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Abstract: Behavior-based user authentication has arisen as a viable method for strengthening cy-
bersecurity in an age of pervasive wearable and mobile technologies. This research introduces
an innovative approach for ongoing user authentication via behavioral biometrics obtained from
wearable sensors. We present a hybrid deep learning network called SE-DeepConvNet, which inte-
grates a squeeze-and-excitation (SE) method to proficiently simulate and authenticate user behavior
characteristics. Our methodology utilizes data collected by wearable sensors, such as accelerometers,
gyroscopes, and magnetometers, to obtain a thorough behavioral appearance. The suggested network
design integrates convolutional neural networks for spatial feature extraction, while the SE blocks
improve feature identification by flexibly recalibrating channel-wise feature responses. Experiments
performed on two datasets, HMOG and USC-HAD, indicate the efficacy of our technique across
different tasks. In the HMOG dataset, SE-DeepConvNet attains a minimal equal error rate (EER)
of 0.38% and a maximum accuracy of 99.78% for the Read_Walk activity. Our model presents out-
standing authentication (0% EER, 100% accuracy) for various walking activities in the USC-HAD
dataset, encompassing intricate situations such as ascending and descending stairs. These findings
markedly exceed existing deep learning techniques, demonstrating the promise of our technology for
secure and inconspicuous continuous authentication in wearable devices. The suggested approach
demonstrates the potential for use in individual device security, access management, and ongoing
uniqueness verification in sensitive settings.

Keywords: behavior user authentication; wearable sensors; deep learning; squeeze-and-excitation
networks; continuous authentication

1. Introduction

In an age marked by the prevalence of smartphones and watches, safeguarding the
safety and confidentiality of individual data has become increasingly essential [1,2]. Con-
ventional authentication techniques, including passwords and PINs, are susceptible to
several attacks and fail to offer ongoing security during an individual’s experience [3]. This
constraint has generated curiosity regarding behavior-based verification platforms, which
utilize the unique characteristics of an individual’s actions to continually and inconspicu-
ously authenticate their true identity [4].

Wearable appliances integrated with various sensors, including accelerometers, gy-
roscopes, and heart rate tracking devices, provide a substantial repository of behavior
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information [5,6]. These sensors can detect subtle variations in an individual’s motions,
bodily reactions, and daily activities, delivering a complex psychological pattern that is
challenging to duplicate. The continuous data flow from these sensors facilitates real-time
authentication, augmenting security without detracting from users’ experience [7].

Recent developments in deep learning have transformed the domain of psychological
biometrics [8,9]. Deep neural networks are proficient in identifying intricate patterns
in high-dimensional data, rendering them ideal for representing individuals’ behavior
complexities [10]. Even with advancements, current methodologies frequently encounter
difficulties due to wearable sensor data’s fluctuating and complex characteristics, resulting
in inadequate authentication effectiveness.

Despite the potential of deep learning methods in sensor-based authentication, cer-
tain constraints remain in current research. Numerous contemporary models encounter
challenges due to the significant unpredictability and noise in wearable sensor data [11–13].
This results in varying effectiveness among various users and activities. Moreover, most
methodologies regard all sensor channels uniformly, neglecting the differing significance
of various variables in differentiating user actions. Particular research has utilized intricate
structures that, although efficient, incur substantial computational expenses and energy
usage. While the main authentication processing occurs on separate computing devices,
wearable devices still face energy constraints in their crucial role of continuous sensor data
collection and transmission—a consideration that influences the overall system design and
efficiency [14,15].

Furthermore, many current models lack interpretability, making it difficult to identify
which personality traits have the greatest influence on authentication decisions [16,17]. A
significant deficiency exists concerning the temporal dynamics of user behavior, as several
contemporary methodologies concentrate predominantly on static feature extraction, failing
to sufficiently describe long-term interdependence in behavioral patterns. Ultimately, the
issue of continuous authentication, necessitating immediate processing and adaption
to incremental shifts in user behavior, needs to be more adequately handled in several
deep learning-based systems [18]. Our suggested methodology seeks to mitigate these
constraints by employing a hybrid architecture and integrating the squeeze-and-excitation
(SE) process [19,20], providing a more resilient, productive, and versatile alternative for
behavior-based authentication via wearable sensors.

