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Abstract: Catheter ablation therapy, which is a treatment for atrial fibrillation (AF), has a higher re-
currence rate as AF duration increases. Compared to paroxysmal AF (PAF), sustained AF is known to
cause progressive anatomic remodeling of the left atrium, resulting in enlargement and shape changes.
In this study, we used contrast-enhanced computed tomography (CT) to classify atrial fibrillation
(AF) into paroxysmal atrial fibrillation (PAF) and long-term persistent atrial fibrillation (LSAF), which
have particularly different recurrence rates after catheter ablation. Contrast-enhanced CT images of
30 patients with PAF and 30 patients with LSAF were input into six pretrained convolutional neural
networks (CNNs) for the binary classification of PAF and LSAF. In this study, we propose a method
that can recognize information regarding the body axis direction of the left atrium by inputting
five slices near the left atrium. The classification was visualized by obtaining a saliency map based
on score-class activation mapping (CAM). Furthermore, we surveyed cardiologists regarding the
classification of AF types, and the results of the CNN classification were compared with the results
of physicians’ clinical judgment. The proposed method achieved the highest correct classification
rate (81.7%). In particular, models with shallow layers, such as VGGNet and ResNet, are able to
capture the overall characteristics of the image and therefore are likely to be suitable for focusing
on the left atrium. In many cases, patients with an enlarged left atrium tended to have long-lasting
AF, confirming the validity of the proposed method. The results of the saliency map and survey
of physicians’ basis for judgment showed that many patients tended to focus on the shape of the
left atrium in both classifications, suggesting that this method can classify atrial fibrillation more
accurately than physicians, similar to the judgment criteria of physicians.

Keywords: atrial fibrillation; catheter ablation; classification; convolutional neural network; contrast-
enhanced computed tomography; deep learning

1. Introduction

The number of patients with atrial fibrillation (AF) is increasing annually, and this
trend is naturally related to the aging of the population [1]. In recent years, the aging
of patients with AF has brought to light clinical problems that were previously invisible.
The European Society of Cardiology (ESC) notes that six main problems are closely asso-
ciated with AF: mortality, stroke, hospitalization, reduced quality of life, left ventricular
dysfunction/heart failure, and cognitive decline/vascular dementia [2]. Therefore, the
early detection and treatment of AF are important to prevent complications. AF is a dis-
ease that gradually shortens the interval between attacks over time, eventually becoming
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persistent, long-lasting, and permanent. Thus, atrial fibrillation can be viewed as a disease
that progresses through various stages [3]. Catheter ablation therapy, which is a treatment
for AF, has been shown to be effective for paroxysmal atrial fibrillation (PAF). However, its
efficacy is not well established in non-pharmacological guidelines for persistent atrial fibril-
lation and long-standing persistent atrial fibrillation (LSAF), for which the recommended
level is Class IIa or Class IIb [4]. In other words, it is very important to determine which
patients with persistent atrial fibrillation will benefit from catheter ablation therapy based
on the results and possible complications of catheter ablation therapy for persistent AF, as
described above [5]. However, it is difficult to predict postoperative recurrence, and the
indications for catheter ablation therapy are currently determined based on the surgeon’s
empirical judgment and the patient’s self-reported AF duration.

AF recurrence after catheter ablation therapy and its predictors have been the subject
of many studies [6–9]. Njoku et al. showed that left atrial diameter predicts AF recurrence
after radiofrequency catheter ablation treatment in a meta-analysis of the difference in
left atrial volume between patients with and without recurrent AF after radiofrequency
catheter ablation [6]. Other factors, such as the duration of AF, structural changes in
the left atrium and pulmonary veins, and age, may also affect the outcome of catheter
ablation therapy.

In recent years, many methods have been reported to classify AF types [10,11], and
Nuria Ortigosa et al. proposed a method to classify AF subtypes with feature extrac-
tion from a general Fourier time-frequency transform using ECG waveforms and classi-
fication using a support vector machine [8]. The classification accuracy of the test data
was approximately 77%. However, classification using ECG waveforms is often lim-
ited by the possibility of significant changes in the waveform characteristics when other
diseases coexist.

