a
wide range of models and techniques have been studied. Convolutional Neural Networks
(CNNs) or Recurrent Neural Networks (RNNs) [1], which have been trained to extract
features from pictures or objects, often manage the encoding inside these frameworks.

Artificial Intelligence-Generated Content (AIGC) has rapidly evolved, and image
caption generation is among its most promising applications, merging computer vision
with natural language processing. At its core, image caption generation involves creating a
natural language description of a given image. This task requires an advanced understand-
ing of both visual elements and linguistic representation, making it a challenging yet fertile
ground for artificial intelligence research. Recent advancements have been heavily influ-
enced by deep learning architectures, particularly Transformer models and large language
models (LLMs), which have redefined AIGC for image captioning.

One of the main research directions in AIGC for image caption generation is the
integration of multi-modal Transformer-based architectures, like the Vision Transformer
(ViT) and the CLIP (Contrastive Language-Image Pre-training) model. These models
have shown a remarkable ability to capture semantic relationships between images and
textual descriptions, allowing them to produce captions that are not only relevant but also
contextually nuanced. CLIP, developed by OpenAI, has been instrumental in training AI
to understand visual content through the lens of natural language. By using large-scale
datasets of image–text pairs, CLIP enables the model to generalize better across diverse
contexts, making it adept at producing accurate captions even for unfamiliar visual content.

Another significant development is the use of large language models, such as GPT-4,
in image-captioning tasks. These LLMs can generate richer and more descriptive captions
by leveraging their extensive pre-training on language and knowledge about the world.
Researchers are now exploring hybrid models that combine LLMs with visual encoders,
allowing for captions that are not only descriptive but also imbued with context and subtle
inferences, resulting in a more human-like output.

Further advancements have been observed in the customization of these AIGC models
for specific applications, like accessibility for visually impaired users, e-commerce, and
social media content. The models are being fine-tuned to recognize domain-specific objects
and attributes, improving the relevance and accuracy of generated captions. However,
challenges persist, particularly in dealing with complex scenes or abstract concepts, where
human evaluation and intervention are still required.

Subsequently, the methodology section delves into the specifics of the datasets utilized
for training and evaluation, along with the meticulous process of data preparation. Working
with benchmark datasets such as Flickr30k and MS COCO requires careful data preparation
since they provide extensive coverage of a variety of visual and contextual contexts, which
allows models to handle a large number of edge cases efficiently. More than 330,000 photos
with thorough, multi-caption annotations are available in MS COCO’s extensive collection,
which covers intricate scenarios with a wide range of item connections and backdrops and
Flickr30k focuses on human interactions and nuanced activities, promoting adaptability
to varied linguistic expressions. Together, they ensure robust model performance for real-
world image-captioning tasks. Following the methodology, the model architecture section
offers an intricate breakdown of the proposed model’s architecture, elucidating the intricate
interplay between Visual Transformers (ViTs), GANs, and LSTM components within the
model framework.
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The training procedure section details the model’s training methodology, including
loss calculation and parameter optimization. The evaluation section then outlines metrics
for assessing model efficacy and provides an analysis of caption quality. This structured
format offers a clear progression from the conceptual approach to implementation and
evaluation, enhancing the paper’s comprehensibility.

The following are the key contributions of this study:

i. by integrating Vision Transformers (ViTs) with Generative Adversarial Networks
(GANs), this study improves the quality of generated captions by better capturing
complex visual information. ViTs enable a more effective understanding of image
context, while GANs refine the naturalness and coherence of generated text, making
captions more descriptive and accurate.

ii. GANs reduce the need for extensive labeled datasets by learning to generate realistic
captions through adversarial training. This could allow the model to perform well
even with limited labeled data, making it beneficial in applications where labeled data
are scarce or expensive to obtain.

iii. the use of Vision Transformers allows the model to be more adaptable across various
image types and domains, as they can better generalize features in diverse datasets.
This enables the model to generate captions that are relevant across a wide range
of contexts, enhancing usability for tasks like image search, accessibility, and visual
content description in different environments.

We describe the three stages of the experimental setup for our model: initial setup
(hardware and datasets), implementation of the data loader, and model-training specifica-
tions. The results, a conclusion, and a bibliography with references come next.

This paper introduces a hybrid model that advances image caption generation by
combining Vision Transformers (ViTs), Generative Adversarial Networks (GANs) [2], and
Long Short-Term Memory (LSTM) networks. In contrast to conventional approaches, our
method combines the sequential processing strength ViTs, which use self-attention mech-
anisms to capture comprehensive global image features, with the sequential processing
strength of LSTMs to produce captions that are both grammatically correct and semantically
rich. Through extensive experimentation on benchmark datasets such as Flickr30k [3] and
COCO [4], the model demonstrates superior generalization abilities, generating captions
with enhanced contextual relevance, diversity, and quality. Our model performs well in
a range of image settings because of the special integration of textual and visual aspects
made possible by self-attention.

2. Related Work

In the literature review, we take a deep look at the early approaches/methods that were
used in the development of the field of image captioning. We then look at developments in
the image caption generation field and models built from the early days to the latest ones,
as well as their workings, limitations, methods, etc. The difficult work of picture captioning
involves creating a natural language description or providing information about the input
image. Image captioning has a wide range of practical applications. For instance, it can
improve assistive technology, which helps people with visual impairments comprehend
visual content. In the industrial sector, it can help machines and robots make educated
judgments. There are numerous methods in this sector for creating an image caption.

One of the first techniques for captioning images was the usage of template-based [5]
methods in the beginning. This technique’s main goal is to identify a set of visual charac-
teristics, objects, and the connections between them in an image. These techniques make
use of pre-made sentence templates that have several spaces in them. These gaps are then
filled up using the objects, characteristics, and actions that have been detected. A template
could look like this: “The object is action on the attribute” with each phrase in brackets
representing a slot that is filled in depending on the content of the image.

Limitations: Although these techniques are capable of producing grammatically accept-
able captions, their capacity to offer rich and intricate explanations is frequently restricted.
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One kind of language model that calculates the probability of a word sequence is the
statistical language model [6]. In addition to being trained on vast text corpora to under-
stand language’s grammar, semantics, and contextual relationships, they are employed
to produce intelligible phrases. Early approaches to picture captioning used statistical
language models to combine image data using the image’s static object class libraries. For
example, handcrafted characteristics were generated using a method based on a statistical
probability language model.

The n-gram method is one such strategy that gathers potential phrases and combines
them to create sentences that describe visuals [7]. An alternate method employs the motion
estimates within the picture along with the likelihood of co-located nouns, sceneries, and
prepositions as hidden Markov model parameters. Predicting the most probable nouns,
verbs, situations, and prepositions that make up the sentence yields the image description.

