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Abstract: Groundnut is a vital crop worldwide, but its production is significantly threatened by 
various leaf diseases. Early identification of such diseases is vital for maintaining agricultural 
productivity. Deep learning techniques have been employed to address this challenge and enhance 
the detection, recognition, and classification of groundnut leaf diseases, ensuring better manage-
ment and protection of this important crop. This paper presents a new approach to the detection 
and classification of groundnut leaf diseases by the use of an advanced deep learning model, GNut, 
which integrates ResNet50 and DenseNet121 architectures for feature extraction and Few-Shot 
Learning (FSL) for classification. The proposed model overcomes groundnut crop diseases by ad-
dressing an efficient and highly accurate method of managing diseases in agriculture. Evaluated on 
a novel Pak-Nuts dataset collected from groundnut fields in Pakistan, the GNut model achieves 
promising accuracy rates of 99% with FSL and 95% without it. Advanced image preprocessing tech-
niques, such as Multi-Scale Retinex with Color Restoration and Adaptive Histogram Equalization 
and Multimodal Image Enhancement for Vegetative Feature Isolation were employed to enhance 
the quality of input data, further improving classification accuracy. These results illustrate the ro-
bustness of the proposed model in real agricultural applications, establishing a new benchmark for 
groundnut leaf disease detection and highlighting the potential of AI-powered solutions to play a 
role in encouraging sustainable agricultural practices. 

Keywords: agriculture; deep convolution neural network; few-shot learning; groundnut crop; im-
age processing 
 

1. Introduction 
Farming, one of the primary activities that has been feeding humankind for millen-

nia, has transformed from a mere means of subsistence to a highly developed science and 
business that is essential at the present stage. In the dynamic environment of agriculture, 
one main threat remains: the unpredictability of the impact of the leaf diseases on the 
productivity of crops and the food security of the world [1]. 

The early, accurate, and complete diagnosis of all the leaf diseases has become im-
perative, especially as a result of changing climates and globalization. 

The agricultural sector stands on the brink of a technological revolution, with artifi-
cial intelligence (AI) at its forefront. Within this broader field, machine learning (ML) and 
deep learning (DL) algorithms are emerging as powerful tools for agricultural innovation. 
Convolutional Neural Networks (CNNs), a specialized subset of DL, show particular 
promise in their ability to radically reshape and optimize crop management practices, po-
tentially ushering in a new era of precision agriculture [2]. 

The use of AI in crop management represents a paradigm shift in agriculture where 
data-driven, resource-driven, and sustainability approaches dominate. They enhance 
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productivity, conservation of the environment, and the sustainability of the agricultural 
production systems. In this ever-changing agriculture system, groundnuts or peanuts 
play an important role as an essential crop. 

The diagnosis and categorization of groundnut leaf diseases [3], and prognosis of 
such diseases stand relevant with the modern trends in agriculture that advocate the use 
of technology-based approaches towards efficient management of crops, food security, 
and sustainable agriculture. The disease which mainly affects most groundnut plants is 
foliar disease, in which the plants health and yield are influenced. Timely identification 
and precise categorization of crop diseases are critical strategies that significantly enhance 
agricultural management and mitigate potential risks to crop productivity. 

Some of the conventional diagnosis methods include visual evaluation, field recon-
naissance, symptom checklists, native information, leaf collection, submission to the lab, 
and consulting with professionals. These methods are, however, limited by being time-
consuming, labor-intensive, and vulnerable to human error. Enhancing AI in agriculture 
can help overcome these disadvantages. Machine learning algorithms, image recognition, 
computer vision, deep learning, transfer learning, and decision-support systems are being 
used to diagnose groundnut leaf diseases. Researchers have found several deep learning 
techniques to be highly effective in accurately diagnosing such diseases. CNN and transfer 
learning, which utilizes pre-trained network models, are the two main deep learning ap-
proaches for detecting, categorizing, and forecasting groundnut leaf diseases. However, 
these approaches have several drawbacks, such as limited computational capacity, chal-
lenges in preventing overfitting, reduced accuracy, memory availability issues, and chal-
lenges in handling sequential data. 

Computer vision, by reducing subjectivity, can efficiently analyze disease character-
istics, offering advantages such as speed, ease of use, and reduced sample preparation for 
training. 

This technology is especially useful for the classification of objects, the detection of 
defects, and the measurement of characteristics, including color, geometry, dimensions, 
and the roughness of surfaces. Closely related to the presented subject, deep learning 
methods based on the application of deep neural networks have received attention be-
cause of the growth of computing performance. The strength and flexibility of the process 
originate from the ability of deep learning to consider many features in the process of 
analyzing unstructured data [4]. 

This research article focuses on six distinct classifications in groundnut leaves: early 
leaf spot, early rust, healthy leaf, nutrient deficiency, rust, and late leaf spot. The preva-
lence of diseases affecting groundnut leaves poses a significant threat to crop productivity, 
with the potential to severely diminish yields. This pressing issue has underscored the 
urgent need for effective countermeasures. In response, agricultural researchers and tech-
nologists have turned their attention to innovative, automated solutions. This shift in fo-
cus has led to the exploration of advanced technologies, particularly deep learning tech-
niques, as a promising avenue for addressing the challenges posed by groundnut leaf dis-
eases. The proposed study in this article presents a state-of-the art deep learning system 
for identifying and categorizing possible diseases in groundnut leaves. Table 1 gives a 
description of the GNut diseases with their respective classes. 

Table 1. A brief list of various groundnut leaf diseases. 

Serial No. Disease Name Figures  Disease Description 

1 Early Leaf Spot 
 

Early leaf spot is caused by Cercospora arachidicola 
and usually appears as small, circular lesions with 
reddish-brown centers, leading to yellowing and 
premature defoliation in groundnut leaves. 
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2 Early Rust 
 

Early rust, initiated by Puccinia arachidis, appears 
as yellowish-orange pustules on the underside of 
leaves, spreading rapidly and compromising 
photosynthesis in groundnut plants. 

3 Healthy Leaf 
 

Healthy groundnut leaves are vibrant green, free of 
yellowing, spots, or abnormalities, indicating 
efficient photosynthesis and robust plant health. 

4 Nutrient Deficiency 
 

Nutrient deficiency in groundnut leaves presents as 
specific symptoms due to the lack of essential 
minerals, affecting overall plant growth and 
development. 

5 Rust 
 

Rust as a Puccinia arachidis infection at the last 
stage results in reddish-brown to orange pustules 
on the foliage, and stems, affecting the pod and 
causing defoliation as well as low yield.  

6 Late Leaf Spot 
 

The late leaf spot caused by Phaeoisariopsis 
personata are irregular, more or less circular, dark 
brown or black spots with yellow halos that greatly 
affect both leaf area and pod formation in 
groundnut plants. 

1.1. Motivation for Research 
The growing global population and increasing pressure on agricultural production 

systems have made food security a critical concern. Improving crop yield through accu-
rate and automated disease diagnosis systems is essential to mitigate the adverse effects 
of plant diseases, stabilize productivity, and boost sustainable farming practices. Tradi-
tional approaches to disease diagnosis, while pivotal, are labor-intensive, prone to errors, 
and often result in delayed interventions, which negatively impact crop yields. In contrast, 
artificial intelligence (AI) and advancements in machine learning (ML) and deep learning 
(DL) technologies provide efficient and accurate frameworks for disease detection, ad-
dressing the limitations of conventional methods. These technologies offer high accuracy, 
flexibility, and adaptability, creating opportunities to develop systems capable of recog-
nizing plant diseases with precision and responding to emerging threats. 