Therefore, we attempted to classify AF types by extracting image features, such
as left atrial diameter and structural changes in pulmonary veins due to persistent AF,
from contrast-enhanced computed tomography (CT) images using convolutional neural
networks (CNNs), which have been applied in medical practice in recent years [12–18].
Although previous studies using electrocardiogram waveforms have been reported in
the classification of AF type, no method using contrast-enhanced CT images has been
proposed. Furthermore, although there are research papers on the relationship between
left atrial volume and AF type, there are no reported cases of applying that method
to the classification of the type of disease. In this study, we propose a clinically novel
method of classifying paroxysmal AF and long-term persistent AF on contrast-enhanced
CT images using conventional CNN models, focusing on structural remodeling changes
in the left atrium. The purpose of this study is to enable a standardized assessment using
a deep learning approach that considers the information physicians need to evaluate the
structural remodeling of the left atrium, including left atrial enlargement, poor contrast,
structural changes in the pulmonary veins, the presence of thrombi in the left atrium, and
coronary artery calcification. Based on this objective, contrast-enhanced CT imaging has
an advantage over other dynamic modalities in that it can accurately capture the shape
and focus on the structures around the left atrium. Furthermore, we hypothesize that
the method using contrast-enhanced CT images will enable standardized evaluation with
reduced subjective bias, even in cases in which the ECG waveform cannot detect sudden
attacks, such as paroxysmal AF, or when there are concomitant diseases that may affect
the ECG waveform. With the application of these systems to clinical workflows, it will be
possible to evaluate the load on the atrial muscle when AF is first detected and, if signs of
long-term persistence are confirmed, to begin treatment early.

In this study, we also compared the results of the CNN classification with those of
physicians’ clinical judgment by surveying cardiologists regarding AF type classification.
Physicians estimate the type of atrial fibrillation based on factors such as the size of the
left atrium, enlargement of the pulmonary veins, thrombus formation in the left atrial
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appendage, and fibrosis of the atrial septum. Focusing on these features, we looked at
images similar to those entered into the CNN to predict the corresponding disease type.

2. Materials and Methods
2.1. Outline

In this study, target slices were selected from contrast-enhanced CT images. The
number of images was increased using data augmentation and then input into a CNN
model. The output images were classified into two classes, PAF and LSAF, and the saliency
map, which emphasized the pixels that contributed to the classification result using score-
CAM according to their importance, was used to compare what each model focused on
in the image to make its judgment. Persistent atrial fibrillation was excluded because its
duration varies widely from 7 days to less than 1 year, making it difficult to accurately
identify through the evaluation of the left atrial shape. This study was conducted with
the approval of the ethics committee of the first author’s institution (approval number
HM22-095).

2.2. Image Dataset

This study included 60 patients with AF who underwent CE-CT at Fujita Health Uni-
versity Bantane Hospital between May 2021 and July 2022. A total of 162 contrast-enhanced
CT scans were performed during the period, including 116 patients with paroxysmal atrial
fibrillation and 46 patients with long-standing persistent atrial fibrillation. From these,
30 patients of each disease type were randomly selected, and only those patients who did
not undergo CT examinations due to contrast medium allergy or impaired renal function
were excluded. The patients’ disease types were diagnosed as defined in the guidelines [4].
Specifically, PAF was defined as AF that returns to sinus rhythm within 7 days of onset,
and LSAF was defined as AF that persists beyond 1 year. The percentages of PAF and
LSAF were each half of all patients. Basic patient information is shown in Table 1. An
Aquilion ONE CT system (Canon Medical Systems, Inc., Tochigi, Japan) was used to obtain
the images. The details of the imaging protocol are shown in Table 2. We used transaxial
images with a matrix size of 512 × 512 pixels and a pixel size of 0.625 mm. The images
were stored in DICOM format, and all images were converted to 8-bit PNG images with a
window level of 30HU and a window width of 1000 HU.

Table 1. Basic patient information.

Variables PAF(N = 30) LSAF(N = 30) p-Value

Age (years) (mean ± SD) 65.3 ± 12.4 69.5 ± 8.6 0.093
Gender (male, %) 19(63.3%) 25(83.3%) 0.082

Height (cm) (mean ± SD) 164.23 ± 10.2 168.2 ± 8.75 0.131
Body weight (kg) (mean ± SD) 63.7 ± 12.4 68.7 ± 11.1 0.104

BMI (mean ± SD) 23.5 ± 3.35 24.3 ± 3.42 0.309
Hypertension (cases, %) 13(43.3%) 14(46.7%) 0.799

Diabetes mellitus (cases, %) 5(16.7%) 5(16.7%) 1.000
Heart failure (cases, %) 3(10.0%) 12(40.0%) 0.007

Cerebral infarction (cases, %) 4(13.3%) 5(16.7%) 0.723

Table 2. Imaging protocols.