Limitations: Although fundamental, statistical [8] techniques for image captioning
have some drawbacks. Their inability to produce varied and contextually appropriate
captions is a result of their frequent reliance on manually created features or pre-made
templates. Neither of these methods offer an end-to-end mature general model to handle
this challenge, nor do they make intuitive feature observations on objects or actions in the
image. Moreover, they have difficulty bridging the semantic gap that separates high-level
semantic information from low-level visual cues.

Deep learning methods, for example, Convolution neural networks (CNN), Recurrent
Neural Networks (RNN) [1], and Long Short-Term Memory (LSTMs) [9], are known for
their ability to capture more complex patterns and generate more natural and diverse
captions. This is how deep learning methods work. Deep learning methods for image
captioning typically use an encoder–decoder framework. Here is a simplified explanation:
Encoder: The encoder is usually a Convolutional Neural Network (CNN) that extracts
features from the image. The input image is passed through the CNN [1], and the output is
a set of feature vectors that represent various aspects of the image. Decoder: The decoder is
often a Recurrent Neural Network (RNN) or Long Short-Term Memory (LSTM) network
that generates the caption [9]. It takes the feature vectors produced by the encoder and
generates a sequence of words (i.e., the caption) one word at a time. Training: During
training, the model is shown many examples of images and their corresponding captions.
It learns to adjust its internal parameters to minimize the difference between its generated
captions and the actual captions.

Prediction: during prediction, the trained model takes a new image, extracts features
using the encoder, and generates a caption using the decoder.

Limitations: Deep learning methods [1] in image captioning have limitations. They can
hallucinate objects not in the image, struggle with understanding context, and are sensitive
to changes in lighting. They also require large amounts of labeled data and significant
computational resources. Lastly, they lack interpretability, often acting as “black boxes”.
These challenges open avenues for future research in image captioning.

Transformers and GANs: these early approaches laid the foundation for the current
state-of-the-art methods in image captioning, which utilize more advanced techniques like
Transformers and Generative Adversarial Networks (GANs).

Transformers: Transformers, specifically the decoder part, are used in the generation
of the caption. The Transformer decoder uses self-attention to process the sequence being
generated, and it uses cross-attention to attend to the image. By inspecting the attention
weights of the cross-attention layers, you can see what parts of the image the model is
looking at as it generates words. A multi-layer Transformer is used to align tags with their
corresponding image regions.

Generative Adversarial Networks (GANs): Various image-related problems, such as
picture synthesis from text descriptions, have been tackled by using GANs [10]. In the
context of picture captioning, GANs may be used to generate pictures from captions, and
the resulting images can be used to improve the captioning model. Still, depending on
the model’s architecture and the kind of GAN, the precise implementation might change.



Computers 2024, 13, 305 5 of 23

When generating high-quality picture captions, these models demonstrate encouraging
outcomes. The particulars of the work and the model architecture, however, may affect how
it is implemented. A number of the following models are Transformers [11] or GAN-based.

BraIN is a Bidirectional Generative Adversarial Network, which uses a discriminator
that has been trained to identify discrepancies between an image and a generated phrase,
its image captioning. BraIN GAN seeks to enhance the generator’s capacity to align the
caption with the pertinent image. BraIN [12] contains a cooperative discriminator and
generator. As a result, the discriminator can distinguish between authentic and false
captions, and the generator creates captions that are meant to trick the collector. This
bilateral approach allows the model to generate more human-like captions than it could
with other methods. A bidirectional language production model, an attention mechanism,
and a conditional generative adversarial network make up the model. When the model
generates a caption, the attention mechanism assists it in concentrating on pertinent areas
of the image. Better-sounding and grammatically accurate sentences are produced by the
bidirectional language generation model. A conditional generative adversarial network, a
bidirectional language production model, and an attention mechanism make up the model.
During the caption creation process, the attention mechanism helps the model focus on
relevant portions of the image. More grammatically sound and coherent sentences are
generated by the bidirectional language generation model.

RAGAN (Residual Attention Generative Adversarial Network) [13] aims to produce
high-quality captions for images. On top of a Generative Adversarial Network (GAN)
foundation, it applies an attention-based residual learning technique. Using residual
connections to preserve the original input data and concentrating on the most relevant
portions of the image, this method improves the diversity and authenticity of the generated
picture captions. In this way, RAGAN can give a variety of images with more precise and
thorough descriptions.

CGAN (Conditional Generative Adversarial Networks) [14] in this architecture works
by feeding some additional information to both the generator and discriminator, mainly
type/class labels for supervised learning tasks. In CGAN, the generator takes both random
noise and conditioning data, and the discriminator validates the realism of the generated
captions on provided conditional data. This makes it highly versatile, efficient, and very
compatible with image-captioning generation.

IDGAN (Invertible Data Generation Adversarial Networks) [15] is primarily focused
on creating data samples that are easily reverted to their original state. This comes in
particularly handy for scenarios like data augmentation and medical imaging where it is
imperative to precisely recreate the original data. Invertible transformations between the
input and output spaces are imposed by IDGANs to ensure that the generated samples
contain all the information needed for faithful reconstruction. Throughout the generation
process, this maintains the integrity of the data.

IGGAN (Implicit Generation and Generalization Adversarial Networks)’s [16] genera-
tor network’s capacity for generalization teaches it to comprehend the implicit distribution
of actual data. GANs typically generate latent space samples from a given Gaussian dis-
tribution. On the other hand, IGGANs are trained to implicitly capture the underlying
distribution of real data, which helps them to more effectively generalize to unknown
data. IGGANs reduce the difference between the distributions of real and generated
data, producing high-quality, diverse samples that closely resemble the properties of real
data, making them suitable for a range of applications requiring realistic and diverse
caption generation.

End-to-end Transformer-based model: This innovative method makes use of Trans-
formers’ photo-captioning capabilities. Unlike conventional approaches that combine
Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs), this
model is an end-to-end solution [6] because it utilizes a pure Transformer-based architec-
ture [10]. The backbone encoder used by the model, the Swin Transformer, gathers features
at the grid level from the input images. A specifically created refining encoder then refines
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these features by capturing the intra-relationship between them. Using these improved
attributes, the decoder then creates word-by-word captions.

To enhance the model’s capability, it calculates the mean pooling of grid features as
the global feature. This global feature is introduced into the refining encoder to refine with
grid features together. Additionally, a pre-fusion process of the refined global feature and
generated words is added in the decoder [11].

The integration of Vision Transformers (ViTs) and Generative Adversarial Networks
(GANs) has significantly advanced image caption generation, addressing previous lim-
itations in accuracy and creativity. This novel approach leverages the strengths of both
architectures to enhance the quality of generated captions, making them more relevant and
contextually rich. The following sections outline the key advancements in this area.

ViTs serve as powerful encoders, effectively capturing visual features from images.
They utilize self-attention mechanisms to improve the alignment between visual and textual
data, enhancing the semantic understanding of images [17]. The integration of knowledge
graphs further enriches the captioning process by providing contextual information, leading
to improved accuracy in generated captions [18].