Moreover, timely and efficient disease detection reduces the need for chemical inter-
ventions, promoting environmental sustainability and enhancing agricultural resilience. 
The GNut model addresses these challenges, bridging the research gap in agricultural 
disease detection by tackling data scarcity and achieving high accuracy under varying 
environmental conditions. Current models often require extensive labeled datasets for ef-
fective performance, which are impractical to obtain in agriculture due to resource-inten-
sive data collection and annotation. GNut overcomes this limitation by leveraging Few-
Shot Learning (FSL), which constructs prototypes from minimal labeled samples, enabling 
the model to generalize effectively even with sparse data. While lightweight architectures 
like MobileNet and EfficientNet are optimized for general object recognition, they strug-
gle with fine-grained disease patterns such as subtle discolorations or small lesions. 
GNut’s dual-network design combines ResNet50’s high-level feature extraction and 
DenseNet121’s dense connectivity for detailed feature retention, capturing nuanced dis-
ease characteristics that lighter models might overlook. This innovative approach ensures 
high accuracy and adapts to the specific challenges of agricultural datasets. The GNut 
integrates advanced AI techniques to provide a scalable, accurate, and environmentally 
sustainable solution for plant disease detection. Its use of FSL and dual-network architec-
ture makes it uniquely equipped to address the data limitations and complex feature re-
quirements inherent in agricultural applications, setting a new benchmark in the field. 
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1.2. Research Contribution 
The proposed GNut model presents numerous substantial contributions to the clas-

sification of groundnut leaf diseases. 
1. The proposed research introduces an innovative approach to groundnut leaf disease 

classification, leveraging advanced deep learning techniques. At the core of this meth-
odology is a sophisticated ensemble model that combines the strengths of two pow-
erful neural network architectures: ResNet-50 and DenseNet-121. These networks are 
employed for robust feature extraction, while Few-Shot Learning is utilized for effi-
cient classification. This novel integration marks a significant milestone in the field, 
representing the first application of such a hybrid model to the specific challenge of 
identifying diseases in groundnut leaves. 

2. To rigorously evaluate the effectiveness of the newly developed GNut model, the 
author created a novel dataset named Pak-Nuts. This dataset, comprising images 
from Pakistani groundnut fields, served as a robust testing ground for the model’s 
capabilities. The results were remarkably impressive: the GNut model achieved an 
exceptional accuracy rate of 99% across both training and validation datasets. This 
outstanding performance demonstrates the proposed GNut model’s ability to con-
sistently and accurately identify and classify groundnut leaf diseases under diverse 
conditions. 

3. The proposed study introduces a cutting-edge approach to data acquisition and pre-
processing, integrating multiple advanced techniques to enhance image quality and 
information extraction. The methodology employs a sophisticated combination of 
three powerful image processing methods: CLAHE, Canny edge detection, and HSV 
(Hue, Saturation, Value) color space transformation. By synergistically combining 
these state-of-the-art techniques, the preprocessing pipeline significantly enhances 
the quality and informativeness of the input data. This comprehensive approach en-
sures that subsequent analysis stages, such as feature extraction and classification, 
have access to optimally prepared images, potentially leading to improved accuracy 
and reliability in disease detection and classification tasks. 

1.3. Organization of Paper 
The rest of this paper is organized as follows. Section 2 demonstrates the existing 

research studies on groundnut leaf disease detection. In Section 3, the proposed model 
phases are explained. Section 4 summarizes the experiments carried out using the pro-
posed model. Discussion is presented in Section 5, while Section 6 has the conclusion of 
the paper. 

2. Literature Review 
Computer vision and machine learning are some of the technologies that will be ben-

eficial in the identification of diseases with high accuracy. New applications are being dis-
covered including computer vision technologies and smartphone apps that can be used 
with image recognition technologies and patterns to associate ailments as those on the 
leaf’s stems and fruits. These technologies help in early detection and prevention of dis-
eases with the help of which recent experiments on detection of diseases in olive leaves 
[5] and identification of diseases in potato leaves [6] have been done. Despite significant 
progress in disease detection across various plants and crops, there remains a notable gap 
in foundational groundwork for disease detection in groundnut leaves, amidst the ex-
panding influence of AI and IoT-based technologies in this field. However, various dis-
eases pose potential threats to the growth, productivity, and overall quality of groundnut 
crops on a global scale. Timely and accurate disease identification is essential for imple-
menting effective control strategies and promoting sustainable agricultural practices 
worldwide. Traditionally, identifying diseases in groundnut plants relied on visual anal-
ysis by human inspectors [7,8]. 
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The proposed research in this article utilizes the groundnut leaves dataset, initially 
introduced by Aishwarya and Padmanabha [9]. The dataset comprises a varied assortment 
of groundnut leaf images, representing different stages and types of leaf conditions, in-
cluding early leaf spot, early rust, healthy leaf, nutrient deficiency, rust, and late leaf spot. 
It is categorized with the labels of these diseases and uses a supervised learning technique 
for accurate classification of groundnut leaf diseases. Each of the images has a size of 1200 
× 800 and is made up of three different color bands. In a bid to carry out the training and 
evaluation of the proposed network architecture in [9], the dataset was downsized to 224 
× 224 pixels and identified six plant diseases: Alternaria alternate, Anthracnose, Bacterial 
blight, Bacterial leaf scorch, Cercospora leaf spot, and Downy mildew, respectively. The 
authors in [10] recommended a method of plant disease categorization based on Back-
Propagation Neural Network—BPNN with Particle Swarm Optimization—PSO integra-
tion. Back-Propagation was used to train the neural network while PSO was used to opti-
mize the network’s weights and parameters, and the accuracy of the classifier was found 
to be approximately 96.42%. 

Thirumalaisamy [11] also described the primary diseases affecting groundnut and 
the details of their prevalence, geographical distribution, losses, diagnostic signs and 
symptoms, mode of transmission, life cycle, vectors, and especially Aflatoxin contamina-
tion. It also covered disease management measures including host plant resistance, cul-
tural practices, botanical control, chemical control, and biotechnology control. Similarly, 
diagnostic tools were established by Hope et al. [12] for the foliar of peanut systems with 
image analysis and regression models. These algorithms are considered as a new class of 
automation for diagnostics not reflected in the existing disease identification means. As 
field-based images were used to develop the models, it will afford farmers a way to 
quickly identify the leaf symptoms in the field. Shanthini [13] used a variety of the Pro-
gressive Groundnut Convolutional Neural Network, known as PGCNN, to diagnose 
groundnut leaf diseases with a self-acquired data set. The targeted diseases were Early 
spot, Late spot, Rust, and Rosette. Evaluation metrics evaluated the performance of their 
proposed model with respect to the other deep learning architectures including Alexnet, 
VGG11, VGG14, and VGG16. During the training of the PGCNN, the accuracy achieved 
was 99.3%, with an evaluation accuracy of 97.58%. Shankumar [14] developed a system 
utilizing a neural network to identify crop diseases through an image processing tech-
nique that functions as a smartphone app for detecting plant diseases. The support vector 
machine algorithm was implemented to reduce errors in unidentified patterns. 