This research tackles these challenges by introducing an innovative hybrid deep
learning network that integrates an SE method. Our methodology integrates the advantages
of convolutional neural networks (CNNs) for spatial feature extraction with SE blocks to
augment the network’s capacity to concentrate on the most salient information, enhancing
its resilience to noise and fluctuations in sensor input. The primary contributions of this
study are as follows:

• We propose a novel hybrid deep learning architecture that combines CNNs with SE
blocks to achieve behavior-based user authentication using wearable sensor data.

• Our approach demonstrates the effectiveness of SE blocks in enhancing feature dis-
crimination, thereby improving overall authentication accuracy.

• We conduct extensive evaluations on a diverse dataset of daily activities, validating
the proposed methodology’s robustness and generalizability.

This paper is structured as follows: Section 2 examines the pertinent literature on
behavior-based authentication and deep learning methodologies. Section 3 delineates our
suggested methodology, encompassing the network architecture and the SE mechanism.
Section 4 delineates the experimental configuration and findings. Section 5 presents the
findings, while Section 6 finishes the paper by addressing the consequences and potential
next steps.

2. Related Works

The past several years have witnessed substantial progress in behavior-based user
authentication via wearable sensors, motivated by the widespread adoption of mobile
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and wearable technology and the growing demand for reliable, ongoing authentication
techniques. This section summarizes the pertinent literature, concentrating on two primary
domains: sensor-based authentication and behavioral user authentication. We analyze
the progression of technologies that use sensors in mobile gadgets and their utilization in
biometric authentication solutions. Furthermore, we examine diverse methodologies for
behavior-based authentication, emphasizing new research that employs machine learn-
ing and deep learning techniques to assess user activity characteristics. By examining
these pertinent studies, we seek to situate our study within the expansive domain of
continuous authentication and highlight the originality and prospective benefits of our
proposed SE-DeepConvNet model. This evaluation aims to pinpoint deficiencies in current
methodologies, which our research intends to rectify.

2.1. Sensor-Based User Authentication

Sensors are becoming advanced as portable technology progresses swiftly. The latest
mobile phone releases feature GPS, imaging cameras, microphones, ambient light sensors,
3D touchscreens, and accelerometers, among other components [21,22]. A multitude of sen-
sors facilitate many interactions on contemporary mobile phones. Nonetheless, numerous
sensors are devoid of individual accessibility [23]. These attributes are derived from several
modern mobile sensors. Biometric authentication could be a suitable option for people who
prefer not to use PINs or passwords [24]. On the contrary, non-biometric procedures rely on
the owner’s authorization or confidentiality to verify identity. Behavioral and physiological
biometrics are two distinct categories. These strategies can effectively thwart identity
theft and unauthorized access to mobile terminal capabilities. Smartphones equipped
with biometrics are readily available, reducing the expense of biometric sensors [25]. The
accelerometers embedded in the individual’s typical movement illustrate the potential of
non-invasive biometric gait evaluations [26]. In addition to the accelerometer, smartphone
owners possess alternative authentication methods [27]. Accelerometers have become an
essential tool for motion detection.

2.2. Behavioral User Authentication

Numerous investigations have illustrated the adaptability of sensor data for implicit
authentication, evidencing its capacity to record user activities. Lee et al. [28] demonstrated
the efficacy of smartphone sensors for implicit authentication, attaining an acceptable
false rejection rate (FRR) of 0.9% and a moderate false acceptance rate (FAR) of 2.8%.
This research underscores the effectiveness of sensor-based biometrics in differentiating
authentic individuals from impostors. Shen et al. [29] performed an extensive assessment
utilizing sensor data and ten one-class detectors, achieving a notable equal error rate (EER)
of 2.21%. As the area advances, additional investigation and development of sensor-based
authentication techniques are expected to improve security and user experience in portable
gadget innovation. Sensor-based authentication utilizes many data sources, including
accelerometers, gyroscopes, and magnetometers, to gather comprehensive information
regarding individual motions, device orientation, and context in the surroundings. These
extensive data allow the system to construct a detailed profile of the individual’s behavior,
improving its ability to differentiate between authentic users and impostors reliably [30].
A primary benefit of sensor-based authentication is its capacity to function constantly in
the background without requiring specific user actions. This constant surveillance enables
the system to identify irregularities instantaneously, facilitating continuous authentication
that enhances security without disrupting the user experience. A significant problem of
sensor-based authentication is its vulnerability to external conditions that could bring noise
or fluctuation into the data. Alterations in the individual’s surroundings, such as traveling
in a vehicle or traversing uneven surfaces, may influence sensor observations, potentially
resulting in elevated false rejection or acceptance rates [28]. Aggregating and analyzing
sensor data for authentication purposes presents possible privacy issues. Individuals may
be apprehensive about how their activities and habits are surveilled, even if the data are
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utilized exclusively for security reasons. It is imperative to guarantee that data-collecting
methods are transparent and securely managed to alleviate these worries [29].