Babavalian and Kiani (2024) [19] proposed a novel architecture for video captioning
that integrates conditional Wasserstein Generative Adversarial Networks with a Trans-
former model, enhancing the accuracy and readability of generated captions compared
with traditional seq2seq methods, specifically for video content.

GANs introduce a competitive framework where a generator creates captions while
a discriminator evaluates their quality, fostering the generation of more realistic and
diverse captions [20]. This adversarial training approach has been shown to enhance the
overall performance of image-captioning models, particularly in generating creative and
engaging content [21]. While the advancements in ViTs and GANs have led to significant
improvements in image captioning, challenges remain, such as the need for extensive
datasets and the potential for overfitting. Future research may focus on refining these
models to further enhance their adaptability and performance in diverse applications.
Table 1 summarizes the related studies reviewed.

Table 1. Summaries of the related work.

Authors Models Work Limitations

Van der Lee el at. (2018) [6] Template-based

Template-based image
captioning involves creating

predefined structures or
patterns for captions and filling

in details based on image
content. While simple and
interpretable, it may lack

adaptability for diverse images.

Template-based image captioning
has limitations, including

inflexibility with diverse images,
a lack of context understanding,

dependence on predefined
patterns, inability to capture fine

details, and challenges with
ambiguity and unstructured data.

Hill et al. (2006) [7] Statistical Model

Statistical models for image
captioning operate by initially

extracting relevant features
from images through statistical

techniques or handcrafted
descriptors. These extracted

features serve as input to
models employing statistical
methods such as n-grams or
Hidden Markov Models for

language modeling.

One of their notable limitations
lies in handling ambiguity,

leading to the generation of less
contextually rich and sometimes
generic captions. Despite these
challenges, statistical models

excel in feature extraction and the
establishment of mappings
between image features and

textual descriptions.
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Table 1. Cont.

Authors Models Work Limitations

He et al. (2020) [10] Transformers

The Transformer processes these
features to generate sequential

captions. The self-attention
mechanism in Transformers

allows them to focus on relevant
parts of the image, facilitating
the generation of contextually

rich and detailed captions.

Transformers might struggle with
handling very long sequences of
data due to their self-attention

mechanism, leading to increased
processing times and memory
constraints. Fine-tuning large

pre-trained models for specific
image-captioning tasks can also

be challenging, requiring
substantial computational
resources and expertise.

He et al. (2020) [10] CNN-Transformer [6]

This approach combines
properties of both the

Transformer and CNN: a
convolutional neural network

(CNN) to extract image features
and an attention-based

encoder–decoder Transformer
model for generating captions.

The attention mechanism allows
the model to focus on different

parts of the image while
generating each word of the

caption.

Their complexity often leads to
computational expenses during
training and inference, requiring

substantial resources.
Transformers may not inherently
capture long-range dependencies
in image data and interpreting the

interactions between
convolutional and Transformer

layers can be challenging.

Liu et al. (2021) [11] End-to-End Transformer

A unique token and these visual
characteristics are supplied into
the transformer-based language
model. The transformer encoder
processes this input, capturing

contextual information and
relationships between tokens.

The output of the encoder
initializes the decoder, which
generates the caption word by

word based on the context
encoded by the encoder and
previously generated words.

Post-processing is performed to
improve the caption once the

generated token IDs have been
decoded into words that can be

understood by humans.

There are a few drawbacks to the
end-to-end Transformer-based

architecture used to create picture
captions. It largely relies on

pre-trained convolutional neural
networks (CNNs) for feature

extraction, thus limiting its ability
to adapt to various image datasets

or capture fine-grained visual
features. Additionally, the

Transformer architecture may
struggle to accurately express
long-range dependencies in

picture data, as it was originally
built for sequential data like text.

Interpreting the interactions
between visual and textual

processing components becomes
difficult due to the complexity

introduced by the integration of
CNNs and Transformers.
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Table 1. Cont.

Authors Models Work Limitations

Goodfellow et al. (2014) [2] Generative Adversarial
Networks (GANs)

Combining generative models
with adversarial training. In this

framework, a generator
network produces captions, and

a discriminator network
evaluates the quality of the

generated captions. Through
adversarial training, the

generator refines its ability to
produce more realistic and

contextually relevant captions.
GANs leverage a feedback loop

between the generator and
discriminator, iteratively
improving the captioning

quality.

Generative Adversarial Networks
(GANs) in image captioning face

several limitations. One
significant challenge is the

potential for mode collapse,
where the generator produces
limited and repetitive captions,

lacking diversity. GANs are also
known for training instability,

requiring careful hyperparameter
tuning and regularization

techniques to achieve reliable
results.

Jolicoeur-Martineau (2018)
[13]

RAGAN (Residual
Attention Generative
Adversarial Network)

Residual Attention Generative
Adversarial Network (RAGAN)

aims to produce high-quality
captions for images. On top of a

Generative Adversarial
Network (GAN) foundation, it

applies an attention-based
residual learning technique.

Using residual connections to
preserve the original input data
and concentrating on the most
relevant portions of the image,

this method improves the
diversity and authenticity of the

generated picture captions.

Training instability is one of the
most common training issues in

GANs (including RAGAN),
where convergence and

sensitivity to issues during
training are difficult to achieve.

Experience mode collapse,
particularly when dealing with

large datasets. The computational
complexity increases due to the

implementation of attention
mechanisms in RAGAN and may

result in training times that are
longer and higher resource

demands.

Donahue et al. (2020) [16] BraIN (Adversarial
Network)

The Generative Adversarial
Network (GAN) architecture is

expanded upon in a
Bidirectional Generative

Adversarial Network (BraIN) by
adding an encoder network in
addition to the generator and

discriminator.

One common challenge is mode
collapse, where the generator

learns to produce a limited
variety of samples, ignoring the
diversity of the data distribution.
Training BraIN can be unstable

and prone to instability as finding
the right balance between the
generator, discriminator, and

encoder can be difficult.

Wang and Cook (2020) [11] Bidirectional Generative

The generator in a BraIN uses
random noise as input to create
synthetic data samples, and the

discriminator separates the
artificial samples produced by

the generator from the real data
samples from the training set.

If the encoder fails to learn a
meaningful latent space it can

cause failure in capturing
important features of the data
distribution and can result in
low-quality and less diverse

generated samples.

Mishra et al. (2024) [17] ViT + GPT-2

A novel ViT-GPT-2 model for
image captioning, utilizing
Vision Transformer as the
encoder and GPT-2 as the

decoder.

Caption accuracy issues for
complex visuals. Need for

addressing existing challenges in
image captioning.
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Table 1. Cont.

Authors Models Work Limitations

Zhang et al. (2024) [21] VGG + SeqGAN + GA

Focuses on advertising image
generation using a framework

that integrates GANs and
Vision Transformer models,

enhancing the effectiveness and
attractiveness of advertising

content, rather than specifically
addressing image caption

generation.