Parameter Value

Imaging protocols

kV 120 kV
mAs CT-AEC
Slice thickness 0.5 mm
Scan time 0.35 s
Scan method ECG gated volume scan
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Table 2. Cont.

Parameter Value

Reconstruction condition

Reconstruction method AIDR-3D
FOV 200 mm
Slice thickness 0.5 mm
Slice spacing 0.25 mm
Reconstruction function FC14
Reconstruction cardiac phase Systolic

Angiographic method
Iodine concentration 375 mgI/kg
Injection time 15 s
Imaging timing Bolus tracking

2.3. Atrial Fibrillation Type Classification Using Contrast-Enhanced CT Images

The flow of this study is shown in Figure 1, and the details of each process are
described below.
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2.3.1. Image Pre-Processing

Images centered on the slice, with the largest left atrium in the contrast-enhanced
CT image and located 5 and 10 mm above and below, were selected, and five images per
patient were used for analysis. If a bed was depicted in the image, it was removed by
manually setting the CT value of the bed area to −1000 HU.

2.3.2. Data Augmentation

Data augmentation is a method of increasing data by “transforming” image data
for training. For example, by rotating, flipping, shifting horizontally, scaling, distorting,
adjusting brightness and contrast, and adding noise to an image, various variations can be
created. In this study, the number of images increased nine times through data augmenta-
tion [19]. CT examinations are usually performed in the supine position; however, in some
facilities, the patient is positioned so that the heart, which is located on the left side of the
body, is centered in the FOV. In such cases, the curvature of the bed may cause the body to
rotate about 10◦. To simulate this, the heart was rotated by −10◦ and +10◦ for each image,
aligning the heart’s tilt to match that observed in the actual CT image. In contrast-enhanced
CT examinations, since the density of the contrast agent varies depending on the case,
we augmented the pixel values to be robust to changes in pixel values. The CT values of
the left atrium were observed across the entire dataset, and the window level (WL) and
window width (WW) were adjusted so that the CT values after augmentation fell within
the range of real CT images. As a result, in addition to the initial condition of WL = 30,
WW = 1000, two variations, including WL = −50, WW = 950 and WL = 160, WW = 1500,
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were added to increase the number of images threefold. An example of the created image
is shown in Figure 2.
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2.3.3. Classification by CNN

In this study, we used six network models (VGG16, VGG19, Resnet50, DenseNet121,
DenseNet169, and DenseNet201). These networks were trained on 1.2 million images
across 1000 categories in the ImageNet database [20–22]. To adapt these networks to PAF
and LSAF classification, we removed the fully connected layers in each of the pretrained
network models and replaced them with three new fully connected layers (the final layer
being the output layer). The number of units in each layer was set to 1024, 256, and 2. In
this study, finetuning was employed. Finetuning is a method to perform transfer learning
using a different dataset for a different target task than the one used during pre-training
that involves using a network model that has been pretrained from a large dataset as
the initial parameters. Finetuning facilitates the learning of highly accurate models for
each task from small datasets by simply recalibrating pretrained CNNs. In this case, the
weights of the convolutional layer were initialized with the pretrained weights, and both
the convolutional and fully connected layers were retrained (finetuning) using real images.
The average of five continuous values obtained from the outputs of five slices output from
the CNN was used as the patient’s evaluation. In this evaluation, the cutoff value was fixed
at 0.5.

For the CNN training conditions, we used a learning coefficient of 0.000001, early
stopping (maximum number of epochs: 100) as the training frequency, a batch size of eight,
and Adam as the optimization algorithm. The categorical cross entropy was employed for
the loss function in the training of CNN. The training environment used was Windows 10
Pro OS, an AMD Ryzen 7 2700X CPU, and an NVIDIA TITAN RTX GPU.