3. Methodology

This section provides a comprehensive overview of our proposed methodology for
behavior-based user identification by using wearable sensors. We present SE-DeepConvNet,
an innovative hybrid deep learning structure integrating SE blocks into a CNN framework.
Our approach includes crucial steps such as data gathering from wearable sensors, pre-
processing strategies to improve the quality of signals, and building the SE-DeepConvNet
model. We examine the datasets utilized in our investigation and the pre-processing tech-
niques implemented on the raw sensor data. Subsequently, we present a comprehensive
elucidation of the SE-DeepConvNet architecture, emphasizing the function of SE blocks
in enhancing feature discrimination. We delineate the assessment indicators employed to
analyze the effectiveness of our model relative to benchmark methodologies. We intend to
illustrate the efficacy of our suggested approach in tackling the issues of continuous au-
thentication in mobile and wearable device environments through this complete technique.

Figure 1 depicts the suggested framework for gait-based continuous authentication
utilizing wearable sensors. The framework comprises numerous essential phases in the
authentication steps. Initially, unprocessed sensor data are gathered from wearable devices,
typically comprising accelerometers, gyroscopes, and possibly more sensors. The data are
thereafter subjected to pre-processing to clean and normalize the signals. The pre-processed
data are input into a hybrid deep learning network, which becomes the fundamental
component of the authentication system. This network integrates CNNs for spatial feature
extraction and recurrent neural networks (RNNs) for temporal modeling and employs
SE blocks to improve feature discrimination. The outcome of this hybrid network is
utilized to perform authentication determinations, assessing if the present individual’s
gait pattern corresponds with the recorded profile of the authorized user. This ongoing
authentication procedure facilitates real-time validation of the individual’s identification
through their gait patterns, offering a safe and discreet means of access control for wearable
and portable gadgets.
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Figure 1. The proposed framework of gait-based continuous authentication using wearable sensors.

3.1. Data Acquisition

To assess the efficacy and resilience of our proposed SE-DeepConvNet model, we
employed two separate datasets that encompass a diverse array of user actions and behav-
iors via wearable sensors. The datasets include the HMOG (Hand Movement, Orientation,
and Grasp) dataset and the USC-HAD (University of Southern California Human Activity
Dataset). The HMOG dataset concentrates on smartphone user behavior across diverse
everyday tasks, whereas the USC-HAD includes a range of walking actions. Utilizing
these two complimentary datasets, we intend to illustrate the versatility and efficacy of
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our methodology across many contexts of wearable sensor-based authentication. The
subsequent subsections offer comprehensive descriptions of each dataset, encompassing
their collecting processes, sensor varieties, and the particular actions they address.

3.1.1. HMOG Dataset

The HMOG dataset was compiled and made accessible to everyone [31]. The dataset
comprises accelerometer, gyroscope, and magnetometer data pertaining to tap-based
properties, including x-y coordinates, finger-covered area, and pressure, collected from
100 smartphone users (53 male, 47 female) during 24 intervals. The data were collected in
an appropriately controlled setting throughout multiple intervals of smartphone usage,
and each period comprised designated actions classified as reading, writing, or map explo-
ration. Moreover, each exercise was performed while both seated and ambulating. Each
encounter was replicated four times, resulting in 24 interactions per subject overall. The
dataset comprised accelerometer, gyroscope, and magnetometer sensor data, operating at
100 Hz. Each individual documented six distinctive experience scenarios. Furthermore,
sensor data from screen interactions, including touch, keypress, scroll, pinch, and stroke,
were documented; however, these were extraneous to this investigation.