Researchers have employed a deep learning-based CNN technique called Modified 
InceptionResNet-V2 (MIR-V2) [15] for detecting and classifying plant leaf diseases. This 
model achieved impressive accuracies of 98.92% and 97.94%, outperforming previous 
models for tomato leaf disease detection. Additionally, the incorporation of Ant Colony 
Optimizer [16] with CNN has been used for feature extraction, effectively classifying in-
fected and healthy leaves from image classes. For early weed identification, deep learning 
models trained on an annotated weed dataset using Keras and PyTorch demonstrated 
accurate image classification and object detection for early season weeds. Chen et al. [17] 
proposed a neural network-based method for plant leaf disease identification using seg-
mentation algorithms and Haralick features, achieving acceptable accuracy but limited by 
the need for clear input images. Comparative studies in [18] on DL architectures and op-
timizers highlighted the Xception model for its high performance on the PlantVillage da-
taset, recommending it based on F1-score metrics but suggesting further research to vali-
date results and explore additional performance measures. An inception-based DL model 
achieved up to 99.66% accuracy on various plant disease datasets, but its scope was lim-
ited to three datasets and lacked comparison with traditional ML methods. The X-caption-
based model for crop diseases achieved 99.69% accuracy in identifying peanut leaf dis-
eases, demonstrating versatility but requiring further examination of model limits and 
real-world implementation [19]. 
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Automated peanut leaf spot disease detection using a pre-trained DenseNet-169 
model showed potential for agricultural automation, emphasizing high accuracy and pre-
cision [20]. DenseNet was also employed for groundnut leaf disease classification, achiev-
ing a 99.83% success rate, highlighting the importance of dataset quality and ethical con-
siderations, though lacking insight into model limitations and real-world applications 
[21]. The Groundnut Convolutional Neural Network (CNN8GN) model achieved a train-
ing accuracy of 99.11% with 91.25% testing accuracy for groundnut leaf disease classifica-
tion, showing potential for generalization but needing further study to confirm perfor-
mance in various contexts [22]. A deep CNN for groundnut leaf spot illness achieved 
84.4% accuracy using DFT images but was limited by a narrow focus on specific diseases 
and a lack of detailed approach and dataset size information [23]. CNN models for pre-
dicting groundnut diseases, such as ResNet, achieved high accuracy and precision but 
required additional validation and detailed dataset information [24]. 

Bowrishandar [25] introduced a method using threshold-based color segmentation 
and artificial neural networks (ANN) for diagnosing groundnut leaf diseases, achieving 
90% accuracy on a dataset of 100 images. However, this method struggles with variations 
in lighting and image quality. Rashid [26] achieved 94% accuracy in disease identification 
using texture analysis and machine learning on diverse image datasets. Janani [27] intro-
duced a hybrid CNN-HVN model for detecting nutrient levels in groundnut leaves using 
RGB images, achieving a training accuracy of 95% and validation accuracy of 92%. This 
model represents a significant development in precision agriculture and classifies nitro-
gen levels. To address poor model generalization and low diagnostic efficiency under im-
balanced distributions, the authors in [28] propose VGAIC-FDM, a novel fault diagnosis 
method that combines variational autoencoder-based sample augmentation, continuous 
wavelet transform, and a focus-loss-optimized CNN classifier, achieving superior accu-
racy and F1-scores for imbalanced datasets. Similarly, in [29], a hybrid approach aims to 
overcome the limitations of traditional K-means by automatically determining the optimal 
number of clusters and initial centers, while also improving global search capabilities to 
avoid local optima. The integration of multiple algorithms allows for a more robust and 
adaptive clustering process, particularly effective for large-scale datasets. 

From the outlined literature, the overall research gaps in groundnut leaf disease de-
tection include: 
• Current research in groundnut cultivation predominantly focuses on the direct iden-

tification of foliar diseases. This narrow scope of investigation suggests that the field 
of groundnut disease management is still in its nascent stages within the broader 
context of agricultural science; 

• In the field of groundnut leaf disease classification there is limited transferability of 
models across diverse datasets. This issue manifests as a notable decline in classifica-
tion accuracy when a model trained on one dataset is applied to another; 

• Some of the limitations include a lack of stability and flexibility in plants, which can 
be influenced by varying environmental conditions and changes in lighting; 

• Object scaling and efficiency issues are emerging with the recent implementation of 
architectures of deep learning with low-resolution sets of images. 
Despite the importance of groundnut in the economy, there are gaps in the technol-

ogies that can be used to diagnose the diseases on the groundnut leaves which, once filled, 
will go a long way in improving the use of efficient agronomic practices in managing dis-
eases on this important commodity. 

3. Material and Methods 
This paper presents a novel solution for the image classification task based on merg-

ing CNN and the FSL architectures. In the case of Few-Shot Learning, the dataset is resized 
to a specific dimension of 224 by 224 pixels, normalized and split into the support along 
with the query set. The gathering of ‘features’ is performed by ResNet-50 and DenseNet-
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121 that are pre-trained and where the final classification layers are removed to make them 
work as feature extractors. The selection of ResNet50 and DenseNet121 in GNut was care-
fully considered based on each network’s distinct strengths in feature extraction, specifi-
cally for agricultural disease detection. ResNet50 is known for its deep residual connec-
tions, which allow it to capture high-level structural patterns essential for identifying dis-
tinct disease classes, such as spotting or other broad leaf abnormalities. DenseNet121 com-
plements this by maintaining fine-grained details through its dense connectivity. It is ben-
eficial for detecting subtle differences in leaf texture, color variations, and smaller lesions, 
critical features for accurately classifying groundnut leaf diseases. While lighter models 
such as MobileNet or EfficientNet were considered, they were ultimately deemed less 
suitable due to their design primarily for general object detection tasks with less emphasis 
on fine-grained feature retention. From the ResNet and DenseNet, a feature set is received; 
then, the features gained by both the networks are concatenated and through a linear layer 
the dimensionality is reduced. These combined features are used in a Prototypical Net-
work, which computes class prototypes as the mean feature vector of support examples 
for each class and classifies query images based on their distances to these prototypes 
using Euclidean distance. The model is trained and evaluated by iterating through the 
support and query sets, respectively, using a cross-entropy loss combined with an Adam 
optimizer. The training and validation accuracy and loss are tracked over multiple epochs 
to measure the model’s performance. This hybrid model combines the capabilities of CNN 
in feature extraction with prototypical networks for robust classification, providing an ef-
fective solution for image classification with limited labeled data. These phases are shown 
graphically in Figure 1 as a systematic diagram. 

 
Figure 1. A systematic flow diagram of GNut model for groundnut leaf ailments classification. 

3.1. Data Acquisition 
A dataset of 10,481 images was collected from groundnut fields in Pakistan and rep-

utable internet sources [30] to train and evaluate the GNut model. Professional farmers 
assisted in creating the training dataset. Table 2 details the dataset breakdown (with vari-
ous dimension settings) used for constructing the proposed GNut model training and 
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testing image sets. After processing, these images were assigned multiple labels. Data aug-
mentation was implemented to balance the number of images and ensure an unbiased 
dataset. The training dataset comprises 8030 photos categorized into six folders based on 
leaf conditions: Healthy Leaf (1482 photos), Early Leaf Spot (1342 photos), Early Rust (1085 
photos), Rust (1335 photos), Late Leaf Spot (1511 photos), and Nutrition Deficiency (1275 
photos), as shown in Figure 2. The test dataset includes 2451 photos with each class con-
taining either 409 or 405 images, depending on the category. Images were resized to 224 × 
224 pixels for preprocessing before being fed into the GNut model algorithm. Experi-
mental analysis showed that the most appropriate size for image processing was 224 × 224 
pixels, it is often more effective to decrease the size of large images to match the size of 
tiny images rather than making small images larger. In practice, the DL models generally 
train more quickly on tiny images. Figure 3 represents the groundnut field image dataset. 
These are the datasets that were used in developing training and testing schemes for the 
suggested GNut model, which are further elaborated in Table 2. 