Existing methods struggle with
diverse advertising content

demands. Need for innovative
algorithms to improve generation

outcomes.

Kolla et al. (2023) [20] RLHF + GANs + SCST

Utilizing visual attention,
specifically employing

Transformers and GANs. These
techniques enhance caption

quality by leveraging
competition between generator

and discriminator networks,
improving relevance and

accuracy in generated textual
descriptions.

Although visual attention models
aim to enhance the understanding
of image content, they may still

struggle with nuanced context or
abstract concepts. This limitation
can result in captions that fail to

capture the full essence of the
image, particularly in complex

scenes.

But even after the many advancements in the image-captioning field, there are still
some limitations/problems:

i. Object Hallucination: Similar to other deep learning models, Transformer-based and
GAN-based models can sometimes generate captions that include objects that are not
present in the image.

ii. Missing Context: These models often struggle to understand the broader context of
the image, leading to captions that may be technically correct but miss the overall
meaning of the image

iii. Exposure Bias: Most existing models, including those based on Transformers and
GANs, suffer from exposure bias problems, where past-predicted sequences during
the training are required to generate future captions. Data Requirement: Like other
deep learning models, Transformer-based and GAN-based models require large
amounts of labeled data for training. Computational Resources: Training these
models can be computationally intensive and require powerful hardware

iv. Model Interpretability: These models, like many deep learning models, are often
referred to as “black boxes” because it can be challenging to understand how they
make their predictions

Hence, we are building an image-caption-generating model that consists of both
Visual Transformers (ViTs) and GAN models and other models like LSTMs. This model will
contain multiple models which can overshadow the limitations of each individual model.
This model will have properties of both Transformers and GAN which, in turn, enhance
the accuracy and precision of the generated image captions and keep advancing the field of
image-caption generations.

3. Methodology
3.1. Dataset

In the realm of image-captioning research, several datasets serve as valuable resources
for training and evaluating models. The COCO (Common Objects in Context) dataset [22]
is a vast collection of images consisting of everyday scenes and objects in a variety of
contexts. With over 200,000 images, COCO provides a broad and diversified dataset with a
wide variety of visual information we can use to train our model.
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The Flickr30k dataset [23] is also another widely used dataset, which comprises
30,000 images sourced from Flickr along with five captions for every image. Flickr too
provides a diverse set of images captured from different settings and environments, making
it perfect for training models to generate captions for real-world scenarios and diversity.
The multiple captions per image also enable the model to have better coverage of semantic
variations and linguistic diversity.

The Multi30k dataset [24] is also a very famous dataset that presents a valuable
resource for researchers aiming to explore the efficacy of their models across multiple
languages. This dataset contains images and captions in multiple languages, encouraging
analysis of model performance and cross-lingual evaluation.

Furthermore, the Visual Genome dataset [25] also provides a unique collection of
images tagged with full scene graphs, delivering extensive contextual information on
objects, connections, and qualities within each image. This dataset teaches the models to
not just learn how to write captions but also how to learn and comprehend the underlying
semantic structure and relationships of visual material.

Every one of these datasets brings its unique benefits and qualities to the table, appeal-
ing to a variety of study goals and approaches. Researchers may ensure the robustness and
relevance of their findings in image captioning by carefully selecting the proper dataset as
shown in Table 2 based on the research’s unique objectives.

Table 2. Summary of Image-Captioning Datasets.

Dataset Description Advantages

COCO [22] Contains over 200,000 images of everyday
scenes and objects. Large, diverse dataset.

Flickr30k [23]
Consists of 30,000 images with five captions

per image from
Flickr.

Diverse images with multiple captions,
suitable for real-world scenarios.

Multi30k [24] Includes images and captions in multiple
languages, facilitating cross-lingual evaluation.

Multilingual support for exploring model
performance across languages.

Visual Genome [25] Annotated with detailed scene graphs
providing rich contextual information.

Enables understanding of semantic structure
in visual content.

3.2. Model Architecture
3.2.1. Generator Architecture

The generator is the component of the model that uses a complex design that utilizes
the Vision Transformers (ViTs) and Long Short-Term Memory (LSTM) units [26] to effi-
ciently create image captions. ViTs [27] are selected as the image feature extractor of a
self-attention mechanism (Figure 1). Self-attention models, especially Transformer-based
models, perform better than Convolutional Neural Networks (CNNs) and other traditional
attention mechanisms on tasks requiring in-depth contextual awareness, including cap-
tioning images due to their self-attention mechanism which excels at capturing global
dependencies across an image. Self-attention mechanisms can directly relate every aspect
of a picture to every other aspect, in contrast to Convolutional Neural Networks (CNNs),
which rely on local filters and progressively hierarchically constructed feature maps. Self-
attention models such as Vision Transformers can gain a deeper comprehension of the
intricate relationships present in an image thanks to their capacity to grasp global depen-
dencies. This is essential for producing contextually appropriate captions and identifying
complex patterns. Self-attention layers also make it possible to analyze picture data in
parallel, which greatly speeds up training and lessens problems like the vanishing gradient
that can impede the other attention mechanisms in very deep architectures. Self-attention
models are very effective and scalable for big datasets because of their parallel nature.
More interpretability and adaptability can result from self-attention’s ability to dynamically
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modify the significance of various visual regions, enabling it to concentrate on the most
pertinent elements.
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LSTM units and ViTs are combined in the model to generate sequential data and
produce logical captions. [9]. LSTMs are used to produce grammar and semantic standard-
compliant captions as they are good at extracting temporal relationships. This integration
of LSTM and ViT allows the generated captions to accurately describe the order of objects
or events present in the images. Along with this, the incorporation of a self-attention
mechanism [28] further strengthens, as well as improves, the integration of textual and
image features. This method overall improves the quality and coherence of the gen-
erated captions, which hence balances the weight of various input components. The
multi-head self-attention model helps the generated captions effectively showcase the
main events of the image, by concentrating on the most important details. To improve
the diversity of the generated captions, the generator design also incorporates features
that penalize similar captions during training by utilizing the BLEU score and different
regularization algorithms [29]. These improvements raise the bar for image captioning by
expanding the model’s capacity to produce excellent, grammatically accurate, contextually
relevant captions.

Our self-attention technique is unique in that it integrates both visual and textual
characteristics inside a GAN framework. In our paradigm, Vision Transformers (ViTs)
extract global visual information from an image, capturing intricate dependencies. The
visual elements are then combined with textual embeddings produced by the LSTM-based
language model. Self-attention is used to dynamically weight and align key visual and
textual elements, resulting in cohesive and contextually appropriate captions. This cross-
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modal technique, combined with the GAN’s adversarial learning, yields captions that are
both visually grounded and linguistically exact.

3.2.2. Discriminator Architecture

The model incorporates a discriminator component that supports an adversarial
learning framework in addition to the generator [2]. This adversarial setting makes the
generated captions more realistic and pertinent by pressuring the generator to provide
captions that are exact replicas of the originals.