3.1.2. USC-HAD

The USC Human Activity Dataset (USC HAD) [32] is the second dataset captured
utilizing MotionNode devices equipped with tri-axial sensors, including an accelerometer,
gyroscope, and magnetometer. This study’s sampling frequency was 100 Hz. The dataset
consists of data on movement from 14 participants, seven males and seven females, aged
21 to 49, engaged in 12 tasks.

3.2. Data Pre-Processing

The unprocessed sensor data sources underwent initial processing to purify the sig-
nals and standardize their distributions. Filtering procedures were utilized to eliminate
noise from the sensor inputs. Subsequently, the processed signals from accelerometers
and gyroscopes were normalized to reduce discrepancies from varying sensor scales. The
analyzed multi-sensor time series were ultimately segmented into non-overlapping inter-
vals, each lasting 2.56 s, via a sliding window methodology. The segmentation technique
produced fixed-length samples that capture user behavior characteristics over time, offering
organized input for later learning algorithms to examine.

3.3. The Proposed SE-DeepConvNet Model

This study introduces SE-DeepConvNet, a streamlined CNN developed for contin-
uous authentication utilizing sensor data. The model independently generates spatial
representations employing convolutional layers directly from the raw input streams. SE
blocks are subsequently implemented to adjust feature reactions on a channel-wise basis,
enhancing relevant features, while training, supplementary batch normalization, and ReLU
activation layers attain enhanced optimization, standardizing activations and mitigating
the vanishing gradient problem. As depicted in Figure 2, this integrated framework effi-
ciently acquires unique personality features from sensor data noise, hence assuring reliable
user authentication.

3.4. Convolutional Block

A predetermined collection of components is generally utilized when employing a
CNN. CNNs are frequently employed in supervised learning. Generally, these neural
networks connect each neuron to every other neuron in the subsequent network layers. The
neural network’s activation function transforms the neurons’ input value into the output
value. Two critical factors affect the efficacy of the activation function. This encompasses
sparsity and the ability of the neural network’s bottom layers to withstand diminished
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gradient flow. CNNs commonly utilize pooling as a method for decreasing dimensionality.
Max-pooling and average-pooling are both frequently employed techniques.
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Figure 2. The proposed SE-DeepConvNet Model.

Convolutional blocks (ConvBs) are employed in this research to discern low-level
features from raw sensor data. Figure 2 illustrates that ConvBs consist of four layers: one-
dimensional convolutional (Conv1D), batch normalization (BN), exponential linear unit
(ELU), and max-pooling (MP). Numerous comprehensible convolutional kernels develop
unique characteristics in Conv1D, with each kernel generating a feature map. The batch
normalization layer was used to regulate and accelerate the training phase. The ELU layer
was employed to enhance the model’s expressive capacity. The MP layer condensed the
feature map while preserving the most vital components.

3.5. Squeeze-and-Excitation Mechanism

Figure 3 shows the design of an SE component. After the convolution process, several
feature maps are generated. However, specific feature maps could include redundant data.
The SE module executes feature recalibration to enhance prominent features and deactivate
less advantageous ones. This component comprises two aspects: the squeezing step and
the excitation step.
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3.6. Evaluation Metrics

To thoroughly evaluate the efficacy of our proposed SE-DeepConvNet model and
compare it with standard techniques, we utilize various conventional assessment criteria
often employed in biometric identification systems. These indicators offer insights into
the model’s capacity to verify legitimate users while dismissing impostors accurately. The
principal metrics employed are:
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1. False acceptance rate (FAR): This indicator denotes the likelihood that the system
erroneously recognizes an impostor as an authentic user. It is computed as:

FAR =
quantity of fraudulent acceptances

quantity of impostor tries
(1)

2. False rejection rate (FRR): This indicator denotes the likelihood that the system
erroneously denies access to an authentic user. FRR is computed as:

FRR =
number of false rejections

number of legitimate attempts
(2)

3. Equal error rate (EER): This is the point at which the FAR and FRR are equivalent. A
reduced EER signifies superior overall system performance. The system’s judgment
threshold is adjusted until the FAR equals the FRR. EER is computed using the
accompanying formula:

EER =
FAR + FRR

2
(3)

where |FAR + FRR| is the smallest value.
4. Accuracy: This measure denotes the comprehensive correctness of the authentication

system. It is computed as:

Accuracy =
true positives + true negatives

total number of attempts
(4)

4. Experiments and Results

This section outlines the investigations to evaluate the presented SE-DeepConvNet
model for continuous authentication. We evaluate the model’s effectiveness using a pub-
licly known dataset incorporating data from accelerometer, gyroscope, and magnetometer
sensors. We offer insights on assessment criteria, comparisons with baseline models, param-
eter environments, and accuracy studies across diverse sensing modalities. The significant
results provide advanced authentication rates, supporting the successful integration of
SE blocks into deep CNNs for the dependable identification of users from movement
sequences obtained from wearable appliances.

4.1. Experimental Setting

This study is performed using Python on Google Colab Pro+ and a Tesla V100 GPU to
accelerate simulations. The evaluations compare the suggested SE-DeepConvNet model
with traditional deep learning architectures, including regular CNNs and LSTM networks,
particularly for continuous sensor data authentication. The comparison results measure
improvements in identification attained by integrating SE blocks into our deep convolu-
tional network.

We established a systematic evaluation process for thorough cross-user validation. For
each user i-th in the dataset, we performed authentication trials in which that person’s
sensor data were classified as valid. In contrast, data from all other users were regarded as
imposters. This method guarantees a comprehensive assessment of the model’s capacity to
differentiate between authentic users and imposters across various user groupings. The
cross-user validation technique was uniformly implemented across the HMOG dataset
(100 users) and the USC-HAD (14 users), yielding a comprehensive evaluation of the
model’s efficacy in distinguishing between authentic users and imposters throughout
varied populations.

Acknowledging that this high-performance equipment was employed solely during
the study and training phase is essential. In actual applications, the trained model functions
on conventional server infrastructure, whereas wearable devices are exclusively tasked
with data collection and transmission. This deployment model assures that computational
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demands do not encumber resource-limited wearable devices, as they are solely responsible
for sensor data collection and safe transmission to the authentication servers where the
processing transpires.

4.2. Experimental Results

The following part provides a thorough examination of the results of experimentation
from our SE-DeepConvNet model and compares its efficiency with standard deep learning
methods. Our assessment includes two separate datasets: the HMOG dataset, which
examines smartphone user behavior, and the USC-HAD, which records various walking
behaviors. We evaluate the models’ efficacy through critical parameters, including EER and
accuracy indicators, offering insights into their capacity to authenticate users via behavioral
biometrics. The subsequent subsections examine the distinct effectiveness findings for
each dataset, emphasizing the advantages of our SE-DeepConvNet model in tackling
the issues of continuous authentication through wearable sensor data. These findings
provide evidence for the robustness and superiority of our proposed strategy across diverse
real-world circumstances.

4.2.1. Performance Analysis on HMOG Dataset

The current section presents and analyzes the effectiveness of our SE-DeepConvNet
model on the HMOG dataset, which records smartphone user behavior across different
tasks. We evaluate our model against standard CNN and LSTM methodologies across
three scenarios: Read_Walk, Write_Walk, and Map_Walk. We assess the models’ efficacy
in user authentication by employing EER and accuracy as primary measures, focusing on
behavioral patterns exhibited during the standard use of smartphones. This investigation
seeks to illustrate the efficacy and competitiveness of SE-DeepConvNet for continuous
authentication in practical portable device engagements. The findings from the experiment
are summarized in Table 1.

Table 1. Performance metrics of baseline deep learning models including the proposed SE-
DeepConvNet using MHOG dataset.