2.4. Saliency Map

In this study, we used score-class activation mapping (CAM) to visualize the points of
interest by highlighting the pixels that contributed to the classification results according
to their importance. Score-CAM eliminates the dependence on gradients by obtaining the
weight of each activation map through its forward passing score on the target class; the
final result is obtained using a linear combination of weights and activation maps [23]. It
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visualizes the importance based on the results obtained by providing the generated images
to the CNN using the feature map obtained when the trained CNN infers a specific image.
The resulting feature map was enlarged to the size of the input, normalized to a value
between 0 and 1, and multiplied by the input image to generate a heatmap. The output of
CAM is shown as a heatmap overlaid on the image. This heatmap is called a saliency map
in CAM. The input and saliency map images are shown in Figure 3.
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2.5. Validation and Evaluation Metrics

In this study, cross-validation was used to assess the generalizability of the model.
We also increased the number of folds and chose 10-fold cross-validation to improve
generalization performance and reduce bias. The 10-fold cross-validation method divides
the dataset into 10 subsets, 70% of which are training data and 20% of which are validation
data, 10% of which are test data. Figure 4 shows a schematic of the 10-part cross-validation
method.
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Using this method, the prediction results were compared based on patient-specific
accuracy, sensitivity, specificity, and precision. The final classification performance evalua-
tion was performed by determining the overall accuracy rate using the CNN classification
results. The overall accuracy rate was calculated using the following Equation (1). TP,
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TN, FP, and FN are the numbers of true positives, true negatives, false positives, and false
negatives, respectively.

accuracy =
TP + TN

TP + TN + FP + FN
× 100[%] (1)

The ROC curve represents the relationship between the true positive fraction (TP/TP +
FN) and the false positive fraction (FP/FP + TN). It was created by plotting the false positive
rate on the horizontal axis and the true positive rate on the vertical axis and continuously
varying the cutoff value to separate positive and negative results. To smooth the ROC
curve, the false positive fraction (FPF) and true positive fraction (TPF) were plotted on both
normal probability papers to obtain an approximately straight line, and the curve depicted
the relationship between the two.

The CNN was trained and evaluated thrice for each model, with the median value
and standard deviation used as the final classification result. In this study, the slice with
the largest left atrium and the two slices above and below it were used for training and
evaluation to enable continuous evaluation of the left atrium in the direction of the body
axis. In addition, the number of images used for training increased with data augmentation.
To demonstrate the effectiveness of these methods, we performed an additional validation
using only one central slice for training and evaluation (Additional Study 1) and a validation
using an evaluation without data augmentation (Additional Study 2).

2.6. Classification by Physicians

In this study, we administered the same questionnaire to physicians regarding the
classification of atrial fibrillation types based on only five images entered into the CNN
classification, and the results were compared with the correct response rate and focus of
the CNN classification.

2.6.1. Participants

A questionnaire survey was conducted among physicians in the Department of Car-
diovascular Medicine at Fujita Health University Bantane Hospital, and responses were
obtained from 18 physicians. In this survey, we asked patients to evaluate the type of AF in
terms of structural changes around the left atrium. The purpose of this questionnaire was
to compare the results of this study’s classification with those of the physicians’ clinical
judgments.

2.6.2. Questionnaire Items

Questions included: (1) years of experience as a physician, (2) specialty, (3) number
of catheter ablation procedures performed per year, (4) whether preoperative CT imaging
could predict the efficacy of catheter ablation, and (5) type classification of atrial fibrillation
(20 cases) and the basis for decision.

(3) The number of catheter ablation procedures performed in a year and (4) whether
preoperative CT images could predict the efficacy of catheter ablation procedures were
optional answers for physicians performing catheter ablation procedures. For AF classifica-
tion (5), 10 cases of paroxysmal PAF and 10 cases of LSAF were randomly selected from
the cases used in the CNN classification, and the results were tabulated on a 6-point scale.
In addition, the basis for judgment was asked, e.g., “Please tell us the reason why you
answered that way”, for the answer of the disease type classification, and the answer was
left open-ended. This question aimed to compare the points of interest of the CNN with
those of physicians.
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3. Results
3.1. Classification Results by CNN

First, we describe the results of the AF type classification using a CNN. The classifica-
tion results and AUC for the six CNN models are listed in Table 3, and the ROC curves are
shown in Figure 5. ResNet50 exhibited the highest accuracy for all classification results.