In this, the discriminator plays a crucial role, having been trained concurrently with
the generator [2]. Its job is to tell the difference between captions produced by the model
and actual ones based on the image. As a result, a competitive dynamic is created in which
the discriminator constantly enhances its capacity to discern between generated and actual
captions, while the generator tries to trick it by producing increasingly realistic captions
(Figure 2).

Computers 2024, 13, x FOR PEER REVIEW 13 of 24 
 

 
Figure 2. Discriminator Architecture. 

3.3. Training Procedure 
3.3.1. Loss Functions 

The training of the generator and discriminator components of the model is guided 
by the use of Wasserstein Distance, also known as Wasserstein Loss, as the adversarial loss 
function [3]. This choice of loss function is particularly beneficial in the context of Gener-
ative Adversarial Networks (GANs), as it encourages the discriminator (referred to as the 
critic in the context of Wasserstein GANs) to output values that closely approximate the 
Wasserstein Distance between the distributions of real and generated samples. 

The use of Wasserstein Loss helps mitigate common issues encountered in traditional 
GAN training, such as mode collapse and vanishing gradients. Mode collapse refers to a 
scenario where the generator produces a limited varieties of samples, while vanishing 
gradients occur when the discriminator becomes too proficient, causing the generator’s 
gradients to vanish and impeding further learning. It helps by maintaining a smoother 
gradient flow which provides the generator with more consistent feedback. By reducing 
the likelihood of vanishing gradient, it allows the generator to learn efficiently even when 
the discriminator becomes too proficient. The Wasserstein Loss formula [3] is expressed 
as follows: 

)],([inf),( ~),(),(
yxcW yyxgr

gr

Ε=ΡΡ
ΡΡ∈πγ

 (2) 

  

Figure 2. Discriminator Architecture.

Effective learning of discriminative features by the model is made possible by the
simultaneous training of the discriminator and generator [2]. It helps the generator produce
higher-quality, contextually appropriate captions by helping it comprehend the many sub-
tleties of caption generation. In exchange, the discriminator gives the generator insightful
input that directs it toward producing more realistic captions.

To put it simply, the model [2] uses an adversarial learning architecture that is primarily
based on the generator and discriminator. This approach makes a substantial contribution
to the model’s capacity to produce captions that are both contextually appropriate and,
in terms of grammatical and semantic qualities, closely mimic real-world captions. This
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methodology highlights the research’s dedication to producing realistic, high-quality image
descriptions. The discriminator function [2] is defined as follows:

D(y) = σ(Wdiscriminator ∗ y + bdisciminator) (1)

where the bias term is a discriminator and the discriminator’s weights are represented by
Wdiscriminator. The output D(y) represents the probability that the input caption is real.

3.3. Training Procedure
3.3.1. Loss Functions

The training of the generator and discriminator components of the model is guided
by the use of Wasserstein Distance, also known as Wasserstein Loss, as the adversarial
loss function [3]. This choice of loss function is particularly beneficial in the context of
Generative Adversarial Networks (GANs), as it encourages the discriminator (referred to
as the critic in the context of Wasserstein GANs) to output values that closely approximate
the Wasserstein Distance between the distributions of real and generated samples.

The use of Wasserstein Loss helps mitigate common issues encountered in traditional
GAN training, such as mode collapse and vanishing gradients. Mode collapse refers to
a scenario where the generator produces a limited varieties of samples, while vanishing
gradients occur when the discriminator becomes too proficient, causing the generator’s
gradients to vanish and impeding further learning. It helps by maintaining a smoother
gradient flow which provides the generator with more consistent feedback. By reducing
the likelihood of vanishing gradient, it allows the generator to learn efficiently even when
the discriminator becomes too proficient. The Wasserstein Loss formula [3] is expressed
as follows:

W(Pr, Pg) = inf
γ∈π(Pr ,Pg)

E(x,y)∼y[c(x, y)] (2)

3.3.2. Optimization Strategy

The Adam optimizer, a well-known and efficient optimization tool for deep neural
network training, is used in this study to optimize the model parameters [30]. Adaptive
Moment Estimation (Adam) has the ability to effectively update model parameters by
dynamically modifying learning rates according to the gradient’s first and second moments.

The Adam optimizer [30] updates the parameters θ based on the gradient gt and the
moving averages of past gradients mt and squared gradients vt:

mt = β1mt−1 + (1 − β1)gt (3)

vt = β2vt−1 + (1 − β)g2
t (4)

ˆ
mt =

mt

1 − βt
1

(5)

ˆ
vt =

vt

1 − βt
2

(6)

θt+1 = θt −
α√

ˆ
vt + ε

ˆ
mt (7)

where ϵ is a tiny constant to prevent division by zero, α is the learning rate, and β1 and β2
are the decay rates for the moment estimates.

Even though Adam is the main optimizer used in this study, it is important to recognize
other optimization approaches that can be worth taking into account depending on the
features of particular datasets and model architectures. For instance:

1. RMSProp: The RMSProp optimizer adjusts learning rates based on the magnitude of
gradients similar to Adam [31]. It updates parameters θ as follows:
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vt = βvt−1 + (1 − β)g2
t (8)

θt+1 = θt −
α√

vt + ε
gt (9)

2. Adagrad: Adagrad’s adaptive learning rate mechanism updates parameters θ as
follows [32]:

θt+1,i = θt,i −
η√

Gt,i + ε
gt,i (10)

3. SGD with Momentum: Standard Stochastic Gradient Descent (SGD) with momentum
updates parameters θ as follows:

vt = βvt−1 + (1 − β)gt (11)

θt+1 = θt − αvt (12)

The selection of the Adam optimizer for this research paper is based on its demon-
strated effectiveness in training GANs and its widespread adoption in the deep learning
community. Adam offers an adaptive learning rate for every parameter of the model, which
improves the optimization and convergence in various kinds of tasks. In comparison with
Adagrad, reducing the learning rate excessively over time with accumulation of gradients
can lead to a quick learning rate decay which can lead to slower learning or potential
stagnation. Adam provides a more balanced approach by combining momentum with
adaptive learning rates.

3.3.3. Mini Batch Training

The training process is conducted using a mini-batch training strategy, a widely
adopted approach in the field of machine learning that offers several advantages over
traditional batch or online learning methods [33]. In this, the training data, which comprise
image-caption pairs, are divided into small subsets or mini-batches. The model is thus able
to update its parameters more often by processing these mini-batches iteratively, which
speeds up the learning process.

This mini-batch training method not only improves training efficiency but also enables
the model to simultaneously learn from a range of data samples. To improve the model’s
capacity for generalization, this diversity exposes the model to a wider variety of data
distributions throughout each training iteration.

Before creating a mini-batch, the generator evaluates the image features for the batch
of data. To produce high-dimensional visual representations, the key traits and properties
of the input photographs are extracted in this step. Following feature extraction, the model
evaluates every picture in the mini-batch and generates corresponding descriptions. In this
step, the visual representations are converted into written descriptions using the model’s
learned associations between visual features and language phrases.