Gait-Based Activity
CNN LSTM SE-DeepConvNet

EER Accuracy EER Accuracy EER Accuracy

Read_Walk 0.75%(±2.67%) 99.51%(±1.73%) 0.60%(±1.81%) 99.60%(±1.21%) 0.38%(±1.13%) 99.78%(±0.67%)
Write_Walk 1.33%(±2.86%) 99.09%(±1.86%) 1.55%(±2.79%) 98.97%(±1.82%) 1.26%(±2.32%) 99.13%(±1.55%)
Map_Walk 1.24%(±4.73%) 99.08%(±4.25%) 0.77%(±1.44%) 99.48%(±0.96%) 0.83%(±1.40%) 99.43%(±0.98%)

Table 1 presents the effectiveness of the SE-DeepConvNet model for ongoing authenti-
cation tasks using the MHOG dataset, comparing its performance against standard CNN
and LSTM models. The SE-DeepConvNet consistently outperforms in three specific activi-
ties—Read_Walk, Write_Walk, and Map_Walk—demonstrating its capability by achieving
the lowest EER and highest accuracy rates, particularly for Read_Walk (0.38% EER, 99.78%
accuracy) and Write_Walk (1.26% EER, 99.13% accuracy). For Map_Walk, SE-DeepConvNet
nearly matches the best performance seen with the LSTM model. Each model achieves high
accuracy (over 98.9%) across all activities, with Read_Walk being the easiest to authenticate
and Write_Walk presenting the most challenges. The slight differences in performance
suggest that each model is effective; nonetheless, SE-DeepConvNet’s leading results across
multiple scenarios indicate that including SE blocks within the deep convolutional network
enhances ongoing authentication through wearable sensor data. These findings under-
score the robustness and efficiency of the SE-DeepConvNet model for behavior-based
user authentication.

4.2.2. Performance Analysis on USC-HAD

The following part provides a detailed examination of the effectiveness of our SE-
DeepConvNet model on the USC-HAD, which includes various walking behaviors. We
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evaluate the model we suggest against conventional CNN and LSTM methodologies across
five diverse walking scenarios: Walking Forward, Walking Left, Walking Right, Walking
Upstairs, and Walking Downstairs. We evaluate each model’s capacity to authenticate
users based on their gait patterns in different tasks employing EER and accuracy as the
significant criteria. This investigation intends to illustrate the adaptability and efficacy of
SE-DeepConvNet in detecting nuanced variations in walking manners, highlighting its
prospect for reliable continuous authentication in wearable appliance applications. The
results are presented in Table 2.

Table 2. Performance metrics of baseline deep learning models including the proposed SE-
DeepConvNet using USC-HAD dataset.

Gait-Based Activity
CNN LSTM SE-DeepConvNet

EER Accuracy EER Accuracy EER Accuracy

Walking Forward 7.37%(±3.99%) 94.81%(±2.62%) 5.46%(±2.30%) 95.68%(±1.71%) 0.07%(±0.25%) 99.97%(±0.12%)
Walking Left 11.78%(±8.15%) 92.66%(±5.95%) 5.47%(±3.85%) 95.62%(±3.76%) 0.00%(±0.00%) 100.00%(±0.00%)
Walking Right 6.01%(±7.08%) 96.38%(±4.77%) 2.18%(±1.58%) 98.66%(±0.92%) 0.00%(±0.00%) 100.00%(±0.00%)
Walking Upstairs 14.11%(±7.70%) 90.95%(±4.97%) 12.98%(±10.15%) 89.39%(±9.43%) 0.00%(±0.00%) 100.00%(±0.00%)
Walking Downstairs 19.20%(±10.70%) 86.03%(±9.82%) 21.76%(±13.40%) 81.32%(±11.81%) 0.00%(±0.00%) 100.00%(±0.00%)

Table 2 details the performance metrics of baseline deep learning models, including
the proposed SE-DeepConvNet, as applied to the USC-HAD. Results reveal a significant
improvement in authentication accuracy across various walking activities when using
SE-DeepConvNet compared to traditional CNN and LSTM models.

For the Walking Forward activity, SE-DeepConvNet achieves an impressively low
equal error rate (EER) of 0.07% and a high accuracy rate of 99.97%. These results surpass
those of the CNN (EER: 7.37%, accuracy: 94.81%) and LSTM (EER: 5.46%, accuracy: 95.68%)
models, highlighting SE-DeepConvNet’s capability to distinguish unique gait patterns
during forward movement effectively.