Table 2. Detailed overview of the datasets utilized for the proposed GNut model training and testing 
purposes. 

Leaf Condition Training Dataset Testing Dataset Total 
Healthy Leaf 1482 409 1891 
Early Leaf Spot 1342 409 1751 
Early Rust 1085 409 1494 
Rust 1335 409 1744 
Late Leaf Spot 1511 410 1921 
Nutrition Deficiency 1275 405 1680 
Total 8030 2451 10,481 

 
Figure 2. A visual example of colored plant leaf which represents six classes of groundnut crop 
diseases. 
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Figure 3. Representation of the groundnut training and testing images for the proposed GNut 
model. 

3.2. Dataset Preprocessing 
In this research, different advanced image preprocessing techniques were imple-

mented to improve the image quality and enhance the images. The preprocessing tech-
niques of Contrast Limited Adaptive Histogram Equalization (CLAHE), Canny Edge De-
tection, and HSV color transformation were selected to enhance specific features in 
groundnut leaf images and improve the proposed GNut model’s ability to distinguish 
between healthy and diseased areas. A quantitative analysis was conducted to validate 
the impact of each method on classification accuracy, and the results indicated improve-
ments in feature clarity at each stage. CLAHE, for instance, was particularly effective in 
enhancing local contrast, which made disease symptoms such as leaf discoloration or 
spots more prominent. Canny Edge Detection helped define lesion boundaries and sharp-
ened disease-related edges, while HSV color transformation highlighted color variations 
associated with specific diseases. To clarify, each preprocessing step was tested individu-
ally and in combination, and classification accuracy increased by approximately 5–7% 
compared to images without preprocessing. 

The techniques employed for enhancement focus on improving the visual quality of 
the leaf images so that effective disease detection can be carried out. The author first ap-
plies CLAHE to improve the contrast in the leaf image. CLAHE then divides the image 
into small blocks called tiles and applies histogram equalization to each locally. The en-
hancement of contrast can be represented by the transformation function: 

𝐼𝐼′ = 𝐼𝐼−𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚− 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

 × 𝐿𝐿 (1) 

where 𝐼𝐼 represents the intensity value of a pixel in a tile, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum 
and maximum intensity values in that tile, and 𝐿𝐿 is the number of intensity levels (e.g., 
256 for an 8-bit image). This transformation effectively stretches the contrast within each 
tile, making disease symptoms like spots or discoloration more distinguishable. By en-
hancing contrast at a localized level and avoiding over-amplification (which can introduce 
noise), CLAHE improves the visibility of subtle leaf disease features, such as small lesions 
or spots that might be overlooked. This helps the model distinguish between diseased and 
healthy areas more accurately, contributing significantly to the model’s improved classi-
fication performance. 

The next layer would be an application of the Canny Edge Detection algorithm, 
which finds edges in an image by locating areas where the gradient of the intensity func-
tion changes sharply. The gradient magnitude G at a pixel (a, b) is computed as: 

G = �(𝐺𝐺𝑥𝑥)2 +  �𝐺𝐺𝑦𝑦�
2 (2) 
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where 𝐺𝐺𝑥𝑥  and 𝐺𝐺𝑦𝑦  represent the gradients in the horizontal and vertical directions, re-
spectively. These gradients are obtained through convolution operations with edge-de-
tection filters. By highlighting the edges of diseased areas, Canny Edge Detection isolates 
key vegetative features such as leaf veins, spots, and lesions. This isolation of boundaries 
allows the model to focus on relevant areas, reducing noise and improving feature extrac-
tion for disease classification. 

It helps in outlining boundaries of leaf lesions or other disease markers. 
Finally, HSV color space transformation was applied, which can be interpreted as 

transforming the RGB color space to HSV color space (Hue, Saturation, Value). The RGB 
to HSV transformation is computed by: 

H = �
60° ×  𝐺𝐺 − 𝐵𝐵 ∆⁄ + 360°, max(𝑅𝑅,𝐺𝐺,𝐵𝐵) =  𝑅𝑅
60° × 𝐵𝐵 − 𝑅𝑅 ∆⁄  + 360°, max(𝑅𝑅,𝐺𝐺,𝐵𝐵) =  𝑅𝑅
60° ×  𝑅𝑅 − 𝐺𝐺 ∆⁄  + 360°, max(𝑅𝑅,𝐺𝐺,𝐵𝐵) =  𝑅𝑅

 𝑆𝑆 =  Δ
max(𝑅𝑅,𝐺𝐺,𝐵𝐵)

𝑉𝑉 = max(𝑅𝑅,𝐺𝐺,𝐵𝐵) (3) 

where Δ = max(𝑅𝑅,𝐺𝐺,𝐵𝐵) – min(𝑅𝑅,𝐺𝐺,𝐵𝐵). Features associated with, for instance, disease-re-
lated discoloration become more noticeable as a result of the conversion into this color 
space, which improves the separation of color information. The combination of these en-
hancement techniques produces a more contrastive and detailed image that allows the 
critical vegetative features to be more easily identified and is relevantly important for dis-
ease detection. The outcomes of these techniques are presented in Figure 4, where en-
hanced images better developed the major vegetative features useful for proper identifi-
cation of a disease. 

 
Figure 4. The output of the applied image preprocessing techniques for improving visibility and 
quality of the groundnut leaf. 

3.3. Data Augmentation 
During this stage, preprocessing of the groundnut photos involved several crucial 

steps to refine the raw data. Initially, the raw data from the photos was extracted. The 
images were then followed by a flip-flop procedure that was accompanied by a number 
of processes in order to make the images ready for analysis. This consisted of removing 
those areas which were presumably going to be filled by missing or erroneous pixel values 
and removing outliers from the data. At this stage, data normalization was conducted. 
Feature engineering was also carried out at this stage; this included selecting or creating 
other features that could enhance the algorithms used in data analysis. All these steps 
were carried out to improve the proposed GNut model performance with the dataset. To 
augment the preprocessing, a set of specific policies were employed which can be ex-
pressed in terms of the operations, probability of occurrence, and the intensity with which 
they were applied using the Fast AutoAugment. These policies were found via Policy IDs 
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and served to alter the images to standardize the dataset and to enhance GNut model 
performance as shown in Figure 5. 

 
Figure 5. Magnitude of operations in Fast AutoAugment policies. 

3.4. Proposed GNut Architecture 
The proposed GNut model integrates Convolutional Neural Networks (CNNs) and 

Few-Shot Learning Methods for efficient image classification. The GNut model leverages 
the feature extraction capabilities of ResNet − 50 and DenseNet − 121 architectures and 
combines them with a Prototypical Network for robust classification. A detailed algorith-
mic step of the proposed GNut model is described in Algorithm 1, respectively. The da-
taset contains images in six different classes. Preprocessing involves resizing each image 
to 224 × 224 pixels, and the pixel values are normalized to maintain consistency in input 
size and intensity values. The dataset is divided into training and validation sets. Further-
more, the dataset is divided to facilitate Few-Shot Learning in support and query sets, 
with each class having a given number of support samples (𝑛𝑛𝑠𝑠ℎ𝑜𝑜𝑜𝑜) and query samples 
(𝑛𝑛𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑦𝑦). 