When the generated captions are complete, they are sent to the discriminator. It is
the discriminator’s job to distinguish between actual captions and captions generated by
the generator. This antagonistic relationship between the discriminator and the generator,
which forces the generator to produce more realistic captions with each training cycle, is
the fundamental component of the training process.

In conclusion, the adversarial relationship between the generator and discriminator,
along with the mini-batch training technique, considerably contribute to the model’s ability
to generate high-quality, contextually relevant image captions.
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3.4. Evaluation Metrics

The quality of the generated captions is evaluated using a variety of established metrics
in the field of Natural Language Processing (NLP), including BLEU [29], ROUGE [34], and
CIDEr [23,35] scores. These metrics offer different viewpoints by assessing precision using
BLEU, recall using ROUGE and semantic diversity, and consensus through CIDEr between
the generated captions and the ground-truth captions.

• BLEU Score: The primary metric utilized to assess the caliber of the generated captions
is the BLEU score. By comparing the overlap of n-grams—contiguous sequences of n
components from a given sample of text or speech—between the machine-generated
and human-made (ground truth) captions, it assesses the degree of similarity between
them. Greater accuracy and semantic similarity in the caption-generating process are
suggested by a higher BLEU score, which indicates greater similarity. Consequently,
the BLEU score offers a neutral and numerical assessment of the model’s ability to
provide linguistically correct and contextually appropriate captions [29].

• ROUGE Score: In addition to the BLEU score, the ROUGE score is also employed to
provide a more comprehensive evaluation of the produced captions. The ROUGE score
quantifies the overlap of n-grams between the produced captions and the reference
(ground truth) captions. Because the ROUGE score places more of an emphasis on
recall than the BLEU score does on precision, it provides an additional dimension
for assessing the relevancy and caliber of the generated captions. By employing both
precision (BLEU) and recall (ROUGE), this dual evaluation approach ensures a more
thorough and fair assessment of the model’s caption-producing skills [34,36].

• CIDEr Metric: The CIDEr (Consensus-based Image Description Evaluation) metric is
used to further enhance the evaluation of produced captions. CIDEr determines the
consensus between the produced captions and the reference captions by computing
the cosine similarity between their TF-IDF vectors. Apart from BLEU and ROUGE
ratings, CIDEr is a valuable tool for assessing the uniqueness and variety of generated
captions by providing an extensive analysis of caption quality [35].

By using these indicators, as stated in Table 3, the evaluation methodology ensures a fair
and nuanced assessment of the generated captions, taking into account both grammatical
correctness and contextual significance.

Table 3. Comparison of Evaluation Metrics.

Metric Focus Advantages Disadvantages

BLEU Score [29] Precision Objective, Quantifiable Insensitive to
Paraphrasing

ROUGE Score [34] Recall Comprehensive Computational
Complexity

CIDEr Metric [35] Consensus Captures Diversity Sensitive to Vocabulary

4. Experimental Setup
4.1. Initial Setup
4.1.1. Data Preparation

We began our analysis with meticulous data preparation utilizing the MS COCO [22]
dataset, which served as our primary source of data. MS COCO’s collection of images
has a wide range of photos and each one is accompanied by a handwritten caption or
description. The captions offer many perspectives on the picture content, which increases
the dataset’s applicability for tasks like image captioning, multimodal learning, and visual
understanding.

The MS COCO dataset has contributed significantly to the advancement of natural
language processing, computer vision, and their intersection. It has been widely used
in research to develop and evaluate algorithms for tasks including picture interpretation,
caption generation, and multimodal learning. The dataset’s significant contribution to tasks
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integrating textual and visual data makes it a strong fit for our study, especially considering
our resource restrictions and concerns regarding computational efficiency.

During the data preparation phase, many preprocessing steps were taken to improve
the dataset’s use. The images underwent preprocessing to improve their aesthetic appeal
and supply the model with superior visual data. Similarly, the model was able to interpret
the captions more quickly thanks to the preprocessing. ‘startseq’ and ‘endseq’ tokens were
inserted before and after each caption to identify when it begins and finishes. After that,
the captions were tokenized, dividing them into discrete words. This is a crucial stage
because it enables the model to understand the connections between certain phrases and
the images that go with them.

In addition, we extracted data from the data preparation stage, such as the maximum
length of the captions and the amount of vocabulary. The model was then configured using
these parameters during training, which effectively led to the model’s learning process.

In summary, the steps in the data preparation phase were designed to optimize the
dataset in advance of the model’s further processing. We were forced to use the MS COCO
dataset [22] due to resource constraints; however, these preprocessing techniques gave us a
strong foundation for model training, which significantly improved the overall effectiveness
of our study approach.

4.1.2. Dataset Splitting

To enable a thorough assessment and validation of the model, the dataset was split
into training and testing sets. This part guarantees a comprehensive evaluation of the
model’s ability to apply what it has learned to previously unidentified data, as is typical in
machine-learning research. The generalization ability of the model is a crucial component
in assessing its effectiveness and suitability for application in practical settings. We decided
to divide the training and testing sets in our experiment into 80–20 each. This demonstrates
that 80% of the data was used to train the model, allowing it to identify and adjust to the
relationships and patterns found in the data. To test the model and obtain an unbiased
assessment of its performance on untrained data, the last 20% percent of the data was set
aside. To guarantee a high level of variability between the training and testing sets, the data
were divided at random. The resilience of the model’s learning and the dependability of the
evaluation results are strengthened by this random split, which guarantees that both sets are
representative of the entire data distribution. In summary, dividing the dataset into training
and testing sets and distributing the data to each group at random constitutes a critical
component of our research methodology. This method greatly raises the validity of the
assessment procedure, the learning efficiency of the model, and the general dependability
of the study’s conclusions.