Table 3. Classification results for each CNN model (proposed method).

Model Sensitivity Specificity Precision Accuracy AUC

VGG16 80.0 ± 1.56 63.3 ± 4.71 68.6 ± 3.28 71.7 ± 2.84 0.80 ± 0.03
VGG19 80.0 ± 1.56 76.7 ± 4.15 77.4 ± 2.54 78.3 ± 1.56 0.79 ± 0.00

ResNet50 83.3 ± 5.65 80.0 ± 4.15 80.6 ± 3.27 81.7 ± 3.60 0.88 ± 0.07
DenseNet121 76.7 ± 4.71 66.7 ± 3.16 69.7 ± 2.68 71.7 ± 3.45 0.80 ± 0.02
DenseNet169 80.0 ± 2.74 63.3 ± 4.15 68.6 ± 2.59 71.7 ± 2.08 0.76 ± 0.03
DenseNet201 83.3 ± 3.11 63.3 ± 4.16 69.4 ± 2.63 73.3 ± 2.36 0.82 ± 0.01
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The results of the additional validation are presented in Tables 4 and 5. In addition,
Figure 6 shows a comparison of the classification correctness rate between the proposed
method and Additional Studies 1 and 2. When learning and evaluation were performed
on the central slice only (Additional Study 1), the classification correctness increased for
VGG16, VGG19, and ResNet50 but decreased for the other three DenseNet models. Without
augmentation of the training data (Additional Study 2), the accuracy remained the same or
decreased for models other than DenseNet169.
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Table 4. Classification results for evaluation of central slices only (Additional Study 1).

Model Sensitivity Specificity Precision Accuracy AUC

VGG16 76.7 ± 1.52 63.3 ± 4.71 67.6 ± 3.34 70.0 ± 2.84 0.75 ± 0.02
VGG19 70.0 ± 4.16 80.0 ± 1.56 77.8 ± 2.05 75.0 ± 2.36 0.78 ± 0.01

ResNet50 73.3 ± 3.16 76.7 ± 2.74 75.9 ± 1.39 75.0 ± 0.80 0.83 ± 0.01
DenseNet121 73.3 ± 1.56 80.0 ± 1.56 78.6 ± 1.27 76.7 ± 0.80 0.82 ± 0.01
DenseNet169 73.3 ± 2.74 76.7 ± 0.00 75.9 ± 0.69 75.0 ± 1.39 0.77 ± 0.01
DenseNet201 66.7 ± 3.11 83.3 ± 0.00 80.0 ± 0.71 75.0 ± 1.56 0.82 ± 0.02

Table 5. Classification results without data augmentation (Additional Study 2).

Model Sensitivity Specificity Precision Accuracy AUC

VGG16 66.7 ± 3.11 76.7 ± 4.15 74.1 ± 3.98 71.7 ± 2.81 0.75 ± 0.03
VGG19 63.3 ± 4.16 66.7 ± 6.27 65.5 ± 5.26 65.0 ± 4.08 0.70 ± 0.03

ResNet50 60.0 ± 5.43 83.3 ± 4.16 78.3 ± 2.11 71.7 ± 0.75 0.81 ± 0.01
DenseNet121 63.3 ± 1.56 70.0 ± 6.86 67.9 ± 6.19 66.7 ± 3.60 0.72 ± 0.04
DenseNet169 70.0 ± 2.69 76.7 ± 0.00 75.0 ± 0.73 73.3 ± 1.35 0.77 ± 0.02
DenseNet201 63.3 ± 4.16 83.3 ± 1.60 79.2 ± 2.50 73.3 ± 3.37 0.84 ± 0.02

Computers 2024, 13, x FOR PEER REVIEW 9 of 17 
 

Table 4. Classification results for evaluation of central slices only (Additional Study 1). 