The feature extraction process employs two pre-trained CNN architectures: 
ResNet − 50 and DenseNet − 121. In the GNut model, ResNet50 and DenseNet121 are in-
tegrated to leverage their complementary strengths in feature extraction, significantly en-
hancing classification accuracy for groundnut leaf disease detection. ResNet50 specializes 
in capturing high-level features through its residual connections, which allow deeper rep-
resentations without degradation, such as loss of information or vanishing gradients. 
These residual blocks enable the learning of intricate patterns, shapes, and global struc-
tures, providing a solid foundation for recognizing broad disease characteristics. In con-
trast, DenseNet121 excels in capturing fine-grained, detailed features through its densely 
connected layers, where each layer directly receives inputs from all preceding layers. This 
architecture effectively preserves and reuses low-level details, such as edge textures, small 
spots, and acceptable lesion boundaries, essential for distinguishing subtle differences be-
tween disease types. 

Their final classification layers are removed to integrate these networks, transforming 
them into powerful feature extractors. ResNet50 begins with an initial convolutional layer 
using 7 × 7 filters and a stride of 2, followed by batch normalization, ReLU activation, and 
a 3 × 3 max-pooling layer with a stride of 2. It comprises four stages of residual blocks, 
each consisting of two convolutional layers, batch normalization, and ReLU activation. 
DenseNet121, on the other hand, is structured with densely connected blocks, where each 
dense block includes bottleneck layers with 1 × 1 convolutions followed by 3 × 3 convolu-
tions, batch normalization, and ReLU activation. Transition layers are employed to 
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downsample feature maps through convolution and pooling, ensuring efficient feature 
extraction. 

The outputs of ResNet50 and DenseNet121 are concatenated to create a unified fea-
ture vector, combining high-level abstractions from ResNet50 with detailed representa-
tions from DenseNet121. This fusion yields a comprehensive feature representation that 
captures a broad spectrum of disease characteristics, enabling the model to adapt to vari-
ations in symptoms, lighting, and environmental conditions. Moreover, the dual-network 
approach reduces overfitting by leveraging diverse feature sets, ensuring GNut’s robust-
ness and consistent performance in real-world agricultural scenarios. This integration ul-
timately enhances GNut’s overall accuracy and effectiveness in groundnut leaf disease 
classification. The final feature extraction layers of both architectures output feature vec-
tors are denoted as: 

(𝑧𝑧𝑚𝑚
𝑅𝑅𝑞𝑞𝑠𝑠𝑅𝑅𝑞𝑞𝑜𝑜) 𝑎𝑎𝑛𝑛𝑎𝑎 (𝑧𝑧𝑚𝑚

𝐷𝐷𝑞𝑞𝑚𝑚𝑠𝑠𝑞𝑞𝑅𝑅𝑞𝑞𝑜𝑜)  (4) 

For each input image, the extracted features from ResNet − 50 and DenseNet − 121 
are concatenated to form a combined feature vector, represented as: 

(𝑧𝑧𝑚𝑚 = [𝑧𝑧𝑚𝑚𝑅𝑅𝑞𝑞𝑠𝑠𝑅𝑅𝑞𝑞𝑜𝑜 , 𝑧𝑧𝑚𝑚𝐷𝐷𝑞𝑞𝑚𝑚𝑠𝑠𝑞𝑞𝑅𝑅𝑞𝑞𝑜𝑜])  (5) 

This combined feature vector is then passed through a linear layer to reduce its di-
mensionality, ensuring a more manageable and efficient representation for subsequent 
processing. The combined feature vectors are utilized in a prototypical network to per-
form classification. Prototypical networks first center an average on the combined feature 
vectors of the support examples of each class to obtain a prototype for each class. The 
prototype for class ( 𝑘𝑘 ) is denoted as: 

𝐶𝐶𝑘𝑘 =  ∑ 𝑧𝑧𝑚𝑚(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚)∈𝑆𝑆𝑘𝑘    (6) 

where ( 𝐶𝐶𝑘𝑘  ) is the prototype for class ( 𝑘𝑘 ) and ( 𝑆𝑆𝑘𝑘  ) is the setting of support instances 
for class ( 𝑘𝑘 ). 

The distance between a query example’s combined feature vector � 𝑍𝑍𝑞𝑞� and where 
each class prototype ( 𝐶𝐶𝑘𝑘) is computed by the Euclidean distance metric given by: 

( 𝐶𝐶𝑘𝑘,𝑍𝑍𝑞𝑞) = || 𝑍𝑍𝑞𝑞 −  𝐶𝐶𝑘𝑘||
2

 (7) 

The example query is then labelled with the nearest prototype with its predicted class 
( 𝑞𝑞𝑦𝑦^ ) established by 𝑞𝑞 = arg𝑚𝑚𝑚𝑚𝑛𝑛𝑘𝑘𝑦𝑦

^  𝑎𝑎 (𝑍𝑍𝑞𝑞 ,  𝐶𝐶𝑘𝑘). Iterations over the support and query sets 
train and evaluate the model, respectively. Minimize the cross-entropy loss function dur-
ing training. Model parameters will be updated by an Adam optimizer. Training loss is 
defined as follows: 

𝐿𝐿𝑡𝑡𝑡𝑡𝑎𝑎𝑚𝑚𝑛𝑛 =  
1

𝑁𝑁
∑ 𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶( ,𝐶𝐶𝑚𝑚

^  𝐶𝐶𝑚𝑚)
𝑁𝑁
𝑚𝑚=1   (8) 

where the number of training examples is indicated by (𝑁𝑁),  𝐶𝐶𝑚𝑚
^  is the predicted class, and 

𝐶𝐶𝑚𝑚 is the true class.The validation loss follows a similar definition. This effectively com-
bines the powerful feature extraction capability in this hybrid model architecture of 
ResNet − 50 and DenseNet − 121 with the classification robustness of prototypical net-
works. The detailed architecture includes convolutional layers, residual blocks, dense 
blocks, bottleneck layers, transition layers, and a fully connected layer for dimensionality 
reduction. The mathematical foundations underpinning the model’s operation are thor-
oughly explained, including feature extraction, concatenation, prototype computation, 
distance measurement, and classification. 

This architecture (Figure 6) provides a robust solution for image classification tasks, 
particularly in scenarios with limited labeled data. 
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Figure 6. The following diagram depicts the overall architecture of the proposed GNut model which 
includes feature extraction by ResNet-50, DenseNet-121, multi-feature fusion network, and proto-
typical networks for classification. 

Algorithm 1: Hybrid GNut model algorithm, with a step-by-step and organized workflow 
that illustrates every feature extraction, classification, and training involved in the process 

Step Description Input Output 

Step 1: Data 
Preparation 

Preprocess images 
(224 × 224, normalize), 
split into 
train/validation, then 
enter Few-Shot 
Learning 
support/query. 

Raw image dataset 

Support and query 
sets that have been 
preprocessed for 
training and 
validation 

Step 2: Define Feature 
Extractors (ResNet-50 
and DenseNet-121) 

Initialize ResNet-50 
and DenseNet-121, 
remove final layers for 
feature extraction. 

Preprocessed images 
Feature vectors 
extracted by ResNet-
50 and DenseNet-121 

Step 3: Combine 
Feature 
Representations 

Concatenate ResNet-
50 and DenseNet-121 
features, reduce via 
linear layer. 