4.1.3. Hyperparameter Tuning and Optimization Strategy

Key performance metrics, such as robustness and caption quality, were optimized by
empirically adjusting the model’s hyperparameters through experimentation. Through
the use of an iterative optimization strategy, the model’s generalization capabilities were
improved by increasing its effectiveness across a variety of datasets and workloads. In
our experiments, we used a batch size of 32 and a learning rate of 0.00001. The learning
rate and batch size are two critical hyperparameters that affect how quickly and steadily
the model learns. A lower learning rate guarantees a more gradual adjustment of the
parameters, and a smaller batch size facilitates more frequent updates, which accelerates
learning. It is crucial to remember that the model can only learn within a very specific range
of learning rates; too high a rate can cause training to become unstable, while too low a rate
can cause learning to occur slowly or not at all. For parameter optimization, we switched
from Adagrad to the Adam optimizer [30] due to Adam’s convergence speed and stability
as compared with Adagrad. Adam is an adaptive optimization algorithm that has a solid
track record of success on a variety of tasks and datasets. It enables effective optimization
and convergence by dynamically modifying the learning rate for every parameter by
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using momentum which is important in tasks like image captioning where the complex
nature of a variety of visual and textual data may cause the gradients to vary significantly
across different parameters. To modify the learning rate over epochs, we included a cosine
scheduler in our training pipeline. This method allows for smoother convergence and
possibly improved model performance by gradually lowering the learning rate towards the
end of training [37] unlike the step-based or exponential decay schedulers that decrease the
learning rates abruptly. The cosine scheduler prevents sudden fluctuations in loss which
encourages smaller and more stable updates leading to smoother convergence, reducing
overfitting risks and improving the model’s generalization ability. Unlike traditional GANs,
which may suffer from mode collapse and instability, WGANs offer improved stability
and convergence properties making them perfect for complex tasks like image caption
generation. The Wasserstein Loss encourages the discriminator (or critic) to output values
close to the Wasserstein Distance between the distributions of real and generated samples,
thereby mitigating common GAN training issues like model collapse and maintaining a
stable gradient flow which contributes to producing contextually accurate captions [19,38].

In summary, our hyperparameter tuning and optimization strategy involved the
careful selection and fine-tuning of key parameters, the utilization of the Adam optimizer,
the adoption of a cosine learning rate scheduler, and the incorporation of the Wasserstein
Loss within the WGAN framework. Despite resource constraints, these adjustments aimed
to enhance caption quality and overall model performance effectively.

4.1.4. Hardware Configuration and Experimentation

The NVIDIA RTX A6000 GPU (manufactured by NVIDIA Corporation, headquartered
in Santa Clara, CA, USA) hardware was used in the study experiments. The need to make
use of GPUs’ parallel processing powers—which greatly accelerate machine-learning model
training—led to the selection of the NVIDIA RTX A6000 GPU.

Significant processing power was offered by the NVIDIA RTX A6000 GPU, which also
included 48 GB of GPU memory (GDDR6 memory). Compared with the prior configuration,
this generous allocation of resources sped up the entire experimental process by facilitating
effective data processing and model-training procedures.

The GPU known as the NVIDIA RTX A6000 has a lot of CUDA cores. Computation is
handled by the CUDA cores, or parallel processing units, on the GPU. The numerous CUDA
cores on the NVIDIA RTX A6000 GPU optimize computing efficiency and enable high levels
of parallelism. This hardware configuration, along with the parallel processing capabilities
of the NVIDIA RTX A6000 GPU, greatly improved model creation and experimentation. It
enabled us to conduct thorough testing and swiftly improve our model, which was crucial
to the success of our study in the end. This illustrates our commitment to improving the
picture captioning space through the use of state-of-the-art hardware configurations and
processing power.

4.2. Implementation Details
4.2.1. Data Loader

During our research, we developed specialized data loaders to effectively manage the
loading of image-caption pairs for both the training and assessment stages. The data loader
plays a crucial role in the machine-learning pipeline by feeding data into the model in a way
that maximizes resource and computational efficiency. In line with the mini-batch training
strategy used in our model, our custom data loaders were made to load data in small
batches. Multiple image-caption pairs can be processed simultaneously with this method,
speeding up training and improving computational efficiency. In addition, we focused
on minimizing computational overhead when developing our data loaders. Throughout
the training process, the data loaders reduce the amount of time spent on data loading
and increase the amount of time spent on actual computation by effectively controlling
memory usage and guaranteeing optimal data loading speeds. The data loaders do vital
preprocessing tasks on the fly in addition to loading data. These consist of translating the



Computers 2024, 13, 305 18 of 23

photos into the proper tensor format, applying any necessary adjustments to the images,
and padding the captions to guarantee even lengths. To summarize, the integration of
customized data loaders improved training efficiency, decreased computational overhead,
and made a substantial contribution by streamlining our data processing pipeline.

4.2.2. Training of the Model

A combination of supervised and adversarial learning methods was used during the
iterative training process of the model. The generator and discriminator components of the
model were trained simultaneously and iteratively using this method.

The generator and discriminator were trained using the Adam optimizer with a
learning rate of 0.00001 and a batch size of 32 for 100 epochs. The training was executed on
a Google Colab GPU, optimizing computational efficiency given resource constraints, with
each epoch taking approximately 30–40 min.

During training, the generator first processed the image features and iteratively gener-
ated captions for evaluation by the discriminator. The discriminator’s role was to distin-
guish between real (from the dataset) and fake (generated by the generator) captions.

Simultaneously, the discriminator was trained on both real and fake captions. It
learned to correctly classify real captions as real and fake captions as fake, thereby guiding
the generator to produce more realistic captions.

The adversarial loss quantified the deviation between fake and real captions, serving
as feedback for the generator’s improvement. This process incentivized the generator to
enhance its caption generation capabilities, aiming for captions indistinguishable from real
ones.

Our training pipeline incorporated a cosine scheduler to dynamically adjust the
learning rate over epochs, ensuring stable convergence and improved model performance.
Furthermore, the batch size was optimized for efficiency, given resource constraints, without
compromising model effectiveness.

In addition to traditional training techniques, we introduced functionality to penalize
similar captions using the BLEU score and implemented diverse regularization to enhance
caption diversity. These enhancements aimed to improve caption quality, coherence, and
diversity, aligning with the research’s objectives of generating high-quality, realistic image
captions. The research’s dedication to attaining superior performance and robustness in
image-captioning tasks using the MS COCO dataset is highlighted by the iterative training
methodology, adaptive optimization strategies, and innovative enhancements that together
enabled continuous improvement in the model’s caption generation capabilities.

5. Results and Discussion
5.1. Implementation Results

Figures 3 and 4 present the training and validation loss curves across epochs during
the training process. The decline in training and validation loss over time demonstrates the
model’s effective learning and generalization.

The training of the model was conducted using a carefully chosen set of parameters
to ensure optimal performance. A detailed summary of these parameters is provided in
(Table 4), offering a comprehensive overview of the configuration used for the experiments.

The results shown in Figure 5 that our proposed model, ICTGAN, outperforms previ-
ous GAN-based models in terms of generating high-quality image captions. Specifically,
ICTGAN achieves a BLEU-1 score of 0.86 and a BLEU-4 score of 0.61, outperforming
IDGAN and RAGAN in terms of caption precision. The CIDEr score of 144.5 demonstrates
ICTGAN’s ability to create captions that closely coincide with human consensus, showing
exceptional contextual relevance. Furthermore, the ROUGE-L score of 0.87 demonstrates
the model’s ability to preserve linguistic coherence and diversity.
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Table 4. Parameters of the Model.

Parameters Value

Learning Rate 1 × 10−5

Batch Size 128
Number of Epoch 100

Optimizer Adam

While RAGAN [6] performs similarly in some metrics, ICTGAN exhibits a small but
significant improvement across all performance measures, particularly CIDEr and ROUGE-
L scores. These findings highlight the benefits of combining Vision Transformers (ViTs)
for global feature extraction and Long Short-Term Memory (LSTM) units for sequence
modeling, as well as the advantages of employing Wasserstein Loss for training stability.