Model Sensitivity Specificity Precision Accuracy AUC 

VGG16 76.7 ± 1.52 63.3 ± 4.71 67.6 ± 3.34 70.0 ± 2.84 0.75 ± 0.02 

VGG19 70.0 ± 4.16 80.0 ± 1.56 77.8 ± 2.05 75.0 ± 2.36 0.78 ± 0.01 

ResNet50 73.3 ± 3.16 76.7 ± 2.74 75.9 ± 1.39 75.0 ± 0.80 0.83 ± 0.01 

DenseNet121 73.3 ± 1.56 80.0 ± 1.56 78.6 ± 1.27 76.7 ± 0.80 0.82 ± 0.01 

DenseNet169 73.3 ± 2.74 76.7 ± 0.00 75.9 ± 0.69 75.0 ± 1.39 0.77 ± 0.01 

DenseNet201 66.7 ± 3.11 83.3 ± 0.00 80.0 ± 0.71 75.0 ± 1.56 0.82 ± 0.02 

Table 5. Classification results without data augmentation (Additional Study 2). 

Model Sensitivity Specificity Precision Accuracy AUC 

VGG16 66.7 ± 3.11 76.7 ± 4.15 74.1 ± 3.98 71.7 ± 2.81 0.75 ± 0.03 

VGG19 63.3 ± 4.16 66.7 ± 6.27 65.5 ± 5.26 65.0 ± 4.08 0.70 ± 0.03 

ResNet50 60.0 ± 5.43 83.3 ± 4.16 78.3 ± 2.11 71.7 ± 0.75 0.81 ± 0.01 

DenseNet121 63.3 ± 1.56 70.0 ± 6.86 67.9 ± 6.19 66.7 ± 3.60 0.72 ± 0.04 

DenseNet169 70.0 ± 2.69 76.7 ± 0.00 75.0 ± 0.73 73.3 ± 1.35 0.77 ± 0.02 

DenseNet201 63.3 ± 4.16 83.3 ± 1.60 79.2 ± 2.50 73.3 ± 3.37 0.84 ± 0.02 

 

 

Figure 6. Comparison of proposed method and additional study. 

The images that were correctly classified by ResNet50 are shown in Figure 7, and 

those that were incorrectly classified are shown in Figure 8. 

Figure 6. Comparison of proposed method and additional study.

The images that were correctly classified by ResNet50 are shown in Figure 7, and those
that were incorrectly classified are shown in Figure 8.

Figure 9 shows the saliency map output when ResNet50 correctly classifies a case, and
Figure 10 shows the heatmap output when ResNet50 incorrectly classifies a case. Note that
the presented case is the same patient as the one presented in Figures 7 and 8.
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3.2. Classification Results by Physicians

Table 6 shows the number (%) of responses to each of the following questions: (1) years
of experience as a physician, (2) specialty, and (3) number of catheter ablation therapies
performed per year. In Case (2), all 18 physicians specialized in cardiovascular medicine.

Table 6. Survey results on years of experience as a physician and areas of specialization.

Experience (years) Responses (%) Specialty Responses (%)

5–10 3 (16.7) cardiovascular 18 (100)
11–15 4 (22.2)
16–20 7 (38.9)
21–25 2 (11.1)
26–30 1 (5.6)
31–35 1 (5.6)

Total 18 (100) Total 18 (100)

Six physicians responded to question (3), the number of catheter ablation therapy
performed in a year. The results are summarized in Table 7.

Table 7. Survey results of the number of catheter ablation therapies performed in a year.

Number of Treatments (Cases) Responses (%)

1–50 2 (33.3)
51–100 2 (33.3)
101–150 1 (16.7)
151–200 1 (16.7)

Total 6 (100)

Nine physicians responded to the question about (4) whether preoperative CT images
could predict the efficacy of catheter ablation therapy. Of these, eight physicians answered
that preoperative contrast-enhanced CT could predict the efficacy of catheter ablation
therapy.

Figure 11 shows the percentage of correct answers for the 20 cases used in the ques-
tionnaire classified by ResNet50, the percentage of correct answers for 18 physicians, and
the average percentage for all physicians. In addition, Figure 12 shows the ROC of the
physicians’ classification results, and Table 8 shows details of the physicians’ classification
accuracy and AUC. The mean accuracy was 73.6% and the median was 75%. The mean
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AUC was 0.802. The 20 cases used to evaluate ResNet50 were the same as those used in
the survey of physicians, and the overall correct response rate for physicians was widely
distributed, ranging from 55% to 90%; however, the average correct response rate was
73.6%, which was slightly lower than that of ResNet50.
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Table 8. Physicians’ classification results.