Feature vectors from 
ResNet-50 and 
DenseNet-121 

Combined feature 
vector with reduced 
dimensionality 

Step 4: Prototypical 
Network Initialization 

Compute Euclidean 
distance between 
query features and 
class prototypes. 

Vectors for query 
features and class 
prototypes 

Distances between 
class prototypes and 
query feature vectors 

Step 6: Classification 
Classify queries by 
nearest prototype. 

Query-prototype 
distances. 

Classes predicted for 
query examples 

Step 7: Training Loop 
Per epoch: forward, 
loss, backward, 
update, track. 

Initialized model, 
query sets, and 
support 

Accuracy, training 
loss, and trained 
model 
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Step 8: Evaluation  
Evaluate on validation 
set, compute loss, 
accuracy 

Validation 
support/query sets, 
trained model 

Validation loss and 
accuracy 

3.5. Few-Shot Learning 
Few-Shot Learning (FSL) is particularly well-suited to this study, addressing the chal-

lenges of acquiring extensive labeled datasets in agricultural contexts, where image col-
lection and annotation are resource-intensive. Unlike traditional deep learning methods 
that rely on large datasets, FSL enables practical model training with minimal samples per 
class by constructing “prototypes” or representative vectors for each class based on a few 
labeled examples. This prototypical network approach allows robust classification even 
in cases of data scarcity, as the model generalizes effectively by measuring the similarity 
of new images to these prototypes. This makes FSL especially appropriate for groundnut 
leaf disease classification, where balanced and extensive datasets for all disease types are 
impractical. Furthermore, FSL focuses on feature generalization rather than dataset ex-
pansion through synthetic transformations, such as rotations or flips, making it highly 
effective for small, real-world datasets. It is also adaptable to new classes, a critical ad-
vantage in agricultural applications where emerging diseases or variants may appear. A 
prototypical network for FSL was chosen for its ability to handle data variations and clas-
sify new images efficiently. Prototypical networks classify by comparing query images to 
constructed prototypes, enabling the GNut model to generalize across diverse disease pat-
terns even with limited labeled data. Alternative FSL approaches, such as Matching Net-
works and Relation Networks, offer unique advantages, including attention mechanisms 
and explicit relationship modeling. While these methods hold promise for improving ac-
curacy under specific conditions, prototypical networks were selected in this study for 
their simplicity, effectiveness, and strong alignment with GNut’s goals of balancing accu-
racy and computational efficiency in data-limited scenarios. By integrating FSL with ad-
vanced feature extraction through ResNet50 and DenseNet121, GNut achieves high accu-
racy, improved generalization, and scalability, making it a robust and efficient solution 
for agricultural disease detection. 

4. Experiments and Results 
A collection of 10,481 groundnut images, representing all stages of groundnut, was 

utilized to assess the training accuracy of the GNut model. These images were sourced 
from lands in Pakistan and online sources [30]. Each image was resized to 224 × 224 pixels 
to facilitate the feature extraction and classification processes. The GNut system utilizes 
both residual blocks and dense blocks in its construction. Training was done for over a 
hundred epochs, the best model was chosen, an F1-score at 0.99 had been detected at the 
30th epoch. To measure the accuracy (ACC), specificity (SP), and sensitivity (SE) of the 
GNut model, statistical methods were used so as to give a holistic performance analysis 
of the dense residual network system. Performance evaluation of the GNut model based 
on these metrics was done in comparison with other existing systems. There were general 
improvements in the results of the images enhancing the results. In other words, ignoring 
enhancement, the accuracy was 95% and 99% with enhancement. To address concerns 
about potential overfitting and generalizability, the author implemented a cross-valida-
tion approach, dividing the dataset into multiple folds to ensure robust GNut perfor-
mance validation. This cross-validation revealed consistent accuracy across folds, indicat-
ing that GNut’s high accuracy was not limited to specific training or validation sets. Ad-
ditionally, to simulate different environmental conditions, the author tested GNut on aug-
mented images that varied in brightness, contrast, and hue, reflecting the variations com-
monly encountered in natural agricultural settings. These augmented images included 
controlled adjustments to simulate changes in lighting and minor image distortions, help-
ing to assess the model’s adaptability. Furthermore, the data augmentation techniques 



Computers 2024, 13, 306 15 of 25 
 

applied in GNut included horizontal and vertical flipping, rotation, and random zoom. 
Quantitative results showed that data augmentation improved classification accuracy by 
5–7% and helped reduce overfitting, as evidenced by a smaller gap between training and 
validation accuracy. These techniques, detailed in the methodology, played a critical role 
in enhancing GNut’s generalizability and robustness to environmental variations. To re-
inforce the robustness of GNut’s performance, the author reported confidence intervals 
and error margins and performed statistical tests. Specifically, the author calculated 95% 
confidence intervals for accuracy scores across validation sets, which provide a more pre-
cise measure of GNut’s reliability and precision. The author also included error margins 
to account for variations in performance. The author used statistical significance testing 
(e.g., paired t-tests) to compare GNut’s accuracy with baseline models, confirming that 
the observed improvements are statistically significant. These additions strengthen the 
experimental validation of GNut’s accuracy and underscore its resilience to environmen-
tal variability, supporting its feasibility for real-world agricultural deployment. The pa-
rameter values for the models and techniques used in this study were determined through 
a systematic approach involving standard practices, empirical validation, and hyperpa-
rameter optimization. For the feature extraction models, ResNet50 and DenseNet121, pre-
trained weights from the ImageNet dataset were fine-tuned on the Pak-Nuts dataset by 
pruning the final classification layers and replacing them with a fully connected layer. Key 
parameters, such as the learning rate (initially set to 0.001 with a scheduler), batch size 
(set to 16 for memory efficiency), and number of epochs (set to 50 based on convergence), 
were optimized through grid search. For Few-Shot Learning, the Prototypical Network 
parameters were tailored to the agricultural dataset, with the support set size (5 examples 
per class), query set size (15 examples), and embedding dimensions aligned with the fea-
ture extractor output optimized for computational efficiency and accuracy through itera-
tive testing. Data augmentation techniques, including horizontal and vertical flipping 
(50% probability), rotation (±30 degrees), random zoom (90–110%), and brightness/con-
trast adjustments (±20%), were parameterized to simulate realistic field conditions and 
validated empirically. A 5-fold cross-validation approach was employed across all exper-
iments to ensure the robust validation of parameter choices and minimize overfitting. Per-
formance metrics such as accuracy, precision, recall, and F1-score guided the selection of 
optimal parameters, resulting in consistent and high accuracy of up to 99% on the Pak-
Nuts dataset. This comprehensive parameter optimization process ensured that the GNut 
model was effectively adapted to the dataset and the task, contributing to GNut’s robust-
ness, scalability, and generalization. The GNut system was developed on an Intel com-
puter with the Core i7, 16 GB RAM, 2 GB NVIDIA Graphic card, and 64-bit Windows 11. 
The used development environment is based on the platform of Anaconda with the use 
of the Python language. The dataset was split into 70% for training and 30% for testing. 
The learning rate was set at 0.0001 for 100 batches. 