Table 5 presents a comparative analysis of different models trained on the MS COCO
dataset based on BLEU-1, BLEU-4, ROUGE-L, and CIDEr scores’ evaluation metrics. Each
metric represents the caption quality and linguistic diversity achieved by different models,
helping in understanding their performance nuances.

The suggested model exhibits its usefulness by producing high-quality captions that
closely match the ground truth. Figure 6 shows some outputs that demonstrate the model’s
capacity to generate linguistically consistent and context-relevant descriptions.

To sum up, our experimental findings show that the suggested model is more efficient
and better than state-of-the-art (SOTA) techniques in the industry. The BLEU, ROUGE-L,
and CIDEr scores were among the assessment criteria on which our model performed
better, demonstrating its capacity to provide more precise and logical image captions.
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Figure 5. The image presents a comparative analysis of key evaluation metrics—(a) CIDEr and
(b) ROUGE L scores—among the existing models and our proposed model. Each metric offers
insights into different aspects of model performance in the context of image caption generation.

Table 5. GAN Models Score.

GAN Models
Scores

BLEU-1 BLEU-4 CIDEr ROUGE-L

CGAN [14] 0.72 0.41 123.5 0.74
IGGAN [15] 0.71 0.40 129.3 0.75
IDGAN [18] 0.84 0.54 137.8 0.81
RAGAN [6] 0.86 0.60 143.5 0.84

ICTGAN (Proposed Model) 0.86 0.61 144.5 0.87
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5.2. Discussion

Recent advancements in ICG have leveraged ViTs and Generative GANs to create
more accurate, contextually relevant captions. These novel models aim to bridge the
gap between image understanding and natural language processing by combining the
strengths of both frameworks. Specifically, Vision Transformers offer powerful image
representation capabilities, while GANs provide generative potential that can be fine-tuned
to produce high-quality, human-like captions. This hybrid approach has been shown to
significantly improve performance across key metrics in recent studies. The integration
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of ViTs with GAN-based models has led to a range of models that push the boundaries of
image caption generation. Key studies using BLEU-1, BLEU-4, CIDEr, and ROUGE-L as
evaluation metrics have provided insights into the strengths and weaknesses of different
models. The CGAN [14] achieves a BLEU-1 score of 0.72, a BLEU-4 of 0.41, a CIDEr
of 123.5, and a ROUGE-L of 0.74. CGAN leverages conditional input to refine caption
generation based on specific conditions, but its moderate scores suggest limitations in
capturing high-level semantic information compared with later models. IGGAN [15] shows
slight improvements over CGAN with BLEU-1 at 0.71, BLEU-4 at 0.40, CIDEr at 129.3, and
ROUGE-L at 0.75. The integrated approach in IGGAN attempts to enhance contextual
understanding by incorporating image features more effectively into the generative process,
leading to marginal gains in contextual coherence. IDGAN [18] further improves on its
predecessors, with BLEU-1 at 0.84, BLEU-4 at 0.54, CIDEr at 137.8, and ROUGE-L at
0.81. IDGAN incorporates a more sophisticated image representation mechanism that
better aligns image content with linguistic output, enabling a clearer translation of image
content into text. This model demonstrates significant gains in fluency and precision,
especially as measured by BLEU and ROUGE-L scores. RAGAN [6] introduces an attention
mechanism that considers relationships between image features, achieving a BLEU-1
score of 0.86, a BLEU-4 of 0.60, a CIDEr of 143.5, and a ROUGE-L of 0.84. The relational
attention mechanism helps to capture subtle contextual cues within images, resulting in
more semantically rich captions. The relatively high CIDEr and ROUGE-L scores indicate
that RAGAN’s captions align well with human judgments, offering both accuracy and
descriptiveness. The proposed model scores BLEU-1 at 0.86, BLEU-4 at 0.61, CIDEr at
144.5, and ROUGE-L at 0.87. ICTGAN combines Vision Transformers with an enhanced
GAN framework and integrates an iterative caption-tuning mechanism that refines outputs
to better match the true image content. This iterative process, coupled with the high-
dimensional feature extraction capabilities of the Vision Transformer, enables ICTGAN to
produce more precise and contextually appropriate captions. Its top scores across BLEU-4,
CIDEr, and ROUGE-L suggest superior performance in producing captions that are not
only accurate but also diverse and context-sensitive.

The performance of the proposed model (ICTGAN) highlights the importance of
advanced metrics in ICG. The BLEU-1 and BLEU-4 scores reflect the accuracy of individual
n-grams within captions, while ROUGE-L emphasizes sentence-level structure, measuring
fluency and relevance. CIDEr, which assigns weights to the consensus phrases found across
captions, is particularly useful in assessing the relevance of captions to human perception.
ICTGAN’s high scores in BLEU-4 and CIDEr, compared with other models, suggest it
captures a balance between linguistic accuracy and semantic relevance, while its top
ROUGE-L score further supports its fluency and coherence. ICTGAN’s integration of ViT
and GAN technologies exemplifies a sophisticated approach to image caption generation.
Through an iterative refinement process, ICTGAN pushes the limits of previous models by
achieving a comprehensive understanding of visual content. Its top performance across
BLEU-4, CIDEr, and ROUGE-L demonstrates that ICTGAN provides captions that are not
only precise and contextually aligned with image content but also resonant with human
evaluation criteria. This progression in ICG research shows a promising direction toward
models that more closely emulate human perception and understanding, pushing the
potential applications in AI-driven visual understanding and automated captioning tools.

6. Conclusions

This research presents the ICTGAN model as a comprehensive approach to automatic
image captioning, leveraging advanced machine-learning techniques and robust datasets.
The MS COCO dataset, renowned for its diversity and richness of visual content and
associated captions, served as the foundation for model training and evaluation. The
model architecture, which is composed of Long Short-Term Memory (LSTM) units, a head
self-attention model, and Vision Transformers (ViTs) makes it simpler to produce coherent
captions and successfully extract rich visual representations from input images. Further,
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Generative Adversarial Networks (GANs) and Wasserstein Loss as the adversarial loss
function enhanced the model’s capacity to produce diverse captions. The model’s perfor-
mance was measured statistically and objectively using the BLEU, CIDEr, and ROUGE
scores, to assess the quality of the generated captions. When applied to various applications
needing automatic photo captioning, the trained models proved their worth and improved
the fields of computer vision and natural language processing. The findings of this study
demonstrate the potential of cutting-edge machine-learning approaches for creating good,
contextually suitable image captions. The findings of this work make a significant contribu-
tion to the field of image captioning, opening up new opportunities for future research and
application. The research’s commitment to rigorous methodology, objective evaluation,
and practical applicability sets a high standard for future research on this topic.
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