Physician Accuracy(%) AUC Physician Accuracy(%) AUC

1 85.0 0.895 10 55.0 0.690
2 70.0 0.640 11 60.0 0.670
3 90.0 0.955 12 65.0 0.675
4 70.0 0.820 13 70.0 0.770
5 75.0 0.865 14 75.0 0.780
6 80.0 0.825 15 70.0 0.800
7 75.0 0.825 16 65.0 0.740
8 80.0 0.830 17 85.0 0.945
9 80.0 0.885 18 55.0 0.825

The respondents had diverse opinions based on their judgments. Generally, LSAF
is characterized by left atrial enlargement, roundness of the left atrium, coronary artery
calcification, left auricular enlargement, poor contrast, auricular thrombus closure, uneven
contrast density, retraction of the comb muscle, atrial wall thickening, and fibrosis of the
atrial septum. The most common finding of persistent atrial fibrillation is enlargement of
the left atrium.

4. Discussion
4.1. Comparison of CNN Models

In this study, six CNN models were evaluated on their performance in classifying
the AF types. ResNet50 performed the best in terms of overall accuracy, followed by
VGG19. The reason these CNN outperformed DenseNet121, 169, and 201 could be that the
number of layers in the network was shallow, which made it possible to extract features in
a localized region. The long-term persistence of AF results in structural remodeling, such
as left atrial shape changes and auricular enlargement, also affected the results. Therefore,
ResNet50 and VGG19 should focus on these localized areas for classification purposes. The
best overall correct response rate for ResNet50 was achieved because ResNet50 is optimized
using a residual function and performs batch normalization for each residual block. We
hypothesize that this resulted in stable learning without the gradient vanishing problem.

In addition, Figure 6 shows a comparison of the classification correctness rate between
the proposed method and Additional Studies 1 and 2. In most cases, the proposed method
performs better than Additional Studies 1 and 2. The reason for the better accuracy rate
than that of Additional Study 1 is that the proposed method uses a total of five slices
(located 5 mm above and below) centered on the slice with the most enlarged left atrium
for training; therefore, it is possible to analyze information in the body axis direction, in
addition to the slice direction, and classification is more accurate than when only one
slice is used for evaluation. The reason for the higher rate of correct answers compared
to Additional Study 2 is thought to be that the data augmentation increased the number
of pseudo-variations because of the various body inclinations and CT values due to the
contrast agent and was able to respond to the effects on the image caused during imaging.
Furthermore, data augmentation increased the number of images used for training by a
factor of nine; therefore, it was assumed that efficient training was possible.

4.2. Insights from Saliency Map in CNN Classifications

Score-CAM was used to output a color map showing the pixels contributing to the
CNN classification results. In the heatmap output for the correct classification in Figure 8,
the left atrium and pulmonary veins tended to attract more CNN attention. In addition,
when attention was focused on structures other than the heart, which was often seen in
the heatmap output when the patient was incorrectly classified, as shown in Figure 10,
there was a tendency toward incorrect classification. Focusing on the left atrium, cases of
PAF were misclassified with findings of major LSAF, including an enlarged left atrium, the
loss of comb-like muscular structures, and large rounded anterior and posterior structural
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left atria. In the cases of LSAF, there was also a tendency to misclassify cases in which
the left atrium was not enlarged, especially when the anteroposterior diameter of the left
atrium was short. Based on these findings, CNN classification focuses on the shape and
surrounding structures of the left atrium and is considered a valid classification for the
findings of LSAF.

4.3. Comparison with Physician’s Results

In response to the physician’s description of the basis for judgment, enlargement of
the left atrium is a feature of LSAF in many cases. In the correctly classified cases shown
in Figure 7, (a) the PAF has a small, flat left atrial structure, whereas (b) the LSAF has a
large, rounded left atrial structure in the front and back. The CNN model is expected to
classify patients using the same criteria as physicians because the heatmap also shows
that the left atrium area attracts more attention. The cases in which the CNN model and
averaged results of the physicians’ responses differed are shown in Figure 13. Case (a)
involved LSAF, but the left atrium was relatively small (left), and there was no loss of the
pectinate muscle structure (right). The CNN model can classify these cases. However, it
was misclassified, even when the typical findings of LSAF in the size of the left atrium were
observed, as shown in (b). The possible reason is that by using the entire CT image as the
input image, information other than the left atrial region may have led to misclassification.
This problem could be improved by increasing the variation with more training data and
narrowing the field of view to the left atrial region alone.
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4.4. Comparison with Previous Studies