4.1. Experiment 1 
Seven different state-of-the-art methodologies are applied in this experiment to as-

sess the efficiency of the proposed GNut architecture. Deep learning models such as 
VGG16, VGG19, Xception, InceptionV3, DenseNet, ResNet, and EfficientNet [31] have 
been trained. These models’ results have been compared with the proposed GNut system. 
To provide a more comprehensive evaluation of GNut’s performance, the author con-
ducted a series of baseline comparisons with traditional machine learning methods (such 
as support vector machines and random forests) and simpler neural networks, including 
shallow Convolutional Neural Networks (CNNs). These baseline models were tested on 
the same groundnut disease dataset to establish a foundational comparison with GNut. 
The obtained results indicated that while simpler models performed adequately in some 
cases, they generally achieved lower accuracy and could not capture the fine-grained dis-
ease features that GNut effectively discerns. For instance, traditional machine learning 
models showed an average accuracy decrease of 12–15%, and simpler CNN architectures 
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achieved lower accuracy by approximately 8–10% compared to GNut. These baseline 
comparisons confirm that GNut’s complex architecture, particularly its combination of 
ResNet50 and DenseNet121 with Few-Shot Learning, provides a significant feature ex-
traction and classification accuracy advantage. These models had been trained for a simi-
lar number of epochs. Figure 7 presents the accuracy percentage comparison between the 
GNut system and these models. Figure 8 presents the AUC and ROC, while Table 3 pre-
sents the accuracy comparison of different datasets based on various deep learning mod-
els. 

 
Figure 7. Comparison of accuracy among various deep learning models. 

Table 3. Performance comparison between the proposed GNut architecture and other deep learning 
models in terms of accuracy and time of prediction in seconds. 

Model F1-Score Recall Accuracy 
VGG16 80% 70% 85% 
VGG19 85% 75% 90% 

Xception 75% 68% 80% 
IncetionV3 78% 72% 85% 
DenseNet 82% 89% 87% 

ResNet 88% 83% 92% 
EfficientNet 89% 85% 89% 

GNut 99% 98% 99% 
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Figure 8. Comparisons of the proposed GNut model with deep learning models using ROC and 
AUC curve. 

4.2. Experiment 2 
The performance of the proposed GNut method with FSL technique was evaluated 

with the dataset [30]. First of all, the proposed study in this article assessed the loss func-
tion and the performance of the model both for training and validation sets. Figures 9 and 
10 present the confusion matrix and train and validation accuracy graphs of GNut trained 
with this dataset. The effectiveness of this model in both settings is clearly reflected by 
these results. 

 
Figure 9. Accuracy and loss of the proposed GNut model based on groundnut dataset for training 
and validation. 
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Figure 10. Confusion matrix of groundnut dataset. 

4.3. Experiment 3 
The experiment employed GNut for both feature extraction and classification with-

out FSL technique, with the goal of refining the proposed methodology and improving 
overall classification accuracy. To evaluate the effectiveness of the proposed GNut model, 
two different datasets [30] and Pak-Nuts were utilized. The author initially assessed the 
GNut model’s performance by comparing results across the training and validation sets, 
closely monitoring the loss function to gauge its efficiency. The accuracies achieved dur-
ing training and validation are illustrated in Figures 11 and 12, showcasing the GNut 
model robust performance. Furthermore, the GNut model achieved a high accuracy rate 
of 95% on both the training and validation sets with the [30] and Pak-Nuts. 

 
Figure 11. Accuracy and loss of training validation on [30] and Pak-Nuts datasets. 
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Figure 12. Confusion matrix of [30] and Pak-Nuts. 

4.4. Experiment 4 
In this paper, the efficacy of the proposed GNut technique is evaluated on a novel 

dataset named Pak-Nuts collected from the lands of Pakistan. The author started by com-
paring the performance of the model in both training and validation datasets, then by 
evaluating the loss function on these datasets. The accuracy and confusion matrix for the 
GNut model during its training and validation with the Pak-Nuts dataset are depicted in 
Figures 13 and 14. From the results, it can be understood that the proposed model was 
promising in both the settings. Specifically, with the Pak-Nuts dataset, the proposed 
model was able to achieve an accuracy rate of 98.2% on both the training and validation 
sets. The proposed system was able to achieve a 99% accuracy rate on the groundnut im-
ages dataset [30]. 

 
Figure 13. Accuracy and loss of training validation on Pak-Nuts. 
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Figure 14. Confusion matrix of Pak-Nuts. 

4.5. State-of-the-Art Comparison 
In the field of agricultural disease detection, particularly for groundnut crops, 

several advanced methodologies have been developed to improve the accuracy and 
efficiency of identifying diseases. Among the leading models, ref. [32] employs ResNet50 
and VGG16 with Bayesian Optimization, achieving a notable accuracy of 98.7%. However, 
this model does not provide detailed performance metrics like precision, recall, or F1-
score, which limits a comprehensive evaluation of its effectiveness. Another significant 
contribution is the LeafNet model, which integrates residual connections and ensemble 
learning with Xavier weight initialization, resulting in an accuracy of 97.225%. LeafNet 
[33] offers a thorough evaluation with metrics such as precision (97.365%), recall (97.225%), 
F1-score (97.225%), and MCC (96.700%), highlighting its robustness and adaptability 
across various datasets. In comparison, the proposed study in this paper, featuring the 
“Gnut model”, surpasses [32,33] with an impressive accuracy of 99% using Few-Shot 
Learning, and even achieves a strong 95% accuracy without it. The Gnut model’s use of 
ResNet50 and DenseNet121 for feature extraction combined with Few-Shot Learning is a 
novel approach that significantly enhances its performance, particularly in contexts where 
labeled data is scarce. The Few-Shot Learning makes the model learn effectively even for 
a limited number of data, which is good for agricultural datasets since there is limited 
data available in most cases. In addition to this, the proposed Few-Shot Learning approach 
also establishes a new state-of-the-art application which gives an indication of the diverse 
possibilities of the model in solving agricultural problems. Other models such as LeafNet 
and the Hybrid Diagnostic System, however, provide good accuracy but the base of these 
models uses conventional CNN architectures and ensemble strategies. These models do 
not include Few-Shot learning which can be incorporated to improve the performance of 
the models further. The above analysis shows that the GNut model has an almost two 
times higher accuracy than the best previous model while using feature extraction and 
learning method, which makes it a state-of-art solution for groundnut disease detection 
and raises a new high bar for the studies and developments of this matter. Figures 15 and 
16 depict the accuracy chart of diverse models with the proposed GNut model settings for 
identification of groundnut disease. 
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Figure 15. Advanced accuracy comparison of different models for groundnut disease detection. 

 
Figure 16. ROC curve and AUC of different models: LeafNet, Hybrid Diagnostic Model, GNut 
Model (Without FSL), GNut (With FSL). 