SE-DeepConvNet demonstrates perfect authentication with 0% EER and 100% accu-
racy for both actions in the Walking Left and Walking Right activities. This is a marked
improvement over the CNN and LSTM models, which display significantly higher EERs
and lower accuracy scores. For Walking Left, CNN shows an EER of 11.78% with 92.66% ac-
curacy, while LSTM performs better, achieving an EER of 5.47% and an accuracy of 95.62%.
The outstanding results of SE-DeepConvNet in these activities suggest its effectiveness in
capturing subtle directional gait distinctions.

In more complex movements like ascending and descending Stairs, SE-DeepConvNet
also achieves flawless performance (0% EER, 100% accuracy). In contrast, CNN and LSTM
models struggle, displaying significantly higher EERs and reduced accuracy levels. For
instance, in the Walking Downstairs activity, the CNN records an EER of 19.20% and an
accuracy of 86.03%, while LSTM’s performance is lower, with an EER of 21.76% and an
accuracy of 81.32%. This clear performance gap emphasizes SE-DeepConvNet’s ability to
handle complex gait patterns effectively.

Overall, the findings highlight SE-DeepConvNet’s outstanding performance across all
tested walking behaviors in the USC-HAD. Its ability to achieve near-perfect or flawless
authentication in diverse walking scenarios, including challenging activities like stair
climbing, underscores its robustness and efficiency for continuous authentication based on
gait analysis. This substantial improvement over traditional deep learning models indicates
that SE-DeepConvNet’s hybrid structure, combined with SE blocks, is advantageous for
distinguishing unique gait features in wearable sensor data.

5. Discussion
5.1. Performance Analysis Across Different Behavioral Activities

Our experimental results illustrate the strong efficacy of the SE-DeepConvNet model in
managing various patterns of behavior for continuous user authentication using wearable
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sensor data. The model demonstrates outstanding effectiveness on the HMOG and USC-
HAD datasets, highlighting its adaptability in user authentication across diverse daily tasks.

In the HMOG dataset, which reflects authentic smartphone usage patterns,
SE-DeepConvNet exhibits improved efficiency relative to conventional CNN and LSTM
structures. The model attains remarkable outcomes in the Read_Walk movement, exhibit-
ing an EER of 0.38% and an accuracy of 99.78%. This outstanding achievement in a typical
real-world situation—reading while walking—underscores the model’s practical utility.
The excellent efficiency in Write_Walk and Map_Walk actions further corroborates the
model’s capacity to authenticate users across various interaction patterns, indicating its
efficacy in practical mobile device utilization contexts.

The results obtained from the USC-HAD are awe-inspiring, as SE-DeepConvNet
attains flawless authentication measurements (0% EER, 100% accuracy) across diverse
walking activities. The model sustains its outstanding achievement even under demanding
situations like ascending and descending stairs, where conventional CNN and LSTM mod-
els exhibit considerable capacity decline. The significant efficiency disparity can be ascribed
to the SE blocks’ capacity to weight various sensor channels adaptively. This enables the
model to discern nuanced differences in gait patterns under diverse walking settings.

The sustained superior results across all datasets indicate that SE-DeepConvNet profi-
ciently identifies and utilizes unique behavioral traits in detailed interactions (smartphone
usage) and broad motor activity (walking patterns). This adaptability renders it especially
appropriate for practical applications where consumers participate in diverse activities
while utilizing their devices.

5.2. Practical Applications

Although our SE-DeepConvNet model demonstrates outstanding accuracy in distin-
guishing between authentic users and impostors, we recognize that practical applications
require a more sophisticated method for authentication determinations. We suggest adding
a third uncertain type when the model’s confidence is below a specified threshold. This
allows for a seamless transition to alternate authentication methods, such as personal
identification numbers or biometric identification. This is especially significant during
abrupt alterations to bodily action, such as shifting from walking to running, where sensor
data patterns may momentarily diverge from existing baseline levels. The system can
be engineered to employ adaptive authentication by continuously modifying its decision
thresholds based on different variables, such as contextual understanding (location and
time), user activity adjustments, the quality of signals from wearable sensors, and past
authentication arrangements. This approach facilitates the application of varying security
policies according to the context, wherein high-security applications necessitate elevated
confidence thresholds and increased secondary authentication frequency.