The results of this study showed a higher accuracy than those of the study by Ortigosa
et al. using ECG (classification accuracy rate 77.1%) [10]. Furthermore, the method of this
study has the advantage of being able to classify the pathology of AF using the assessment
of structural remodeling of the left atrium, even when other diseases that affect the ECG
waveform are present at the same time. AF is usually detected using an ECG, but we think
that the limitation of using an ECG is that the time of detection of an attack is considered
to be the moment of the first appearance of the attack. The advantage of this study using
contrast CT images is that it allows for an objective evaluation of the state of the atrium
regardless of the type of disease. We think that by evaluating the stress on the atrial muscle
when atrial fibrillation is first discovered and confirming long-term findings, it will be
possible to get closer to starting treatment at an earlier stage.

4.5. Practical Applications in Clinical Settings

We hypothesize that by using deep learning to classify AF types from CT images,
this study will facilitate a standardized assessment of structural remodeling of the left
atrium, which was originally determined subjectively by physicians, thereby reducing
subjective bias. By integrating these systems into clinical workflows, it will become possible
to evaluate the strain on the atrial muscle at the initial detection of AF. Additionally, if signs
of long-term persistence are confirmed, early treatment can be initiated. This approach
could potentially reduce unnecessary catheter ablation procedures, allow for more tailored
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treatment recommendations, and decrease healthcare costs. Furthermore, computational
resources and processing time need to be discussed for practical application. Although
model training requires substantial hardware resources and prolonged processing time
(2–5 h), we believe that once the model is trained, the prediction process can be completed
in under one minute, making it sufficiently feasible for clinical use because of the reduced
hardware requirements for inference.

4.6. Limitation of This Study

There are two limitations of this study. The first is that it is a small and single-facility
dataset. Furthermore, potential confounding factors, such as patient comorbidities, are not
discussed. When the number of data is increased and external validation is performed in
the future, comorbidities should be included in the analysis and evaluated. In addition,
contrast-enhanced CT provides a clearer image of the left atrium than simple CT, but
patients who cannot use contrast media and variations in contrast media and image quality
among facilities remain a challenge. We hypothesize that this challenge can be resolved
by using simple CT images or by preparing a dataset that includes images taken at other
facilities and performing data augmentation, as in this study. The second limitation is
that the classification does not include persistent AF, which we think does not allow for
continuous evaluation. The definition of the duration of persistent AF ranges from 7 days
to less than 1 year, making it difficult to accurately identify it through the assessment of
left atrial geometry. Therefore, persistent atrial fibrillation was excluded from classification
in this study and classified as paroxysmal and long-standing persistent; these cases have
predominantly different results in ablation therapy and can be evaluated for structural
remodeling based on imaging features. In the future, it is necessary to develop a method
to evaluate AF types continuously by adding cases of persistent AF. The use of left atrial
volume, dynamic modality information, additional machine learning models, and natural
language processing models is also possible and will be explored.

5. Conclusions

Catheter ablation therapy is a treatment for AF; however, its efficacy is not well
established due to the high recurrence rate in patients with PAF. In this study, we attempted
to classify AF types using a convolutional neural network based on features obtained from
contrast-enhanced CT images. As a result of the classification, ResNet50, which is a CNN
model, showed the best performance in terms of the overall correct response rate and AUC
value. The output of the heatmap and the survey of physicians’ judgment criteria indicated
that many patients tend to focus on the shape of the left atrium in both classifications,
suggesting that this method can classify AF types more accurately than physicians in a
manner similar to the physicians’ judgment criteria. In the future, we plan to address the
challenges of this study, such as using plain CT images, preparing a dataset that includes
images from other facilities, and conducting continuous evaluations that include persistent
AF. Furthermore, once these issues are resolved, this study can potentially be applied in
predicting the efficacy of catheter ablation therapy. A future direction is to predict the
efficacy of catheter ablation therapy in patients with atrial fibrillation based on contrast-
enhanced CT images with the goal of providing quality information for patients to choose
their treatment options.
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