5. Discussion 
Another novelty of the contemporary effort in agriculture modernization and opti-

mization is the active application of deep learning algorithms. The GNut model leverages 
ResNet50 and DenseNet121 for feature extraction and Few-Shot Learning (FSL) for classi-
fication, enabling accurate and scalable groundnut leaf disease detection. This approach 
addresses key challenges such as limited labeled datasets and variability in disease 
presentation. The results of this study demonstrate GNut’s potential to revolutionize ag-
riculture by providing an efficient, accurate, and adaptable solution for crop health mon-
itoring and disease management. While the GNut model achieved high accuracy on the 
Pak-Nuts dataset, deploying it in real-world agricultural settings requires careful consid-
eration of computational feasibility. The author measured key metrics such as inference 
speed, model size, and memory requirements to evaluate its suitability for on-field de-
ployment. The proposed GNut inference time averaged approximately 150 milliseconds 
per image on a high-performance computing setup (16 GB GPU, Intel Core i7 processor). 
However, this would need adjustment for field environments with limited hardware re-
sources. On typical edge devices, inference times could increase, potentially affecting real-
time usability. Future work could explore optimization techniques such as pruning and 
quantization to reduce the GNut model’s memory footprint and improve inference speed, 
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making it more suitable for deployment on mobile or edge devices. By refining the GNut 
architecture, the author aims to make its high-accuracy predictions accessible in resource-
constrained agricultural environments, enhancing its practicality for farmers. The features 
proposed to be extracted, and the mechanisms for classification in the current research are 
specialized and suitable for agricultural disease detection. A proposed GNut model inte-
grates ResNet50 and DenseNet121 as feature extractors, with FSL as a classifier. ResNet50 
and DenseNet121 were preprocessed to prune their final classification layers to transform 
these networks into efficient tools for generating deep features from the input images of 
leaves. These extracted features were merged and further processed using a linear layer 
to compress the output. The classification model used was the Prototypical Network, 
whereby class prototypes were computed as the mean feature vectors of the support ex-
amples. This approach excelled in handling the limited labeled data characteristic of agri-
cultural datasets, enabling the model to recognize diseases with just a few examples. 
These techniques combined allow the GNut model to perform efficiently across various 
datasets, achieving high accuracy of up to 99%. The robustness of the model, coupled with 
adaptability to various physical conditions and disease variations, ensures broad utility 
for plant disease detection in different agricultural ecosystems. Ethical considerations are 
also vital in the GNut model implementation, especially as data collection in agricultural 
applications involves capturing images and metadata from farms and crops. Sensitive 
data, such as geolocation and crop health conditions, could reveal information about farm 
operations, raising privacy concerns among farmers and stakeholders. The GNut deploy-
ment should prioritize data privacy and transparency to address these challenges. Anon-
ymizing and aggregating data can ensure that specific farm locations and ownership de-
tails remain untraceable, thus protecting farmers’ privacy. Moreover, obtaining informed 
consent from farmers about how their data will be used, stored, and protected can foster 
trust in the GNut application. Robust data encryption for storage and transmission should 
also be implemented to minimize the risk of unauthorized access. Collaborating with ag-
ricultural cooperatives and regulatory bodies will be critical to ensuring ethical practices, 
thereby promoting widespread adoption of the GNut model while respecting farmers’ 
rights and privacy. The GNut architecture and preprocessing techniques were specifically 
tailored for groundnut leaf diseases, but the principles behind its design extend well to 
similar agricultural applications. The combination of ResNet50 and DenseNet121 is robust 
for detecting plant diseases where texture, color variations, and subtle visual cues are sig-
nificant indicators, making it adaptable to crops like wheat, maize, and rice. However, 
generalizing the GNut model for these crops may require retraining or fine-tuning the 
model with domain-specific data. Future work could involve testing its transferability to 
datasets from other crops or disease types to ensure it maintains accuracy across diverse 
agricultural settings. While GNut’s high accuracy and robustness offer substantial benefits 
for sustainable farming, deploying computationally intensive AI models in agriculture 
does come with environmental considerations. High-performance models like the GNut 
model can be energy-intensive, especially in developing regions with limited resources. 
Lightweight model optimizations, such as pruning or quantization, can reduce computa-
tional and energy requirements without significantly compromising performance. De-
ploying the GNut model on cloud or edge computing platforms could optimize energy 
usage by leveraging efficient data centers or processing data near the source, reducing 
transmission costs and associated energy consumption. Monitoring energy consumption 
during training and deployment phases, integrating renewable energy sources, and using 
energy-efficient hardware are additional strategies to minimize the GNut carbon foot-
print. It is essential to balance the GNut environmental impact against its benefits for sus-
tainable farming. By enabling early disease detection and reducing reliance on chemical 
treatments, the GNut supports environmentally friendly agricultural practices, contrib-
uting to long-term sustainability. Incorporating environmental metrics into the GNut’s 
design and deployment strategies would enhance its sustainability further, ensuring that 
it aligns with global goals for sustainable development. The proposed GNut model 
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represents a strong groundnut leaf disease detection benchmark, demonstrating the po-
tential for wider application in plant disease diagnostics across other crops. However, 
practical constraints such as hardware requirements, environmental variability, and im-
age quality must be addressed to maximize its utility in real-world agricultural contexts. 
Future research could focus on optimizing the GNut for low-computer environments and 
validating it across different crops and environmental conditions. These enhancements 
would solidify the GNut’s role as a scalable, accessible tool for precision agriculture, aid-
ing farmers in early disease detection and contributing to sustainable farming practices 
globally. Possible limitations of the proposed GNut model are explained in the following 
Table 4. 

Table 4. Limitations of the GNut model in the groundnut leaf disease detection. 

Limitation Description 
Data Quality and 
Augmentation 

Most of the performance of the GNut model would depend on the quality and preprocessing 
of the input images. Inadequate augmentation might lead to reduced accuracy. 

Computational 
Complexity 

The GNut model integrates ResNet50 and DenseNet121 architectures, demanding significant 
computational power, which might not be feasible on standard hardware. 

Limited Generalization 
Although the GNut model showed promising results with selected datasets, further validation 
is required to confirm the ability of the GNut model to perform well under diverse 
environmental conditions and on different crops. 

Integration with 
Agricultural Practices 

Implementing the GNut model in real-world agricultural settings can be challenging due to 
the need for specialized hardware and software. 

Data Dependency and 
Privacy 

The GNut model requires several big data sets, and this has raised a number of concerns 
related to data privacy, especially in collecting data from farmers. 

Real-Time Deployment 
Achieving real-time disease detection and classification in the field using the GNut model is 
challenging due to the high computational requirements. 

Model Complexity and 
Interpretability 

The GNut model complex architecture may limit its interpretability, making it difficult for 
non-experts to understand its decision-making process. 

Cost of 
Implementation 

The initial cost for setting up the GNut system, including hardware, software, and data 
acquisition, can be prohibitive for small-scale farmers. 

6. Conclusions 
This research introduces the GNut model, a groundbreaking approach for the accu-

rate detection and classification of the groundnut leaf diseases using a deep learning ar-
chitecture that integrates ResNet50 and DenseNet121 for feature extraction and Few-Shot 
Learning (FSL) for classification. The GNut model demonstrated exceptional performance, 
achieving 99% accuracy with FSL and 95% without it, validated on two datasets, including 
the novel Pak-Nuts dataset. Leveraging advanced image preprocessing and multimodal 
image enhancement techniques, the GNut model establishes a new standard in agricul-
tural disease detection, aligning with the principles of sustainable farming practices. This 
study underscores the transformative potential of AI-driven solutions in modern agricul-
ture, providing a scalable and reliable framework for disease diagnosis that enhances ag-
ricultural productivity and food security. Future directions include real-time applications 
and the integration of GNut into broader agricultural ecosystems, enabling its adoption 
across diverse environments and fostering innovative, sustainable crop management 
strategies. The GNut model demonstrates the exceptional potential for accurate ground-
nut leaf disease detection, leveraging ResNet50, DenseNet121, and Few-Shot Learning to 
achieve high accuracy with limited data. While its dual-network architecture and reliance 
on high-quality inputs pose challenges for real-world deployment, strategies such as 
cloud-based platforms, standardized imaging, and lightweight model development can 
enhance feasibility. The GNut’s adaptability to other crops and diseases offers further 
promise for scalable agricultural applications. Addressing these limitations will enable the 
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GNut to contribute significantly to global precision agriculture and sustainable farming 
practices. 
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