In contrast, less sensitive applications may uphold more permissive thresholds. In
order to successfully implement this improved decision structure, several essential aspects
must be handled, including determining suitable confidence thresholds through empirical
analysis, facilitating seamless transitions between authentication techniques, preserving
a positive user experience by eliminating superfluous secondary authentication requests,
and consistently tracking and assessing ambiguous situations to enhance the effectiveness
of the model. This triadic decision process offers a more resilient and pragmatic method
for continuous authentication in practical applications, recognizing and mitigating the
intrinsic variability in individual conduct and sensor data quality, thereby presenting a
more sophisticated and efficient solution for the real-world implementation of behavioral
authentication systems.

5.3. Limitations

Although our analysis reveals encouraging outcomes with the SE-DeepConvNet
model, different constraints must be recognized. While the HMOG and USC-HAD datasets
encompass a variety of actions taken by users, they may only comprehensively reflect some
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real-world situations. The datasets were gathered under controlled circumstances and may
not encompass the complete spectrum of environmental variables that could influence sen-
sor readings in real-world applications. Moreover, our experimental data are derived from
gadgets in accurate, consistent locations. In contrast, in practical applications, individuals
might use or transport their gadgets variably, which could influence sensor readings and
the precision of authentication. A further issue is that our datasets fail to consider temporal
variations in user behavior, including long-term alterations in movement patterns resulting
from tiredness, injury, or elderly users. The present research needs to thoroughly examine
the influence of varying sensor quality and specifications among different gadgets that are
worn, which may affect the device’s efficacy in practical applications.

These constraints indicate possibilities for potential studies on aspects such as data
acquisition across varied circumstances and sensor placements, examination of the model’s
adaptability to various sensor arrangements, and creation of strategies to address long-term
alterations in user behavior patterns while preserving authentication accuracy.

5.4. Privacy Considerations in Continuous Authentication

Although continuous behavioral authentication provides improved security, it has
considerable privacy issues that require further examination. The continuous accumulation
of data collected by sensors on worn gadgets generates a comprehensive digital footprint
of individuals’ daily actions and habits, possibly disclosing sensitive information regarding
their routines, physical activities, and wellness issues.

To mitigate these privacy points, multiple preventative strategies must be introduced.
Data processing should be conducted locally whenever feasible, reducing unprocessed
behavioral data transmission. The authentication system must utilize robust encryption
techniques for data transfer and preservation, establish explicit data retention regulations,
and offer consumers direct control over their data. Moreover, privacy-preserving method-
ologies like data anonymization and feature extraction at the edge can safeguard user
privacy while ensuring authentication efficacy. These procedures guarantee that the system
can authenticate individuals successfully while safeguarding their privacy privileges. The
subsequent implementations of behavioral authentication methods must meticulously
balance the trade-off between authentication precision and privacy protection.

6. Conclusions and Future Works

This work presents SE-DeepConvNet, an innovative hybrid deep learning structure
for continuous user authentication utilizing wearable sensor data. Our methodology, incor-
porating SEblocks within a CNN framework, has improved efficiency across many tasks,
continuously surpassing conventional CNN and LSTM models. The model’s resilience
throughout many scenarios, from smartphone utilization to intricate walking behaviors,
signifies its applicability in real-world contexts.

Despite the encouraging results, subsequent research should concentrate on several
critical domains: enhancing real-time implementation on resource-limited devices, creating
adaptive learning systems to address gradual shifts in user behavior, examining multi-
modal fusion and privacy-preserving strategies, assessing adversarial robustness, executing
larger-scale investigations, and formulating context-aware authentication techniques. As
we further refine and expand this methodology, SE-DeepConvNet signifies a substantial
advancement toward achieving genuinely secure, unobtrusive, and user-friendly authen-
tication systems for the digital era, responding to the increasing demand for improved
security in the pervasive environment of mobile and wearable devices.
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